
A Main lower bound lemma

This analysis closely follows that of previous work, specifically the proof of Theorem 1 in [27] and
the proof of Lemma 4 in [8]. There are slight differences in the problem setup between this work and
that of previous papers, thus we include the following analysis for completeness and to ensure that all
of our results can be verified. We do not claim any significant technical novelty within this section.

Let V = {v1, . . . , vk} be a uniformly random orthonormal set of vectors in Rm. All of the
probabilities referred to in Appendix A will be over the randomness in the selection of V . Let
X = {x1, x2, . . . , xN} be a set of vectors in Rm where kxik  1 for all i  N . Let these vectors be
organized into disjoint subsets X1 [X2 [ · · · [Xk = X . Furthermore, suppose that for each t  k,
the set Xt is a deterministic function Xt = Xt(X<t, V ), so it can also be expressed as Xt = Xt(V ).

Let St = Xt[Vt, let Pt be the projection operator onto the span of St and let P?
t

be the projection
onto the orthogonal complement of the span of St. As in [8, 27], define

Gt = Gt(V ) =

t
8x 2 Xt 8j � t

�����

*
P?
t�1x��P?
t�1x

�� , vj

+�����  ↵

|
(23)

Finally, suppose that for each t, Xt is of the form:
Xt (V ) = Xt (V<t G<t + V ¬G<t) (24)

i.e. conditioned on the event G<t, it is a deterministic function of V<t only (and not vt, ..., vk). We
say that P [G<1] = 1, so X1 is always independent of V .

First, we connect the events Gt to a more immediately useful condition

Lemma 1. [cf. Lemma 9 [8], Lemma 1 [27]] For any c, k, N , V , and {Xk}
k

t=1, let ↵ =

min

⇢
1

4N , c

2(1+
p
2N)

�
then for each t  k

Gt =) G0
t

:=
r
8r  t, 8x 2 Xr, 8j � t |hx, vji| 

c

2

z

The proof of Lemma 1 involves straightforward linear algebra, and we defer it to Appendix A.1. By
Lemma 1, G<t ✓ G0

<t
, therefore the property (24) is implied by

Xt (V ) = Xt

⇣
V<t G

0
<t

+ V ¬G
0
<t

⌘
(25)

Now, we state the main result which allows us to prove our lower bounds:
Lemma 2. [cf. Lemma 4 [8], Lemma 4 [27]] For any k � 1, N � 1, c 2 (0, 1), and dimension

m � k +N +max

(
32N2,

8(1 +
p
2N)2

c2

)
log

�
2k2N

�

if the sets X1, . . . , Xk satisfy the property (25) then

P
h
8t  k 8x 2 Xt 8j � t |hx, vji| 

c

2

i
�

1

2

The proof of Lemma 2 relies upon the following, whose proof we defer to Appendix A.1.
Lemma 3. [cf. Lemma 11 [8], Lemma 3 [27]] Let R be any rotation operator, R>R = I , that
preserves St�1, that is Rw = R>w = w for any w 2 Span (St�1). Then the following conditional
densities are equal

p (V�t | G<t, V<t) = p (RV�t | G<t, V<t)

Proof of Lemma 2. This closely follows the proof of Lemma 4 [8] and Lemma 4 [27], with small
modifications to account for the different setting.

Set ↵ = min

⇢
1

4N , c

2(1+
p
2N)

�
. Then by Lemma 1, since X1, . . . , Xk satisfy the property (25)

P
h
8t  k 8x 2 Xt 8j � t |hx, vji| 

c

2

i
� P [Gk] =

Y

tk

P [Gt | G<t] (26)
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Focus on a single term in this product,

P [Gt | G<t] = EV<t [P [Gt | G<t, V<t]] � inf
V<t

P [Gt | G<t, V<t] (27)

For any particular V<t,

P [Gt | G<t, V<t] = P
"
8x 2 Xt 8j � t

�����

*
P?
t�1x��P?
t�1x

�� , vj

+�����  ↵

����� G<t, V<t

#
(28)

� 1�
X

x2Xt(V<t)

kX
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P
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�� , vj

+����� > ↵

����� G<t, V<t

#
(29)

� 1�
X
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P
"�����

*
P?
t�1x��P?
t�1x

�� ,
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t�1vj��P?
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��

+����� > ↵
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#
(30)

Conditioned on G<t and V<t, the set Xt = Xt(V<t) is fixed, as is the set St�1 and therefore P?
t�1,

so the first term in the inner product is a fixed unit vector. By Lemma 3, the conditional density
of vj | G<t, V<t is spherically symmetric within the span onto which P?

t�1 projects. Therefore,
P

?
t�1vj

kP?
t�1vjk

is distributed uniformly on the unit sphere in Span (St�1)
?, which has dimension at least

m0 := m� (t� 1)�
P

t�1
r=1 |Xr| � m� k + 1�N .

The probability of a fixed vector and a uniform random vector on the unit sphere in Rm
0

having inner
product more than ↵ is proportional to the surface area of the “end caps" of the sphere lying above
and below circles of radius

p
1� ↵2, which is strictly smaller than the surface area of a full sphere of

radius
p
1� ↵2. Therefore, for a given x, vj

P
"�����

*
P?
t�1x��P?
t�1x

�� ,
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t�1vj��P?
t�1vj

��

+����� > ↵
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<

SurfaceAream0(
p
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SurfaceAream0(1)
(31)

=
⇣p

1� ↵2
⌘m

0�1
(32)
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✓
�
(m0
� 1)↵2

2

◆
(33)

where we used that 1� x  exp(�x). Finally, this holds for each t, x 2 Xt, and j � t, so

P [Gk] �
Y

tk

inf
V<t

P [Gt | G<t, V<t] (34)

�

✓
1� kN exp

✓
�
(m� k �N)↵2

2

◆◆k

(35)

� 1� k2N exp

 
�
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2
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(
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p
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)
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✓
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◆!
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=
1

2
(37)

Where we used that m � k +N +max
n
32N2, 8(1+

p
2N)2

c2

o
log

�
2k2N

�
for (36). For (37), recall

that we chose ↵ = min
n

1
4N , c

2(1+
p
2N)

o
so max

n
32N2, 8(1+

p
2N)2

c2

o
= 2

↵2 .

A.1 Proof of Lemmas 1 and 3

Lemma 1. [cf. Lemma 9 [8], Lemma 1 [27]] For any c, k, N , V , and {Xk}
k

t=1, let ↵ =

min

⇢
1

4N , c

2(1+
p
2N)

�
then for each t  k

Gt =) G0
t

:=
r
8r  t, 8x 2 Xr, 8j � t |hx, vji| 

c

2
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Proof. This closely follows the proof of Lemma 9 [8], with slight modification to account for the
different problem setup.

For t  k assume Gt. For any x 2 Xt and j � t

|hx, vji|  kxk

����

⌧
x

kxk
, Pt�1vj

�����+ kxk
����

⌧
x

kxk
, P?

t�1vj

����� (38)

 kPt�1vjk+

����

⌧
P?
t�1x

kxk
, vj

����� (39)

 kPt�1vjk+

�����

*
P?
t�1x��P?
t�1x

�� , vj

+����� (40)

 kPt�1vjk+ ↵ (41)

First, we decomposed vj into its St�1 and S?
t�1 components and applied the triangle inequality. Next

we used that kxk  1 and that the orthogonal projection operator P?
t�1 is self-adjoint. Finally, we

used that the projection operator is non-expansive and the definition of Gt.

Next, we prove by induction on t that for all t  k and j � t, the event Gt implies that kPt�1vjk
2


2↵2
P

t�1
r=1 |Xr|. As a base case (t = 1), observe that, trivially, kPt�1vjk

2 = k0vjk
2 = 0. For the in-

ductive step, fix any t  k and j � t and suppose that Gt0 =)
��Pt0�1v0j

��2  2↵2
P

t
0�1
r=1 |Xr| for

all t0 < t and j0 � t0. Let P̂t project onto Span (St [Xt+1) (this includes Xt+1 in contrast with Pt)
and let P̂?

t
project onto the orthogonal subspace. Since Span (X1 [X2 [ · · · [Xt�1 [ Vt�1) =

St�1, (
P?
r�1x��P?
r�1x

�� : r  t� 1, x 2 Xr

)
[

8
<

:
P̂?
r�1vr���P̂?
r�1vr

���
: r  t� 1

9
=

; (42)

is a (potentially over-complete) basis for St�1. Using the triangle inequality and G<t, we can
therefore expand

kPt�1vjk
2 =

t�1X

r=1

X

x2Xr

*
P?
r�1x��P?
r�1x

�� , vj

+2

+
t�1X

r=1

*
P̂?
r�1vr���P̂?
r�1vr

���
, vj

+2

(43)

 ↵2
t�1X

r=1

|Xr|+
t�1X

r=1

1
���P̂?

r�1vr
���
2

D
P̂?
r�1vr, vj

E2
(44)

We must now bound the second term of (44). Focusing on the inner product in the numerator for one
particular r < t:

���
D
P̂?
r�1vr, vj

E��� =
���hvr, vji �

D
P̂r�1vr, vj

E��� (45)

=
���
D
P̂r�1vr, vj

E��� (46)

 |hPr�1vr, vji|+
X

x2Xr

�����

*
P?
r�1x��P?
r�1x

�� , vr

+*
P?
r�1x��P?
r�1x

�� , vj

+����� (47)

 kPr�1vrk kPr�1vjk+ |Xr|↵
2 (48)

 2↵2
r�1X

i=1

|Xi|+ |Xr|↵
2 (49)


↵

2
(50)

First, we used that P̂?
r�1 = I � P̂r�1, then that vr ? vj . Next, we applied the definition of P̂r�1 and

the triangle inequality. To get (48) we use the Cauchy-Schwarz inequality on the first term, and the
definition of Gr for the second. Finally, we use the inductive hypothesis and that ↵  1

4N .
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We have now upper bounded the inner products in the second term of (44), and it remains to lower
bound the norm in the denominator. We can rewrite

���P̂?
r�1vr

���
2
=
D
P̂?
r�1vr, vr

E
(51)

= hvr, vri �
D
P̂r�1vr, vr

E
(52)

� 1� hPr�1vr, vri �
X

x2Xr

*
P?
r�1x��P?
r�1x

�� , vr

+2

(53)

� 1� kPr�1vrk
2
� |Xr|↵

2 (54)

� 1� 2↵2
r�1X

i=1

|Xi|� |Xr|↵
2 (55)

�
1

2
(56)

Here we again used P̂?
r�1 = I � P̂r�1 followed by an (over)expansion of P̂r�1. The remaining steps

follow from the inductive hypothesis and fact that ↵  1
4N . Combining (56) with (50) and returning

to (44), we have that

kPt�1vjk
2
 ↵2

t�1X

r=1

|Xr|+
t�1X

r=1

1
���P̂?

r�1vr
���
2

D
P̂?
r�1vr, vj

E2
(57)

 ↵2
t�1X

r=1

|Xr|+
t�1X

r=1

↵2 (58)

 2↵2
t�1X

r=1

|Xr| (59)

Therefore, for each t  k and j � t an upper bound kPt�1vjk
2
 2↵2

P
t�1
r=1 |Xr|. Returning now

to (41), we have that for any t  k, x 2 Xt, and j � t the event Gt implies

|hx, vji|  kPt�1vjk+ ↵ (60)

 ↵

0

@1 +

vuut2
t�1X

r=1

|Xr|

1

A (61)


c

2
(62)

where we used that ↵  c

2(1+
p
2N)

Lemma 3. [cf. Lemma 11 [8], Lemma 3 [27]] Let R be any rotation operator, R>R = I , that
preserves St�1, that is Rw = R>w = w for any w 2 Span (St�1). Then the following conditional
densities are equal

p (V�t | G<t, V<t) = p (RV�t | G<t, V<t)

Proof. This closely follows the proof of Lemma 11 [8].

First, we apply Bayes’ rule to each density and use the fact that RV<t = V<t:

p (V�t | G<t, V<t) =
P [G<t | V ] p(V )

P [G<t | V<t] p(V<t)
(63)

p (RV�t | G<t, V<t) =
P [G<t | RV ] p(RV )

P [G<t | V<t] p(V<t)
(64)

Since V has a spherically symmetric marginal distribution, p(V ) = p(RV ). Therefore, it only
remains to show that P [G<t | V ] = P [G<t | RV ]. The event G<t is determined by V or by RV , thus
both probabilities are either 0 or 1, so it suffices to show P [G<t | V ] = 1 () P [G<t | RV ] = 1.
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Assume first P [G<t | V ] = 1. Then for each r < t, x 2 Xr, and j � r

����

⌧
P

?
r�1x

kP?
r�1xk

, vj

�����  ↵, and

each set Xr is a deterministic function of V<r. Also, observe that for any x 2 Xr and j � r,
�����

*
P?
r�1x��P?
r�1x

�� , Rvj

+����� =

�����

*
R>P?

r�1x��P?
r�1x

�� , vj

+����� =

�����

*
P?
r�1x��P?
r�1x

�� , vj

+�����  ↵ (65)

where we used that P?
r�1x 2 Span(Sr) ✓ Span(St�1) so R>P?

r�1x = P?
r�1x. Therefore, it suffices

to show that the sequence X1(RV ), ..., Xt(RV ) = X1(V ), ..., Xt(V ) when P [G<t | V ] = 1. We
prove this by induction.

For the base case, by definition X1(RV ) = X1 = X1(V ). For the inductive step, suppose now that
Xr0(RV ) = Xr0(V ) for each r0 < r. This, plus the fact that P [G<t | V ] = 1 =) P [G<r | V ] = 1
together imply that P [G<r | RV ] = 1. Thus, Xr(RV ) = Xr(RV<r) = Xr(V<r). Therefore, we
conclude that P [G<t | V ] = 1 =) P [G<t | RV ] = 1, the reverse implication can be proven with
a similar argument.

B Proof of Theorem 1

Theorem 1. Let L,B 2 (0,1), H 2 [0,1], N � D � 1, let G be any oracle graph of depth D and
size N and consider the optimization problem (G,Ograd,FL,H,B). For any randomized algorithm
A = (R1, . . . , RN , X̂), there exists a distribution P and a convex, L-Lipschitz, and H-smooth
function f on a B-bounded domain in Rm for m = O

�
max

�
N2, D3N

 
log (DN)

�
such that

E z⇠P
X̂⇠A

h
f(X̂; z)

i
�min

x

Ez⇠P [f(x; z)] � ⌦

✓
min

⇢
LB
p
D
,
HB2

D2

�
+

LB
p
N

◆

Proof. Assume for now that B = 1, the lower bound can be established for other values of B by
scaling inputs to our construction. Let

` = min

⇢
L,

H

10(D + 1)1.5

�
⌘ = 10(D + 1)1.5` (66)

and consider the following `-Lipschitz function:

f̃(x) = max
1rD+1

`v>
r
x�

5`2(r � 1)

⌘
(67)

where the vectors v1, . . . , vD+1 are an orthonormal set drawn uniformly at random from the unit
sphere in Rm. We use the ⌘-Moreau envelope [5] of this function in order to prove our lower bound:

f(x) = inf
y

n
f̃(y) +

⌘

2
ky � xk2

o
(68)

The random draw of V defines a distribution over functions f . We will lower bound the expected
suboptimality of any deterministic optimization algorithm’s output and apply Yao’s minimax principle
at the end of the proof.

This function has the following properties:

Lemma 4. The function f is convex, `-Lipschitz, and ⌘-smooth, with `  L and ⌘  H .

Furthermore, optimizing f is equivalent to “finding” the vectors v1, . . . , vD+1. In particular, until a
point that has a substantial inner product with all of v1, . . . , vD+1 is found, the algorithm will remain
far from the minimum:

Lemma 5. For any H,L > 0, D � 1, and orthonormal v1, ..., vD+1, for any x with
��v>

D+1x
��  `

⌘

f(x)� min
x:kxk1

f(x) � min

⇢
L

2
p
D + 1

,
H

20(D + 1)2

�

The function also has the property that if x has a small inner product with vt, . . . , vD+1, then the
gradient oracle will reveal little information about f when queried at x:
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Lemma 6. For any x with |hx, vri| 
`

⌘
for all r � t, both the function value f(x) and gradient

rf(x) can be calculated from v1, . . . , vt only.

In Appendix A, we studied the situation where orthonormal v1, . . . , vD+1 are chosen uniformly at
random and a sequence of sets of vectors X1, . . . , XD+1 are generated as

Xt (V ) = Xt

⇣
V<t G

0
<t

+ V ¬G
0
<t

⌘
(69)

where
G0

<t
=

r
8r < t, 8x 2 Xr, 8j � r |hx, vji| 

c

2

z
(70)

Take c = 2`
⌘

and consider the dependency graph. Let X1 be the set of queries made in vertices at
depth 1 in the graph (i.e. they have no parents). Let X2 be the set of queries made in vertices at depth
2 in the graph (i.e. their parents correspond to the queries in X1). Continue in this way for each
t  D, and let XD+1 = {x̂} correpond to the algorithm’s output, which is allowed to depend on all
queries and oracle responses in the graph, and thus has depth D + 1.

Supposing G0
<t

, for all queries x 2 X1[ · · ·[Xt�1 and for all r � t�1 we have |hx, vri|  c

2 = `

⌘
.

Therefore, by Lemma 6 all of the function evaluations and gradients returned by the stochastic
gradient oracle are calculable from v1, . . . , vt�1 only. Therefore, all of the queries in Xt are a
deterministic function of V<t (since we are currently considering only deterministic optimization
algorithms), so Xt satisfies the required decomposition property (69). Finally, the queries are required
to be in the domain of f , thus they will have norm bounded by 1.

Therefore, by Lemma 2, when the dimension

m � D + 1 +N +max
n
32N2, 200 (D + 1)3 (1 +

p

2N)2
o
log

�
2(D + 1)2N

�
(71)

with probability 1/2, all x 2 X1[· · ·[Xt+1 including the algorithm’s output x̂ satsify |hx, vD+1i| 
`

⌘
so by Lemma 5

f(x̂)� min
x:kxk1

f(x) � min

⇢
L

2
p
D + 1

,
H

20(D + 1)2

�
(72)

Therefore, by Yao’s minimax principle for any randomized algorithm A

max
V

E
X̂⇠A

h
f(X̂)

i
� min

x:kxk1
f(x) � min

deterministic A
EV [f(x̂)]� min

x:kxk1
f(x)

� min

⇢
L

4
p
D + 1

,
H

40(D + 1)2

�
(73)

The statistical term L

8
p
N

follows from Lemma 10.

B.1 Deferred proofs

Lemma 4. The function f is convex, `-Lipschitz, and ⌘-smooth, with `  L and ⌘  H .

Proof. Since f̃ is the maximum of `-Lipschitz affine functions, it is convex and `-Lipschitz. Further-
more, by Proposition 12.29 [5], f , the ⌘-Moreau Envelope of f̃ is ⌘-smooth and

rf(x) = ⌘

✓
x� argmin

y

f̃(y) +
⌘

2
ky � xk2

◆
(74)

The minimizing y satisfies that ⌘(x� y) 2 @f̃(y) (where @f̃(y) denotes the set of subgradients of f̃
at y), and since f̃ is `-Lipschitz this implies that krf(x)k  `.

Lemma 5. For any H,L > 0, D � 1, and orthonormal v1, ..., vD+1, for any x with
��v>

D+1x
��  `

⌘

f(x)� min
x:kxk1

f(x) � min

⇢
L

2
p
D + 1

,
H

20(D + 1)2

�
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Proof. First

min
x:kxk1

f(x)  f

 
�

D+1X

r=1

vr
p
D + 1

!
 f̃

 
�

D+1X

r=1

vr
p
D + 1

!
 �

`
p
D + 1

(75)

Now, for an arbitrary point x such that
��v>

D+1x
��  `

⌘
= 1

10(D+1)1.5 , consider

y⇤ = prox
f̃
(x, ⌘) = argmin

y

⇢
max

1rD+1

✓
`v>

r
y �

5`2(r � 1)

⌘

◆
+

⌘

2
ky � xk2

�
(76)

Since y⇤ is the minimizer, ⌘(x � y⇤) 2 @f̃(y⇤) and since f̃ is `-Lipschitz, kx� y⇤k  `

⌘
. Thus

v>
D+1y

⇤
� �

2`
⌘

and

f(x) = f̃(y⇤) +
⌘

2
ky⇤ � xk2 (77)

= max
1rD+1

✓
`v>

r
y⇤ �

5`2(r � 1)

⌘

◆
+

⌘

2
ky⇤ � xk2 (78)

� `v>
D+1y

⇤
�

5`2D

⌘
(79)

� �
2`2

⌘
�

5`2D

⌘
(80)

� �
5`2(D + 1)

⌘
(81)

Combining (75) and (81), for any x such that
��v>

D+1x
��  `

⌘

f(x)� min
x:kxk1

f(x) �
`

p
D + 1

�
5`2(D + 1)

⌘
= min

⇢
L

2
p
D + 1

,
H

20(D + 1)2

�
(82)

Lemma 6. For any x with |hx, vri| 
`

⌘
for all r � t, both the function value f(x) and gradient

rf(x) can be calculated from v1, . . . , vt only.

Proof. Let x be a point such that
��v>

r
x
��  `

⌘
for all r � t. By Proposition 12.29 [5]

rf(x) = ⌘
⇣
x� prox

f̃
(x, ⌘)

⌘
(83)

Since f is `-Lipschitz (Lemma 4),
���x� prox

f̃
(x, ⌘)

���  `

⌘
. Consequently, for y⇤ = prox

f̃
(x, ⌘) we

have
��v>

r
y⇤
��  2`

⌘
for all r � t. Furthermore,

rf(x) = ⌘(x� y⇤) 2 conv
⇢
`vr : r 2 argmax

1rD+1

✓
`v>

r
y⇤ �

5`2(r � 1)

⌘

◆�
(84)

For any r > t

`v>
r
y⇤ �

5`2(r � 1)

⌘


2`2

⌘
�

5`2(r � 1)

⌘
= �

5`2
�
r � 7

5

�

⌘
(85)

Whereas

`v>
t
y⇤ �

5`2(t� 1)

⌘
� �

2`2

⌘
�

5`2(t� 1)

⌘
= �

2`2
�
t� 3

5

�

⌘
(86)

For any r > t (85) is less than (86), thus no r > t can be in the argmax in (84). Therefore, using
only v1, . . . , vt we can calculate

f(x) = inf
y

⇢
max

1rD+1

✓
`v>

r
y �

5`2(r � 1)

⌘

◆
+

⌘

2
ky � xk2

�
(87)

= inf
y

⇢
max
1rt

✓
`v>

r
y �

5`2(r � 1)

⌘

◆
+

⌘

2
ky � xk2

�
(88)

(89)
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and

prox
f̃
(x, ⌘) = argmin

y

⇢
max

1rD+1

✓
`v>

r
y �

5`2(r � 1)

⌘

◆
+

⌘

2
ky � xk2

�
(90)

= argmin
y

⇢
max
1rt

✓
`v>

r
y �

5`2(r � 1)

⌘

◆
+

⌘

2
ky � xk2

�
(91)

from which we get rf(x) = ⌘(x� prox
f̃
(x, ⌘)).

C Proof of Theorem 2

Theorem 2. Let L,B 2 (0,1), H 2 [0,1], N � D � 1, let G be any oracle graph of depth D and
size N and consider the optimization problem (G,Oprox,FL,H,B). For any randomized algorithm
A = (R1, . . . , RN , X̂), there exists a distribution P and a convex, L-Lipschitz, and H-smooth
function f on a B-bounded domain in Rm for m = O

�
max

�
N2, D3N

 
log (DN)

�
such that

E z⇠P
X̂⇠A

h
f(X̂; z)

i
�min

x

Ez⇠P [f(x; z)] � ⌦

✓
min

⇢
LB

D
,
HB2

D2

�
+

LB
p
N

◆

Proof. Without loss of generality, assume B = 1, the lower bound can be proven for other values of
B by scaling inputs to our construction by 1/B. Let

⌘ = min {H, 2LD} � =
4L

⌘
p
2D

a = 2c =
1

p
8D3

(92)

Define the following scalar function

�c(z) =

8
>><

>>:

0 |z|  c
2(|z|� c)2 c < |z|  2c
z2 � 2c2 2c < |z|  �
2� |z|� �2

� 2c2 |z| > �

(93)

It is straightforward to confirm that �c is convex, 2�-Lipschitz continuous, and 4-smooth. Let P
be the uniform distribution over {1, 2}. Let v1, v2, . . . , v2D be a set of orthonormal vectors drawn
uniformly at random and define

f(x; 1) =
⌘

8

 
�2av>1 x+ �c

�
v>2Dx

�
+

2D�1X

r=3,5,7,...

�c

�
v>
r�1x� v>

r
x
�
!

(94)

f(x; 2) =
⌘

8

 
2DX

r=2,4,6,...

�c

�
v>
r�1x� v>

r
x
�
!

(95)

F (x) = Ez⇠P [f(x; z)] =
1

2
(f(x; 1) + f(x; 2)) (96)

=
⌘

16

 
�2av>1 x+ �c

�
v>2Dx

�
+

2DX

r=2

�c

�
v>
r�1x� v>

r
x
�
!

(97)

The random choice of V determines a distribution over functions f(·; 1) and f(·; 2). We will lower
bound the expectation (over V ) of the suboptimality of any deterministic algorithm’s output, and then
apply Yao’s minimax principle.

First, we show that the functions f(·; 1) and := f(·; 2) are convex, L-Lipschitz, and H-smooth:

Lemma 7. For any H,L � 0, D � 1, and orthonormal v1, ..., v2D, and with ⌘, �, a, and c chosen
as in (92), f(·; 1) and f(·; 2) are convex, L-Lipschitz, and H-smooth.

Next, we show that optimizing F is equivalent to “finding” a large number of the vectors v1, . . . , v2D:
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Lemma 8. For any H,L � 0, D � 1, and orthonormal v1, ..., v2D, and with ⌘, �, a, and c chosen
as in (92), for any x such that

��v>
r
x
��  c

2 for all r > D

F (x)� min
x:kxk1

F (x) � min

⇢
L

32D
,

H

64D2

�

Next, we show that at any point x such that
��v>

r
x
��  c

2 for all r � t, the function value, gradient, and
prox of f(·; 1) and f(·; 2) at x are calculable using v1, . . . , vt only:

Lemma 9. For any x such that
��v>

r
x
��  c

2 for all r � t, and any � � 0 the function values, gradients,
and proxs f(x; 1), f(x; 2),rf(x; 1),rf(x; 2), prox

f(·,1)(x,�), and prox
f(·,2)(x,�) are calculable

using �, x, v1, . . . , vt only.

In Appendix A, we studied the situation where orthonormal v1, . . . , v2D are chosen uniformly at
random and a sequence of sets of vectors X1, . . . , X2D are generated as

Xt (V ) = Xt

⇣
V<t G

0
<t

+ V ¬G
0
<t

⌘
(98)

where

G0
<t

=
r
8r < t, 8x 2 Xr, 8j � r |hx, vji| 

c

2

z
(99)

Consider the dependency graph, and let X1 be the set of queries made in vertices at depth 1 in the
graph (i.e. they have no parents). Let X2 be the set of queries made in vertices at depth 2 in the graph
(i.e. their parents correspond to the queries in X1). Continue in this way for each t  D, and then let
XD+1 = {x̂} correpond to the output of the optimization algorithm, which for now is deterministic.

Suppose G0
<t

. Then for all of the queries x 2 X1 [ · · · [ Xt�1 and for all r � t � 1 we have
|hx, vri| 

c

2 . Therefore, by Lemma 9 the function values, gradients, and proxs of f(·; 1) and f(·; 2)
are calculable based only on the query points and v1, . . . , vt�1. Therefore, all of the queries in Xt

are a deterministic function of V<t only so Xt satisfies the required decomposition property (98).
Finally, the queries are required to be in the domain of f , thus they will have norm bounded by B.

Therefore, by Lemma 2 for

m � 2D +N +max
n
32N2, 128B2D3(1 +

p

2N)2
o
log

�
8D2N

�
(100)

with probability 1/2 for every x 2 X1 [ · · · [XD+1 which includes x̂, |hx, vri|  c

2 for r > D, so
by Lemma 8

f(x̂)� min
x:kxk1

f(x) � min

⇢
L

32D
,

H

64D2

�
(101)

Therefore,

min
deterministic A

EV


f(x̂)� min

x:kxk1
f(x)

�
� min

⇢
L

64D
,

H

128D2

�
(102)

so by Yao’s minimax principle, for any randomized algorithm A

max
V

E
X̂⇠A


f(X̂)� min

x:kxk1
f(x)

�
� min

⇢
L

64D
,

H

128D2

�
(103)

The statistical term LB

8
p
N

follows from Lemma 10.

C.1 Deferred proof

Lemma 7. For any H,L � 0, D � 1, and orthonormal v1, ..., v2D, and with ⌘, �, a, and c chosen
as in (92), f(·; 1) and f(·; 2) are convex, L-Lipschitz, and H-smooth.
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Proof. The functions f(·; 1) and f(·; 2) are a sum of linear functions and �c, which is convex;
therefore both are convex. Also, the scalar function �c is 2�-Lipschitz, so

krf(x; 1)k2 =

�����
⌘

8

 
�2av1 + �0

c

�
v>2Dx

�
v2D +

2D�1X

r=3,5,7,...

�0
c

�
v>
r�1x� v>

r
x
�
(vr�1 � vr)

!�����

2

(104)


⌘2
�
a2 + (2D � 1)�2

�

16


2D⌘2�2

16
= L2 (105)

where we used that a = 1p
8D3

< � = 4L
⌘
p
2D

. Similarly,

krf(x; 2)k2 =

�����
⌘

8

 
2DX

r=2,4,6,...

�0
c

�
v>
r�1x� v>

r
x
�
(vr�1 � vr)

!�����

2


2D⌘2�2

16
= L2 (106)

Therefore, f(·; 1) and f(·; 2) are L-Lipschitz. Furthermore, since �c is 4-smooth,

��v>
i
r

2f(x; 1)vj
�� 

⇢
⌘

2 |i� j|  1
0 |i� j| > 1

and
��v>

i
r

2f(x; 2)vj
�� 

⇢
⌘

2 |i� j|  1
0 |i� j| > 1

(107)

therefore, the maximum eigenvalue of r2f(·; 1) and r2f(·; 2) is at most ⌘  H .

Lemma 8. For any H,L � 0, D � 1, and orthonormal v1, ..., v2D, and with ⌘, �, a, and c chosen
as in (92), for any x such that

��v>
r
x
��  c

2 for all r > D

F (x)� min
x:kxk1

F (x) � min

⇢
L

32D
,

H

64D2

�

Proof. First, we upper bound minx:kxk1 F (x). Recalling that a = 1p
8D3

, define

x⇤ = a
2DX

r=1

(2D + 1� r)vr (108)

kx⇤
k
2 =

1

8D3

✓
2D(2D + 1)(4D + 1)

6

◆
 1 (109)

For this x⇤, v>
r�1x

⇤
� v>

r
x⇤ = v>2Dx⇤ = a and with our choice of parameters (92), 2c = a < �, so

that �0
c
(a) = 2a, thus

rF (x⇤) =
⌘

16

 
�2av1 + �0

c

�
v>2Dx⇤� v2D +

2DX

r=2

�0
c

�
v>
r�1x

⇤
� v>

r
x⇤� (vr�1 � vr)

!
(110)

thus,

rF (x⇤)>v1 = �2a+ �0
c
(a) = 0 (111)

rF (x⇤)>vr = ��0
c
(a) + �0

c
(a) = 0 2  r  2D � 1 (112)

rF (x⇤)>v2D = ��0
c
(a) + �0

c
(a) = 0 (113)

Since kx⇤
k  1 and rF (x⇤) = 0, we conclude

min
x:kxk1

F (x) = F (x⇤) =
⌘

16

�
�2Da2 � 4Dc2)

�
= �

⌘Da2

4
= �

⌘

32D2
(114)

Let XD =
�
x : kxk  1,

��v>
r
x
��  c

2 8r > D
 

. We will now lower bound

min
x2XD

F (x) = min
x:kxk1

F (x) s.t.
��v>

r
x
��  c

2
8r > D (115)
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Introducing dual variables �D+1, ...,�2D � 0, solving (115) amounts to finding an x 2 XD and a set
of non-negative �s such thatrF (x) = �

P2D
r=D+1 �r sign

�
v>
r
x
�
vr and such that �r

�
v>
r
x� c

2

�
=

0 for each r. Let

xD =
D+1X

r=1

⇣
a (D + 1� r) +

c

2

⌘
vr, �D+1 = 2a, �D+2 = · · · = �k = 0 (116)

Since a (D + 1� r) + c

2 < a (2D + 1� r) for r  D + 1 and kx⇤
k  1 it follows that kxDk  1.

Furthermore, since v>
r�1xD � v>

r
xD = a for 2  r  D + 1 and 2c = a < �, the gradient

rF (xD)>v1 = �2a+ �0
c
(a) = 0 (117)

rF (xD)>vr = ��0
c
(a) + �0

c
(a) = 0 2  r  D (118)

rF (xD)>vD+1 = ��0
c
(a) + �0

c

⇣ c
2

⌘
= �2a = ��D+1 (119)

rF (xD)>vr = 0 = ��r D + 2  r  2D (120)

Therefore,

min
x2XD

F (x) = F (xD) =
⌘

16

�
�Da2 � ac� 2Dc2

�
= �

⌘(3D + 1)a2

32
= �

⌘(3D + 1)

256D3
(121)

Combining (114) and (121) we have that

min
x2XD

F (x)� min
x:kxk1

F (x) = F (xD)� F (x⇤)

=
⌘

32D2
�

⌘(3D + 1)

256D3
�

⌘

32D2
�

⌘

64D2
= min

⇢
L

32D
,

H

64D2

�
(122)

Lemma 9. For any x such that
��v>

r
x
��  c

2 for all r � t, and any � � 0 the function values, gradients,
and proxs f(x; 1), f(x; 2),rf(x; 1),rf(x; 2), prox

f(·,1)(x,�), and prox
f(·,2)(x,�) are calculable

using �, x, v1, . . . , vt only.

Proof. Suppose that x is a point such that
��v>

r
x
��  c

2 for all r � t, and � � 0. Therefore,
�c

�
v>
r�1x� v>

r
x
�
= 0 for r > t so

f(x; 1) =
⌘

8

 
�2av>1 x+ �c
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v>2Dx
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2D�1X
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r
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(123)

=
⌘

8

 
�2av>1 x+

tX
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�
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r�1x� v>

r
x
�
!

(124)

f(x; 2) =
⌘

8

 
2DX

r=2,4,6,...

�c

�
v>
r�1x� v>

r
x
�
!

(125)

=
⌘

8

 
tX

r=2,4,6,...

�c

�
v>
r�1x� v>

r
x
�
!

(126)
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Thus both f(x; 1) and f(x; 2) can be calculated from x, v1, . . . , vt only. Similarly,
�0
c

�
v>
r�1x� v>

r
x
�
= 0 for r > t so

rf(x; 1) =
⌘

8

 
�2av1 + �0

c

�
v>2Dx

�
v2D +

2D�1X

r=3,5,7,...

�0
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�
v>
r�1x� v>

r
x
�
(vr�1 � vr)

!
(127)

=
⌘
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r�1x� v>
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(vr�1 � vr)

!
(128)

rf(x; 2) =
⌘
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2DX
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�0
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(vr�1 � vr)

!
(129)

=
⌘
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tX
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�0
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r�1x� v>

r
x
�
(vr�1 � vr)

!
(130)

Thus rf(x; 1) and rf(x; 2) can also be calculated from x, v1, . . . , vt only.

Now, we consider the proxs at such a point x. Let t0 = t if t is odd, and t0 = t � 1 if t is even.
Let P be the projection operator onto S = Span (v1, . . . , vt0) and let P? be the projection onto the
orthogonal subspace, S?. Then, since f(x; 1) = f(Px; 1) + f(P?x; 1), we can decompose the
prox:

prox
f(·;1)(x,�)

= argmin
y

f(y; 1) +
�

2
ky � xk2 (131)

= argmin
y12S,y22S?

f(y1; 1) + f(y2; 1) +
�

2

⇣
ky1 � Pxk2 +

��y2 � P?x
��2
⌘

(132)

= argmin
y12S

⌘

8

0

@�2av>1 y1 +
t
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r=3,5,7,...
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r
y1
�
1
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�

2
ky1 � Pxk2 (133)

+ argmin
y22S?

⌘

8

0
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�
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2D�1X
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�
v>
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r
y2
�
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2

��y2 � P?x
��2 (134)

= P?x+ argmin
y12S

⌘

8

0

@�2av>1 y1 +
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r=3,5,7,...

�c

�
v>
r�1y1 � v>

r
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�
1

A+
�

2
ky1 � Pxk2 (135)

Where we used that
��v>

r
P?x

�� =
��v>

r
x
��  c

2 for all r > t0, so setting y2 = P?x achieves the
minimum since every term in the expression is zero and function is non-negative. The vector
P?x is calculable from x, v1, . . . , vt0 ✓ x, v1, . . . , vt, and similarly the second term is a minimiza-
tion depends only on �, x, v1, . . . , vt0 ✓ �, x, v1, . . . , vt. A nearly identical argument shows that
prox

f(·;2)(x,�) has the same property.

D Statistical term

Lemma 10. For any L,B > 0, there exists a distribution P , and an L-Lipschitz, 0-smooth function
f defined on [�B,B] such that the output x̂ of any potentially randomized optimization algorithm
which accesses a stochastic gradient or prox oracle at most N times satisfies

E
X̂⇠A


Ez⇠P

h
f(X̂; z)

i
� min

|x|B

Ez⇠P [f(x; z)]

�
�

LB

8
p
N

Proof. Let ✏ > 0 and p ⇠ Uniform {p1, p�1} where p1 = 1+✏

2 and p�1 = 1�✏

2 . Define Pp as

PPp [Z = 1] = 1� PPp [Z = �1] = p (136)
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Then, let f(x; z) = zLx, so Ez⇠Pp [f(x; z)] = (2p � 1)Lx. When p = p1, (2p � 1) > 0 so the
minimizer is x = �B with value �LB(2p� 1) = �LB✏, and when p = p�1, (2p� 1) < 0 so the
minimizer is x = B, also with value �LB✏. Furthermore, if p = p1 and x � 0 then it is at least
LB✏-suboptimal, and if p = p2 and x  0 then it is also at least LB✏-suboptimal.

Now consider any deterministic optimization algorithm which accesses the gradient or prox oracle
N times. Each gradient or prox oracle response can be simulated using a single z ⇠ Pp, so the
algorithm’s output is x̂ = x̂(z1, . . . , zN ) 2 [�B,B]. Consider

Ep⇠Uniform{p1,p�1},z⇠Pp
[(2p� 1)Lx̂(z1, . . . , zN ) | z1, . . . , zN ]

� LB✏Pp⇠Uniform{p1,p�1},z⇠Pp
[sign(x̂(z1, . . . , zN )) 6= sign(2p� 1) | z1, . . . , zN ] (137)

Furthermore, the Bayes optimal estimate x̂ of sign(2p� 1) is

x̂(z1, . . . , zN ) =

(
1 1

N

P
N

i=1 zi � 0

�1 1
N

P
N

i=1 zi < 0
(138)

so

Pp⇠Uniform{p1,p�1},z⇠Pp

h
sign(X̂(z1, . . . , zN )) 6= sign(2p� 1)

��� z1, . . . , zN
i

� Pp⇠Uniform{p1,p�1},z⇠Pp

"�����
1
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NX
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zi � (2p� 1)

����� � ✏

#
(139)

= Pz⇠Pp�1

"�����
1

N

NX

i=1

zi � ✏

����� � ✏

#
(140)

This simply requires lower bounding the tail of the Binomial
�
N, 1�✏

2

�
distribution. Using Theorem

2.1 in [24],

Pz⇠Pp�1

"�����
1

N
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����� � ✏
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where � is the distribution function of the standard normal. Let ✏ = 1
2
p
N

, then ✏
p
Np
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Therefore, we conclude that

Ep⇠Uniform{p1,p�1},z⇠Pp
[(2p� 1)Lx̂(z1, . . . , zN ) | z1, . . . , zN ] �
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8
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Therefore, by Yao’s minimax principle, for any randomized algorithm A

max
p2{p1,p�1}

E
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h
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h
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i
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i
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8
p
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E Supplement to Section 4

E.1 Smoothed accelerated mini-batch SGD

Smoothed accelerated mini-batch SGD is the composition of two ingredients. First, we approximate
the non-smooth f with a smooth surrogate, and then perform accelerated mini-batch SGD on the
surrogate [9, 15]. In particular, we use the �-Moreau envelope f (�) of f :

f (�)(x; z) = inf
y

f(y; z) +
�

2
ky � xk2 (145)

Since f is L-Lipschitz, f (�) has the following properties (Proposition 12.29 [5]):
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1. f (�) is �-smooth
2. rf (�)(x; z) = �(x� prox

f(·;z)(x,�))

3. f (�)(x; z)  f(x; z)  f (�)(x; z) + L
2

2� for all x

We use the prox oracle to execute A-MB-SGD on the L-Lipschitz and �-smooth f (�), with updates

wt = ↵yt + (1� ↵)xt (146)

yt+1 = wt �
⌘

M

MX

i=1

�
⇣
wt � prox

f(·;zi)(wt,�)
⌘

(147)

xt+1 = ↵yt+1 + (1� ↵)xt (148)

The A-MB-SGD algorithm will converge on f (�) at a rate (see [9, 15])
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Choosing � = min {LT,H} the conclude

E [f(xT ; z)]�min
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= O

✓
min

⇢
L

T
,
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T 2

�
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L
p
MT

◆
(152)

which matches the lower bound in Theorem 2.

E.2 Wait-and-collect accelerated mini-batch SGD

Algorithm 2 "Wait-and-collect" accelerated minibatch SGD
Initialize x̂ = x̃ = x0 = 0,, parameter ↵.
for t = 1, 2, . . . , T do

if mod (t, 2⌧ + 1)  ⌧ then

Query stochastic gradient at x̃.
Update xt  xt�1, g̃ = 0.

else if mod (t, 2⌧ + 1) > ⌧ and mod (t, 2⌧ + 1)  2⌧ then

Update xt  xt�1.
Receive noisy gradient gt�1�⌧ , update g̃  g̃ + (1/⌧) ⇤ gt�1�⌧

else if mod (t, 2⌧ + 1) = 0 then

Update xt  x̃� ⌘g̃.
Update x̂ ↵x̂+ (1� ↵)xt, x̃ ↵x̂+ (1� ↵)xt.

end if

end for

E.3 Analysis of technical results in Section 4.4

Applying SVRG under intermittent synchronization graph To apply SVRG method to solve
stochastic convex optimization problems under intermittent synchronization graph. We adopt the
approach by [16, 26], first we sample n instances {z1, ..., zn} and solve a regularized empirical risk
minimization problem based on {z1, ..., zn}:

min
x

F̂�(x) :=
1

n

nX

i=1

f(x; zi) +
�

2
kxk2 , (153)

where � is the regularization parameter will specified later. We will apply SVRG algorithm on the
intermittent synchronization graph to solve above empirical objective (153) to certain sub-optimality.
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The SVRG method works in stages, at each stage, we first use n/KM communication rounds to
calculate the full gradient of (153) at a reference point x̃, and then using a single chain to perform
stochastic gradient updates, equipped withrF̂ (w̃) to reduce the variance. We choose � ⇣ L/(

p
nB),

which will makes the objective (153) to be at least L/(
p
nB)-strongly convex, thus the condition

number of (153) will be bounded by O(H/(L/(
p
nB))) = O(H

p
nB/L). The SVRG analysis [14]

requires the number of stochastic gradient updates to be scales as the condition number, so here we
will use O(H

p
nB/(LK)) communication rounds to perform the stochastic updates, since one chain

within each communication round has length K. Let x̂⇤ = argminx F̂�(x), and let x̂s to be the
iterate after running the SVRG algorithm for s-stages. By the standard results of SVRG (Theorem 1
in [14]), we have
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.

By standard estimation-optimization error decomposition (e.g. Section 4 in [23]), we have
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given s ⇣ log(n/(LB)). Thus to implement SVRG successfully, we need to choose n such that the
following two conditions are satisfied:

n

KM
⇤ s  T, and

H
p
nB

LK
⇤ s  T.

Thus we know by choosing n below will satisfy above condition:

n ⇣ min

⇢
K2T 2L2

H2B2 log2(MKT/L)
,
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log(MKT/L)

�
,

substitute the scale of n to (154) we get
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and we obtain the desired result.
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