
A Proofs from Section 3

Lemma 5. For any ⌧ , �, n, and any sequence of querying rules (with arbitrary adaptivity) interacting

with VALIDATIONROUND(⌧,�, n, S, T )
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Proof. Consider any sequence of querying rules (with arbitrary adaptivity). The interaction between
the query rules and VALIDATIONROUND(⌧,�, n, S, T ) together determines a joint distribution over
statistical queries, answers, and prices (Q1, A1, P1), ..., (Q⌘�1, A⌘�1, P⌘�1).

Consider also the interaction of the same sequence of querying rules with an alternative algorithm,
which always returns ES [qi] + ⇠i (i.e. it ignores the if-statement in VALIDATIONROUND). This
generates an infinite sequence of queries, answers, and prices (Q0

1, A
0
1, P

0
1), (Q

0
2, A

0
2, P

0
2), .... Now,

we retroactively check the condition in the if-statement for each of the queries to calculate what
⌘ should be, and take the length ⌘ � 1 prefix of the (Q0

i
, A0

i
, P 0

i
). This sequence has exactly the

same distribution as the sequence generated by VALIDATIONROUND, and each Q0
i

was chosen
independently of T by construction. Since Q0

i
⇠ Qi has outputs bounded in [0, 1], we can apply

Hoeffding’s inequality:

P
h���ET [Qi]� E

x⇠D
[Qi(x)]

��� >
⌧

4

i
 2 exp

✓
�
n⌧2

8

◆
.

At most I(⌧,�, n) = �

4 exp
⇣
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2

8

⌘
queries are answered by the mechanism, so a union bound

completes the proof.

Lemma 1. For any ⌧ , �, and n, for any sequence of querying rules (with arbitrary adaptivity) and

any probability distribution D, the answers provided by VALIDATIONROUND(⌧,�, n, S, T ) satisfy

P
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[Qi(x)]
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,

where the probability is taken over the randomness in the draw of datasets S and T from D
n

, the

querying rules, and VALIDATIONROUND.

Proof. A query is not answered unless |ES [qi]� ET [qi]| 
⌧

2 , so 8i < ⌘

|ai � E [qi]|  |⇠i|+ |ES [qi]� ET [qi]|+ |ET [qi]� E [qi]|  ⌧/4 + ⌧/2 + |ET [qi]� E [qi]| .

By Lemma 5, with probabilty 1� �

2 the final term is at most ⌧/4 simultaneously for all i < ⌘.

Lemma 2. For any ⌧ , �, and n, any sequence of querying rules, and any non-adaptive user {uj}j2[M ]

interacting with VALIDATIONROUND(⌧,�, n, S, T ), P
h
⌘  I(⌧,�, n) ^ ⌘ 2 {uj}j2[M ]

i
 �.

Proof. Since the non-adaptive user’s querying rules ignore all of the history, they are each chosen
independently of S. By Hoeffding’s inequality
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and similarly for T . If both ⌘  I(⌧,�, n) and ⌘ = uj , then the algorithm halted upon receiving
query quj because its empirical means on S and T were too dissimilar and not because it had already
answered its maximum allotment of queries. Therefore,

P [⌘  I(⌧,�, n) ^ ⌘ = uj ] = P
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4 exp
⇣

n⌧
2

8

⌘
queries are answered by the mechanism, so a union bound

completes the proof.
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Lemma 6. For any ⌧ , �, n, any sequence of query rules, and any possibly adaptive autonomous user

{uj}j2[M ], if �2 = ⌧
2

32 ln(8n2/�) and M  n
2
⌧
4

175760 ln2(8n2/�) then
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Proof. Consider a slightly modified version of VALIDATIONROUND, where Gaussian noise zi ⇠
N (0,�2) is added instead of truncated Gaussian noise ⇠i. Until this modified algorithm halts, all of
the answers it provides are released according to the Gaussian mechanism on S, which satisfies 1

2n2�2 -
zCDP by Proposition 1.6 in [6]. We can view Quj = Ruj ((qu1 , au1 , pu1)..., (quj�1 , auj�1 , puj�1))
as an (at most) M -fold composition of 1

2n2�2 -zCDP mechanisms, which satisfies M

2n2�2 -zCDP by
Lemma 1.7 in [6]. Finally, Proposition 1.3 in [6] shows us how to convert this concentrated differential
privacy guarantee to a regular differential privacy guarantee. In particular, quj is generated under

 
M

2n2�2
+ 2

r
M

2n2�2
ln (1/�), �

!
-DP 8� > 0.

Specifically, when �2, � and M satisfy:

�2 =
⌧2

32 ln (8n2/�)

� =
�

8n2
=

�
n2⌧

13 ln(104/⌧)

·
⌧

104 ln (104/⌧)

M 
n2⌧4

175760 ln2 (8n2/�)
.

then q,ij is generated by a
�

⌧

52 , �
�
-differentially private mechanism. Therefore, by Theorem 8 in [11]

(cf. [4, 18])
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Furthermore, for zi ⇠ N
�
0,�2

�
P [|zi| � ⌧/4]  �/(4n2)  �/(4M). Therefore, the total

variation distance between ⇠uj ⇠ N
�
0,�2, [�⌧/4, ⌧/4]

�
and zuj ⇠ N (0,�2) is �(⇠uj , zuj ) =

P
⇥
zuj 62 [�⌧/4, ⌧/4]

⇤


�

4M . Consider two random vectors Z and ⇠, the first of which has
independent N (0,�2) distributed coordinates, and the second of which has coordinates ⇠uj ⇠

N
�
0,�2, [�⌧/4, ⌧/4]

�
for j 2 [M ] and ⇠i = Zi for all of the i 62 {uj}. The total variation distance

between these vectors is then at most �(⇠, Z) M�(⇠uj , zuj ) 
�

4 .

Now, for the given sequence of querying rules, S, and T , view VALIDATION-
ROUND as a function of the random noise which is added into the answers. Then
�(VALIDATIONROUND(⇠), VALIDATIONROUND(Z))  �(⇠, Z)  �

4 too. Above, we showed
that with probability 1� �/4 the user’s interaction with VALIDATIONROUND(Z) has the property
that
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So their interaction with VALIDATIONROUND(⇠) satisfies
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Since this statement only depends on the indices of ⇠ in {uj}j2[M ], we can replace all of the remaining
indices with truncated Gaussians and maintain this property, which recovers VALIDATIONROUND.

Lemma 3. For any ⌧ , �, and n, any sequence of querying rules, and any autonomous user {uj}j2[M ]

interacting with VALIDATIONROUND(⌧,�, n, S, T ), if �2 = ⌧
2

32 ln(8n2/�) and M  n
2
⌧
4

175760 ln2(8n2/�)

then P
h
⌘  I(⌧,�, n) ^ ⌘ 2 {uj}j2[M ]

i
 �.
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Proof of Lemma 3. Consider a query quj made by the autonomous user. Lemma 5 guarantees that
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By Lemma 6, with the hypothesized �2 and M
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If both ⌘  I(⌧,�, n) and ⌘ 2 {uj}j2[M ], then the algorithm halted upon receiving a query quj

because its empirical means on S and T were too dissimilar and not because it had already answered
its maximum allotment of queries:

P
h
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i
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B Proofs of Lemma 4

Lemma 4. If N0 � 18 ln(2)/⌧2 and I(⌧,�t, Nt) = (�t/4) exp
�
Nt⌧2/8

�
queries are answered

during round t, then at least 6Nt revenue is collected.

Proof. The revenue collected in round t via the low price 96
⌧2i

depends on how many queries are
answered both in and before round t. The maximum number of queries answered in a round is
It = I(⌧,�t, Nt) = (�t/4) exp

�
Nt⌧2/8

�
(this is enforced by VALIDATIONROUND). Let BT be the

total number of queries made before the beginning of round T , then

BT 

T�1X

t=0
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t=0
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◆
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4
exp

 
T�1X
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3tN0 � t ln 2

!

 (�T /4) exp
�
NT ⌧

2/16
�
.

The first inequality holds because every exponent in the sum is at least ln(2) by our choice of N0

and for any x, y � ln 2, ex+y
� 2max (ex, ey) � ex + ey. The second inequality holds since

N0 > 18 ln 2
⌧2 implies �T 2 + 3T �N0⌧2/(8 ln 2)  0. So, if IT queries are answered during round

T , the revenue collected is at least
ITX

i=1

96

⌧2(BT + i)
�

96

⌧2
(ln (BT + IT )� ln (BT ))

�
96

⌧2
ln

 
1 +

(�T /4) exp
�
NT ⌧2/8

�

(�T /4) exp (NT ⌧2/16)

!

� 6NT

C Tighter THRESHOLDOUT Analysis

In this section, we provide a tighter analysis of the THRESHOLDOUT algorithm [11]. In particular,
previous analysis showed a sample complexity for answering m queries with an overfitting budget of
B of Õ(

p
B ln1.5 m) whereas we prove a bound like Õ(

p
B lnm). The improvement has important

consequences for our application of THRESHOLDOUT to the everlasting database setting. We make
the improvement by applying the “monitor technique” of Bassily et al. [4].
Lemma 7 (Lemma 23 [11]). THRESHOLDOUT satisfies

�
2B
�n

, 0
�
-differential privacy and also✓p

32B ln(2/�)

�n
, �

◆
-differential privacy for any � > 0.
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Algorithm 4 THRESHOLDOUT(S, T, ⌧,�, ⇣, B,�)

1: Sample ⇢ ⇠ Laplace (2�)
2: for each query q do
3: if B < 1 then
4: HALT
5: else
6: Sample � ⇠ Laplace (4�)
7: if |ES [q]� ET [q]| > ⇣ + ⇢+ � then
8: Sample ⇠ ⇠ Laplace (�), ⇢ ⇠ Laplace (2�)
9: B  B � 1

10: Output: (ET [q] + ⇠,>)
11: else
12: Output: (ES [q] ,?)

Lemma 8 (Corollary 7 [11]). Let A be an algorithm that outputs a statistical query q. Let S be

a random dataset chosen according to distribution D
n

and let q = A(S). If A is ✏-differentially

private then

P [|ES [q]� E [q]| � ✏]  6 exp
�
�n✏2

�

Lemma 9 (Theorem 8 [11]). Let A be an (✏, �)-differentially private algorithm that outputs a

statistical query. For dataset S drawn from D
n

, we let q = A(S). Then for n � 2 ln(8/�)
✏2

,

P [|ES [q]� E [q]| > 13✏] 
2�

✏
ln

✓
2

✏

◆

Theorem 5 (cf. Theorem 25 [11]). Let �, ⌧ > 0 and m � B > 0. Set ⇣ = 3⌧
4 and � = ⌧

48 ln(4m/�) .

Let S, T denote datasets of size n drawn i.i.d. from a distribution D. Consider an analyst that is given

access to S and adaptively chooses functions q1, . . . , qm while interacting with THRESHOLDOUT
which is given datasets S, T and values �, B, ⇣. For every i 2 [m] let (ai, oi) denote the answer of

THRESHOLDOUT on query qi. Then whenever

n � min

8
>><

>>:
O

0

@
B ln

⇣
m

�

⌘

⌧2

1

A , O

0

BB@
ln
⇣
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�

⌘r
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⇣
ln(1/⌧)
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⌘

⌧2

1

CCA

9
>>=

>>;

with probability at least 1 � �, for all i before THRESHOLDOUT halts |ai � E [qi]|  ⌧ and

oi = > =) qi is an adaptive query.

Proof. Consider the following post-processing of the output of THRESHOLDOUT: look
through the sequence of queries and answers (q1, a1) , . . . , (qHALT, aHALT) and output q⇤, a⇤ =
argmax

q,a
|a� E [q]|. Since this procedure does not use the datasets S, T and since THRESHOLD-

OUT computes the sequence of queries and answers in a differentially private manner, it means that
q⇤, a⇤ are also released under differential privacy. So by Lemma 7, q⇤ is released simultaneously
under
✓
2B

�n
, 0

◆
-differential privacy and

 p
32B ln (2/�)

�n
, �

!
-differential privacy (2)

With our choice of �, in the case that n �
768B ln( 4m

� )
⌧2 then, using the pure differential privacy

guarantee we have 2B
�n


⌧

8 so by Lemma 8

P
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Alternatively, in the case that
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>>>><
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then, choosing � = �⌧

832 ln( 208
⌧ )

, under the approximate differential privacy guarantee we have
 p

32B ln (2/�)

�n
, �

!
�

 
⌧

104
,

�⌧

832 ln
�
208
⌧

�
!

(4)

so by Lemma 9

P
h
|ET [q⇤]� E [q⇤]| >

⌧

8

i


�

4
(5)

Therefore, in either case P
⇥
|ET [q⇤]� E [q⇤]| > ⌧

8

⇤


�

4 .

Next, we note that the random variable � is sampled at most m times, and the random variables ⇢ and
⇠ are sampled at most B times. Consequently,
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For the rest of the proof, we condition on the events |ET [q⇤]� E [q⇤]|  ⌧

8 and 8i |�i| < ⌧

12 ,
|⇢i| <

⌧

24 , and |⇠i| <
7⌧
8 . This event happens with probability 1� 7�

8 .

Consider two alternatives: either a⇤ = ET [q⇤] + ⇠⇤ or a⇤ = ES [q⇤]. In the first case,

|a⇤ � E [q⇤]|  |a⇤ � ET [q⇤]|+ |⇠⇤| 
⌧

8
+

7⌧

8
= ⌧ (9)

In the second case, we also have that |ES [q⇤]� ET [q⇤]| < ⇣ + ⇢⇤ + �⇤, so

|a⇤ � E [q⇤]|  |ES [q⇤]� ET [q⇤]|+|ET [q⇤]� E [q⇤]|  ⇣+|⇢⇤|+|�⇤
|+

⌧

8


3⌧

4
+

⌧

24
+

⌧

12
+
⌧

8
= ⌧

(10)
Therefore, for all queries before THRESHOLDOUT halts, |ai � E [qi]|  ⌧ .

Next, observe that if q is a non-adaptive query, then

P
h
|ES [q]� E [q]| >

⌧

4

i
= P

h
|ET [q]� E [q]| >
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4

i
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◆
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✓
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✓
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◆◆


2�

m · 450

(11)

Therefore, with probability at least 1� �

8 , for all non-adaptive queries |ES [q]� ET [q]|  ⌧

2 . Further-
more,

⇣ + ⇢+ � �
3⌧

4
�

⌧

24
�

⌧

12
=

5⌧

8
(12)

Thus, for all non-adaptive queries |ES [qi]� ET [qi]|  ⇣ + ⇢i + �i, so oi =?.

D Guarantees of EVERLASTINGTO
Theorem 6. [Validity] For any ⌧,�, p 2 (0, 1) and for a sufficiently large initial budget and for any

sequence of queries, EVERLASTINGTO returns answers such that

P [9i |ai � E [qi]| > ⌧ ] < �

Proof. In round t, the algorithm uses an instance of THRESHOLDOUT with Nt samples for the
datasets St and Tt, so to answer Mt total queries of which at most Bt overfit we need both

Nt = net �

21632 ln

✓
6656 ln( 208

⌧ )
⌧�t

◆

⌧2
(13)

Nt = net �

9984 ln
⇣

4Mt
�t
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32Bt ln
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1664 ln( 208

⌧ )
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◆

⌧2
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Algorithm 5 EVERLASTINGTO(⌧,�, p)

1: Require sufficiently large initial budget n (see proof of Theorem 6)
2: 8t set Nt = net, �t =

(e�1)�
e

e�t, Bt =
⌧
4
N

2�2p
t

8·99842 ln

 
1664 ln( 208

⌧ )
⌧�t

! , Mt =
�t

4 exp (2Np

t
)

3: for t = 0, 1, . . . do
4: Purchase datasets St, Tt ⇠ D

Nt and initialize THRESHOLDOUT(St, Tt, Bt,�t)
5: while THRESHOLDOUT(St, Tt, Bt,�t) has not halted do
6: Accept query q
7: (a, o) = THRESHOLDOUT(St, Tt, Bt,�t)(q)
8: Output: a
9: if o =? then

10: Charge: 2Nt+1

Mt

11: else
12: Charge: 2Nt+1

Bt

in order to satisfy the hypotheses of Theorem 5. Setting the constant n such that

n �

21632

✓
1 + ln

✓
6656e ln( 208

⌧ )
(e�1)⌧�

◆◆

⌧2
(15)

ensures that (13) holds. Furthermore, with our choice of

Bt =
⌧4N2�2p

t

8 · 99842 ln

✓
1664 ln( 208

⌧ )
⌧�t

◆ (16)

the condition (14) allows us to answer Mt =
�t

4 exp (2Np

t
) total queries.

We also need to ensure that 1  Bt  Mt 8t in order to ensure that THRESHOLDOUT has sound
parameters. To satisfy 1  Bt requires the initial budget n to be sufficiently large as p! 1.

1 
⌧4 (net)

2�2p

8 · 99842 ln

✓
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⌧ )
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0
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✓
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⌧ )
(e�1)⌧�

◆◆
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1
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1
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(17)
By Lemma 10, it thus suffices to choose

n �
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1
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At the same time, we need the initial budget to be large enough that 8t Bt Mt:

Mt � Bt 8t (19)

(=
(e� 1)�

4e
exp

�
2npept � t

�
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By Lemma 11, the infimum can be lower bounded by lnn � 3�2p
p

ln 3�2p
2ep when n �

⇣
3�2p
2p

⌘1/p
.

Therefore, 8t Bt Mt is implied by

n � max

8
>><

>>:
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⇣
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✓
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>>=

>>;
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p

(22)

Therefore, in order to satisfy the hypotheses of Theorem 5, we require from (15), (18), and (22) that

n � max
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>>>:
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>>>=

>>>;
(23)

Generally speaking, the first term will dominate when p is relatively far from both zero and one, the
second term will dominate as p! 1, and the third term will dominate when p! 0.

By Theorem 5, in round t, all answers returned by THRESHOLDOUT satisfy |ai � E [qi]|  ⌧ with
probability 1� �t. Therefore,

P [9i |ai � E [qi]| > ⌧ ] 
1X

t=0

�t =
(e� 1)�

e

1X

t=0

e�t = � (24)

Theorem 7. [Sustainability] For any ⌧,�, p 2 (0, 1) and any sequence of queries, EVERLASTINGTO
charges enough for queries such that it can always afford to buy new datasets, excluding the initial

budget.

Proof. The tth instance of THRESHOLDOUT halts only after it has either answered Mt total queries
or at least Bt queries with o = >. In the first case, the total revenue is at least Mt ·

2Nt+1

Mt
= 2Nt+1

and in the latter case, the total revenue is at least Bt ·
2Nt+1

Bt
= 2Nt+1. Either way, it can affort to

buy St+1, Tt+1, which have size Nt+1 each.

Theorem 8. [Non-Adaptive Cost] For any ⌧,�, p 2 (0, 1), a sufficiently large initial budget, and

any sequence of querying rules, the total cost, ⇧, to a non-adaptive user who makes M queries to

EVERLASTINGTO satisfies

P

⇧ > 2e3 ln1/p

✓
eM

(e� 1)�

◆�
 �

Proof. By Theorem 5’s guarantee on THRESHOLDOUT and a union bound over all t, all non-adaptive
queries are answered with o =? with probability at least 1�

P1
t=0 �t = 1� �. For the rest of the

proof, we condition on this event.

First, observe that the cost of a query with o =? is non-increasing over time, so the cost of any M
non-adaptive queries is no more than the cost of making the first M non-adaptive queries. Let T be
the round in which the M th non-adaptive query is made if no adaptive queries are made.

Let ⇧ be the total amount paid. This is at most the total number of samples used in rounds 1 through
T + 1, i.e.

⇧ 
T+1X

t=1

2Nt = 2n
T+1X

t=1

et  2neT+2 (25)

Furthermore, the total number of queries made satisfies

M �MT�1 = �T�1 exp
�
2Np

T�1

�
(26)
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which implies

ln

✓
eM

(e� 1)�

◆
� 2Np

T�1 � (T � 1) � Np

T�1 = npep(T�1) (27)

where we use the fact that n � (1/p)1/p (see proof of Theorem 6) which implies Np

T�1 =

npep(T�1)
�

e
p(T�1)

p
�

p(T�1)
p

= T � 1. Combining (25) and (27),

⇧  2neT+2
 2e3 ln1/p

✓
eM

(e� 1)�

◆
(28)

Theorem 9. [Adaptive Cost] For any ⌧,� 2 (0, 1), p 2 (0, 2
3 ), a sufficiently large initial budget, and

any sequence of querying rules, the total cost, ⇧, to a user who makes B potentially adaptive queries

to EVERLASTINGTO satisfies

P

2

6664
⇧  2e2

0

BB@

8 · 99842eB ln

✓
1664 ln( 208

⌧ )
(e�1)⌧�

◆

⌧4

1

CCA

1
2�3p

3

7775
= 1

Proof. First, observe that the cost of a query is non-increasing over time, so the cost of any B adaptive
queries is no more than the cost of making the first B adaptive queries. Furthermore, adaptive queries
may be answered with either > or ?, but since Bt Mt 8t, the cost of an adaptive query in round t
is no more than 2Nt+1

Bt
. Let T be the round in which the Bth adaptive query is made. Let ⇧ be the

total amount paid. This is at most the total number of samples used in rounds 1 through T + 1, i.e.

⇧ 
T+1X

t=1

2Nt = 2n
T+1X

t=1

et  2neT+2 (29)

Furthermore, the total number of adaptive queries is

B �
T�1X

t=0

Bt =
T�1X

t=0

⌧4N2�2p
t

8 · 99842 ln

✓
1664 ln( 208

⌧ )
⌧�t

◆ (30)

�
⌧4

8 · 99842
✓
T � 1 + ln

✓
1664e ln( 208

⌧ )
(e�1)⌧�

◆◆
T�1X

t=0

N2�2p
t

(31)

=
⌧4n2�2p

8 · 99842
✓
T + ln

✓
1664 ln( 208

⌧ )
(e�1)⌧�

◆◆
T�1X

t=0

et(2�2p) (32)

�
⌧4n2�2p

�
eT (2�2p)

� 1
�

8 · 99842T ln

✓
1664 ln( 208

⌧ )
(e�1)⌧�

◆ (33)

�
⌧4n2�2peT (2�2p)�1

8 · 99842T ln

✓
1664 ln( 208

⌧ )
(e�1)⌧�

◆ (34)

Where in the last inequality we used that p < 2
3 so eT (2�2p)

� 1 � eT (2�2p)�1. Since n � (1/p)1/p

(see proof of Theorem 6), it is also the case that npepT � T . Picking up from (34), we have

8 · 99842B ln

✓
1664 ln( 208

⌧ )
(e�1)⌧�

◆

⌧4
�

n2�2peT (2�2p)�1

npepT
= n2�3peT (2�3p)�1 (35)
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thus

neT 

0

BB@

8 · 99842eB ln

✓
1664 ln( 208

⌧ )
(e�1)⌧�

◆

⌧4

1

CCA

1
2�3p

(36)

Combining (29) and (36), we get that

⇧  2neT+2
 2e2

0

BB@

8 · 99842eB ln

✓
1664 ln( 208

⌧ )
(e�1)⌧�

◆

⌧4

1

CCA

1
2�3p

(37)

To expand on the guarantees of Theorems 8 and 9, p is a parameter of the algorithm that can be chosen
roughly in the range (0, 1). These theorems could be stated instead in terms of the quantity a = 1/p,
which lies generally in the range (1,1). In this case, a sequence of M non-adaptive queries would
cost (with high probability) at most O (lna M), and a sequence of M adaptive queries would cost at
most O

�
B

a
2a�3

�
. That is, when a is near 1, we approach the optimal logM cost for non-adaptive

queries at the expense of a very large (exploding) cost of adaptive queries. On the other hand, as we
made a very large, we approach the optimal

p
M cost for adaptive queries at the expense of more

expensive polylog cost for non-adaptive queries. In this way, the parameter p trades off between
placing the burden of adaptivity directly on the adaptive queries themselves and spreading it out over
potentially non-adaptive queries too.
Lemma 10. For any �, ⌧, p 2 (0, 1),

sup
t2N

e�t

0

BB@

8 · 99842
✓
t+ ln

✓
1664e ln( 208

⌧ )
(e�1)⌧�

◆◆

⌧4

1

CCA

1
2�2p



 
8 · 99842

⌧4

 
ln

 
1664e ln

�
208
⌧

�

(e� 1)⌧�

!
+

1

2� 2p

!! 1
2�2p

Proof. For brevity, let a := 8·99842
⌧4 , let b := ln

✓
1664e ln( 208

⌧ )
(e�1)⌧�

◆
, and let c = 1

2�2p , note that

a, b, c > 0. We are thus interested in upper bounding sup
t2N e�t (at+ ab)c. First,

d

dt
e�t (at+ ab)c = ace�t (at+ ab)c�1

� e�t (at+ ab)c (38)

and
ace�t (at+ ab)c�1

� e�t (at+ ab)c = 0 () t = c� b or t = �b or t!1 (39)
Since we are only optimizing over t 2 N and b > 0, we do not need to consider the critical point
t = �b. Furthermore,

d2

dt2
e�t (at+ ab)c

����
t=c�b

= �
1

c
(ac)ceb�c < 0 (40)

Therefore, the critical point at t = c� b is a local maximum. Therefore, the only points we need to
consider are when t = 0, t!1, and t = c� b if c � b.

sup
t2N

e�t (at+ ab)c 

⇢
(ab)c b > c
max

�
(ab)c , eb�c(ac)c

 
c � b

 ac(b+ c)c (41)

which completes the proof.

Lemma 11. For any p 2 (0, 1) and n � 1

inf
t2N

2npept � (3� 2p)t� (2� 2p) lnn � min

⇢
lnn�

3� 2p

p
ln

3� 2p

2ep
, 2np

� (2� 2p) lnn

�

and the first term is the minimizer when n �
⇣

3�2p
2p

⌘1/p
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Proof. First, note that this is a convex function in t and

d

dt
2npept � (3� 2p)t� (2� 2p) lnn = 2pnpept � 3 + 2p (42)

and
2pnpept � 3 + 2p = 0 () t =

1

p
ln

3� 2p

2p
� lnn (43)

Therefore, if 1
p
ln 3�2p

2p � lnn � 0 then

inf
t2N

2npept � (3� 2p)t� (2� 2p) lnn � lnn�
3� 2p

p
ln

3� 2p

2ep
(44)

Otherwise, if 1
p
ln 3�2p

2p � lnn < 0

inf
t2N

2npept � (3� 2p)t� (2� 2p) lnn � 2np
� (2� 2p) lnn (45)

Thus,

inf
t2N

2npept � (3� 2p)t� (2� 2p) lnn � min

⇢
lnn�

3� 2p

p
ln

3� 2p

2ep
, 2np

� (2� 2p) lnn

�

(46)

E Relevant Results in Differential Privacy

Here, we state without proof definitions and results from other work which we use in the proof of
Lemma 6.
Definition 1. A randomized algorithm M : X ⇤

7! Y is (✏, �)-differentially private if for all E ✓ Y

and all datasets S, S0
2 X

⇤
differing in a single element:

P [M(S) 2 E]  e✏P [M(S0) 2 E] + �.

Proposition 1 ([4, 18]). Let M be an (✏, �)-differentially private algorithm that outputs a function

from X to [0, 1]. For a random variable S ⇠ D
n

we let q = M(S). Then for n � 2 ln(8/�)/✏2,

P [|ES [q]� E [q]| � 13✏] 
2�

✏
ln

✓
2

✏

◆
.

Definition 2 (Definition 1.1 [6]). A randomized mechanism M : Xn
! Y is ⇢-zero-concentrated

differentially private (henceforth ⇢-zCDP) if, for all S, S0
2 X

n
differing on a single entry and all

↵ 2 (1,1),
D↵ (M(S)||M(S0))  ⇢↵,

where D↵ (M(S)||M(S0)) is the ↵-Rényi divergence between the distribution of M(S) and M(S0).

Proposition 2 (Proposition 1.6 [6]). Let q be a statistical query. Consider the mechanism M :
X

n
! R that on input S, releases a sample from N (ES [q] ,�2). Then M satisfies

1
2n2�2 -zCDP.

Proposition 3 (Lemma 1.7 [6]). Let M : Xn
! Y and M

0 : Xn
! Z be randomized algorithms.

Suppose M satisfies ⇢-zCDP and M
0

satisfies ⇢0-zCDP. Define M
00 : Xn

! Y ⇥ Z by M
00(x) =

(M(x),M0(x)). Then M
00

satisfies (⇢+ ⇢0)-zCDP.

Proposition 4 (Proposition 1.3 [6]). If M provides ⇢-zCDP, then M is

⇣
⇢+ 2

p
⇢ ln(1/�), �

⌘
-

differentially private for any � > 0.
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