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S-1 Experiment Details

As mentioned in main paper Sec. 4, parametrizing MDNs in all experiments have elu activation and
two hidden layers each of size λmax {input size, output size}, where 4 ≤ λ ≤ 5 depending on the
task, and output the proposal distribution as a mixture of 4 ≤ m ≤ 16 components.

S-1.1 General Binary-Valued Grid Models

For directed binary-valued grid models, we use higher amount of MDN mixtures than other experi-
ments because more variables are proposed and general discrete BNs can have highly multi-modal
conditionals.

Architecture The underlying MDN has 106-480-480-120 network structure, mapping the CPTs of
all 23 motif variables and 14 conditioning variable values to the proposal distribution of 9 proposed
variables as a mixture of 12 components.

Additional Sample Runs We provide additional sample runs on four grid models with various
percentages of deterministic relations in Fig. 1.

S-1.2 Gaussian Mixture Model with Unknown Number of Components

Formal Model Formally, the model can be written as

M ∼ Unif{1, 2, . . . ,m}
µj ∼ N (0, σ2

µI) j = 1, . . . ,m

v|M ∼ Unif{a ∈ {0, 1}m :
∑
j

aj =M}
zi|v ∼ Unif{j : vj = 1} i = 1, . . . , n

xi|zi,µ ∼ N (µzi , σ
2I) i = 1, . . . , n,

where m and n are model parameters, and σ2
µ = 4 and σ2 = 0.1 are fixed constants.
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Figure 1: Additional sample runs with single-site Gibbs, neural block MCMC, and block Gibbs with true
conditionals on UAI 2008 grid models. These results are obtained in same setting as Fig. 4 of main paper. For
each model, we compute 10 random initializations and run three algorithms for 1500s on each one. Plots show
average error for each algorithm. Epochs plots are cut off at 500 epochs to better show the comparison. “grid-k”
represents that the model has k% deterministic relations.
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Figure 2: Small version of the
triangle grid model in exper-
iment Sec. S-2.1. Evidence
nodes (shaded) are at bottom
layer. The actual network has
15 layers and 120 nodes.

Figure 3: Motif for the model in
Fig. 2. Conditioning variables
(shaded) form the Markov blan-
ket of proposed variables (white).
Dashed gray arrows are possible
irrelevant dependencies.

Figure 4: Error w.r.t. epochs on the triangle
model in Fig. 2. Semitransparent lines show
individual MCMC runs. Opaque lines show
average error over 10 MCMC runs for each
algorithm. Numbers in parentheses are the
amounts of training data.

Architecture Our neural block proposal is trained using the GMM with m = 8 max mixtures
and n = 60 data points. It proposes two mixture components (µj , vj)s through underlying MDN
of 156-624-624-36 network structure. The MDN’s inputs include 60 observed points x = {xi}i, 8
component means µ = {µj}j and component active indicators v = {vj}j with values for the two
proposed mixtures replaced by zeros. Orders for x, µ and v are such that they are sorted along the
first principle component of x to break symmetry. In addition, the inputs also contain the principle
component and the indicators of which components are being proposed. The MDN outputs a proposal
distribution over the two (µj , vj)s as a mixture of 4 MDN components.

Breaking the Symmetry In training, such mixture models have symmetries that must be broken
before being used as input to the neural network [2]. In particular, the mixtures {(vj , µj)}j can be
permuted in m! ways and the points {(zi, xi)}i in n! ways. Following a similar procedure by Le et al.
[1], we sort these values according the first principal component of x, and also feed the first principal
component vector into the MDN.

Proposal and Inference with z Collapsed In order to avoid nearly-deterministic relations, e.g.,
p(vj = 0, zi = j) = 0, and still train a general proposal unconstrained by n, we choose to consider
the collapsed model without z. We first experiment on the intuitive approach which adds a resampling
step for z in the proposal. At each proposal step, trained proposal qθ is first used to propose new
mixtures µ′ and v′, and then z is proposed from p(z|µ′,v′,x). The MH rule is applied lastly to either
accept or reject all proposed values. While this method gives good performance in small models,
it suffers greatly from low acceptance ratio as n, the number of observed points z, grows large.
Therefore, we eventually choose the approach described in main paper Sec. 4.2, i.e., applying the MH
rule on the collapsed model with z resampled from p(z|µ,v,x) afterwards. Since the acceptance
ratio no longer depends on n, this approach behaves much more scalable than the first one in our
experiments. It outperforms SDDS split-merge MCMC in GMMs of various sizes, as shown in Fig. 7
of main paper.

S-1.3 NER Tagging

Architecture The underlying MDN has two hidden layers each of size 4 ×
max {input size, output size}, with output size varying according to the number of proposed
variables. It maps local CRF parameters of all motif variables and conditioning variable values to the
NER tag proposal for consecutive proposed variables as a mixture of 4 components.

S-2 Additional Experiment

S-2.1 Comparison with Inverse MCMC

Neural block proposals can also be used model-specifically by training only on instantiations within
a particular model. In this subsection, we demonstrate that our method achieves comparable perfor-
mance with a more complex task-specific MCMC method, Inverse MCMC [3].
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Figure 2 illustrates the triangle grid network used in this experiment, which is identical to what
Stuhlmüller et al. [3] used to evaluate Inverse MCMC. For our method, we chose the motif shown in
Fig. 3. The proposal is trained on all instantiations in this triangle model.

Inverse MCMC is an algorithm that builds auxiliary data structures offline to speed up inference.
Given an inference task, it trains an inverse graph for each latent variable where the latent variable is
at bottom and evidence variables are at top. These graphs are then used as MCMC proposals.

It is difficult to compare these two methods w.r.t. time. While both methods require offline training,
Inverse MCMC needs to train from scratch if the set of evidence nodes changes, yet neural block
sampling only needs one-time training for different inference tasks on this model. In this experiment,
for each inference epoch, both methods propose about 10.5 values on average per latent variable.
Figure 4 shows a more meaningful comparison of error w.r.t. epochs. Our learned neural block
proposal, trained using 104 samples, achieves comparable performance with Inverse MCMC, which
is trained using 105 samples and builds model-specific data structures (inverse graphs).

Architecture The underlying MDN has 161-1120-1120-224 network structure, mapping the CPTs
of all 29 motif variables and 16 conditioning variable values to the proposal distribution of 13
proposed variables as a mixture of 16 components.

Inverse MCMC Setting In this experiment, we run Inverse MCMC with frequency density estima-
tor trained with posterior samples, proposal block size up to 20 and Gibbs proposals precomputed,
following the original approach of Stuhlmüller et al. [3].
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