
Supplementary Materials
In this extra material, we supplement the details of the updates in our doubly stochastic
variational EM algorithm in Section 1, and some experimental details in Section 2.

1 Updates of Doubly Stochastic Variational EM
We assume the variational posterior of the pseudo targets g is a multivariate Gaussian
distribution, q(g) = N (g|µ,Σ). To ensure Σ is positive definite, we represent Σ with
its Cholesky factorization, namely, Σ = LL> where L is a lower triangular matrix.
E step. Based on the stochastic objective in (14) of the main paper, we can derive that
the optimal of variational posterior for each latent cause q(zj)(j ∈ Nk) is a multinomial
distribution,

q(zj = 0) ∝ eEq(g)Ep(fij |g)(fij )

q(zj = n) ∝ βk(xij ,xin)e
1
τ (sj−sn)

where n ∈ Āsj , p(fij |g) is a conditional Gaussian distribution,

p(fij |g) = N
(
fij |c(xij ,B)c(B,B)−1g, c(xij ,xij )−c(xij ,B)c(B,B)−1c(B,xij )

)
,

xij and xin are the latent factor concatenations for the entry ij and ik, i.e.,

xij = [U(1)(ij1, :), . . . ,U
(K)(ijK , :)],

xin = [U(1)(in1, :), . . . ,U
(K)(inK , :)].

M step. In the M step, we calculate the gradient of the stochastic objective L̃k,l w.r.t to
all the other parameters θ in our model, including β, τ,µ,L, the covariance function
parameters used in GPs and the latent factors U = {U1, . . . ,UK}. We update these
parameters by

θt+1 = θt + ηt
∂L̃k,l

θt

where θt and θt+1 are the parameters θ in step t and t+ 1 respectively, and ηt is the
step-size. Note that when we use AdaDelta (Zeiler, 2012) framework, the step-size for
each element of ∂L̃k,l

θt is adjusted separately. In doing so, the stochastic gradient descent
often converges faster. The gradient w.r.t the base triggering function parameters β and
τ are given by

∂L̃k,l

∂β
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Nk
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τ ∆j )

+
N

Nk
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Eq(zj)

(
1(zj = n)

)
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where ∆j = min
(
smin(j+Cmax,N),min(sn + ∆max, T )

)
− sj . To guarantee that

β, τ > 0, we update β and τ in the log domain. The gradient w.r.t. log(β) and log(τ)
are easily obtained by

∂L̃k,l

∂ log(β)
=
∂L̃k,l

∂β
· ∂β

∂ log(β)
=
∂L̃k,l

∂β
β,

∂L̃k,l

∂ log(τ)
=
∂L̃k,l

∂τ
· ∂τ

∂ log(τ)
=
∂L̃k,l

∂τ
τ.

The gradient w.r.t the parameters of q(g) are given by

∂L̃k,l

∂µ
= −c(B,B)−1µ+

N

|Nk|
∑
j∈Nk

[
Eq(zj)

(
1(zj = 0)

)
c(B,B)−1c(B,xij )

− T

nij
bj · c(B,B)−1c(B,xij )

]
∂L̃k,l

∂L
= tril

[
− c(B,B)−1L + L−1>

− N

|Nk|
∑
j∈Nk

T

nij
bj · c(B,B)−1c(B,xij )c(xij ,B)c(B,B)−1L

]
where tril[·] takes the lower triangle part of the matrix, nij is the number of interaction
events in entry ij ,

bj = exp
{1

2

[
c(xij ,xij )− c(xij ,B)c(B,B)−1c(B,xij )

+ c(xij ,B)c(B,B)−1LL>c(B,B)−1c(B,xij )
]

+ c(xij ,B)c(B,B)−1µ
}
.

Finally, the calculation of the gradient w.r.t the latent factors and the kernel parameters
are similar to (Lawrence, 2004; Zhe et al., 2016). We refer the details to the papers.

2 Experimental Details
2.1 Simulation

To examined the capability of our model in discovering latent structures in data, we first
simulated a small synthetic event-tensor, of size 10 × 10 × 10. The latent factors in
each mode were sampled from a Gaussian mixture model (GMM) with 2 components,
where the centers are {(−1,−1), (1, 1)}. Given the latent factors, we sampled Hawkes
process events for each tensor entry. The base rate for each entry i was generated via a
nonlinear function,

λ0
i = 1/(1 + x2 + x) + e− cos(x)

where

x = ‖U(1)(i1, :)−U(2)(i2, :)‖+‖U(1)(i1, :)−U(3)(i3, :)‖+‖U(2)(i2, :)−U(3)(i3, :)‖.

The rate function is defined as

λi(t) = λ0
i +

∑
sn<t

0.1e−50‖xi−xin‖
2

1(t− sn < 0.01)e
t−sn
10
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where xi and xin are the vectors from concatenating the latent factors associated with
i and in, respectively; in is the entry index for n-th event. We used Hawkes Process
Toolkit (Xu and Zha, 2017) to sample 1, 000 events in total. We then ran CP-PTF,
GP-PTF and our approach for 50 epochs to estimate the latent factors. All the methods
started with the same random initialization of the latent factors.

2.2 Running Time

We implemented our algorithm, GP-PTF and CP-PTF with Matlab. We ran all the
methods on a desktop machine with Intel i7 2.90GHz processors. The average running
time per epoch of our approach are 1.75, 6.3 and 13.67 minutes for 911, UFO and
Article datasets, respectively. The average per-epoch running time for GP-PTF and
CP-PTF are much faster, which are less than 1 minute for all the datasets. This is
reasonable, because GP-PTF and CP-PTF only need to process each observed entry,
where the interaction events are simply aggregated into a single count. By contrast, our
model needs to process every single event inside each entry (see (6) and the equation
above in the main paper), and hence the number of data points are much larger. In
addition, to capture the dependency among the interactions, our model further has to
consider the proceeding events in the triggering function and HP likelihoods (see (4) in
the main paper). Nevertheless, the complexity of our doubly stochastic variational EM
algorithm is only proportional to the production of the event and entry batch sizes (see
Sec. 4.3 of the main paper), and hence are still scalable to handle both many observed
entries and events.

2.3 Clusters of Latent Factors

We used the k-means algorithm to cluster our estimated latent factors for 911 and UFO
datasets. For visualization, we set the number of latent factors to 2. We chose the latent
factors that gave the best prediction performance among the 100 epochs. We used BIC
to identify the appropriate cluster number from 2 to 15. Finally, we obtained 10 groups
of townships and 6 groups of EMS titles for 911, and 4 groups of UFO shapes for UFO.
The clusters for EMS titles and UFO shapes are listed in Table 1 and 2, respectively.
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Table 1: The clusters of the latent factors for EMS titles
Members

Cluster 1 SHOOTING, AMPUTATION, S/B AT HELICOPTER LANDING

Cluster 2

CVA/STROKE, SEIZURES, OVERDOSE, ABDOMINAL PAINS,
BACK PAINS/INJURY, DIABETIC EMERGENCY, RESPIRATORY EMERGENCY,

SYNCOPAL EPISODE , LACERATIONS, FEVER, ALLERGIC REACTION,
RESCUE - GENERAL, FIRE SPECIAL SERVICE,

DEHYDRATION, POISONING, CARDIAC ARREST

Cluster 3
VEHICLE FIRE, FIRE INVESTIGATION, MEDICAL ALERT ALARM,

FIRE ALARM, TRANSFERRED CALL, RESCUE - WATER,
DEBRIS/FLUIDS ON HIGHWAY, DISABLED VEHICLE, SUSPICIOUS

Cluster 4

EMS SPECIAL SERVICE, CARBON MONOXIDE DETECTOR, BUILDING FIRE,
APPLIANCE FIRE, RESCUE - TECHNICAL, ELECTROCUTION, STABBING,

HAZARDOUS MATERIALS INCIDENT, RESCUE - ELEVATOR,
ACTIVE SHOOTER, BOMB DEVICE FOUND, UNKNOWN TYPE FIRE

Cluster 5

CARDIAC EMERGENCY, DIZZINESS, HEAD INJURY, NAUSEA/VOMITING
ALTERED MENTAL STATUS, SUBJECT IN PAIN, HEMORRHAGING
FALL VICTIM, MATERNITY, UNCONSCIOUS SUBJECT, CHOKING

FRACTURE, BURN VICTIM, EYE INJURY, HEAT EXHAUSTION
Cluster 6 GAS-ODOR/LEAK, TRAIN CRASH, PLANE CRASH, WOODS/FIELD FIRE

Table 2: The clusters of the latent factors for UFO shapes
Members

Cluster 1 cone, cylinder, diamond, egg, chevron, circle, crescent,
pyramid, sphere, teardrop, triangle

Cluster 2 fireball, flash

Cluster 3 cigar, disk, flare, hexagon, light
oval, rectangle, unknown, changed

Cluster 4 formation, cross, delta, changing, round, other
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