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1 Proof of Proposition 1

In this supplemental material, we give a detailed proof of proposition 1 in the paper. Recall that our
concave-convex relaxation of the discrete Laplacian K-modes objective is:

R(Z) =

N∑
p=1

ztp log(zp)−
N∑

p=1

L∑
l=1

zp,lk(xp,ml)− λ
∑
p,q

k(xp,xq)ztpzq (1)

The proposition states that, given current solution Zi = [zip,l] at iteration i, and the corresponding
modes mi

l = arg maxy

∑
p z

i
p,lk(xp,y), we have the following auxiliary function (up to an additive

constant) for concave-convex relaxation (1) and psd affinity matrix K:

Ai(Z) =

N∑
p=1

ztp(log(zp)− aip − λbi
p) (2)

where aip and bi
p are the following L-dimensional vectors:

aip = [aip,1, . . . , a
i
p,L]t, with aip,l = k(xp,m

i
l) (3a)

bi
p = [bip,1, . . . , b

i
p,L]t, with bip,l =

∑
q

k(xp,xq)ziq,l (3b)

Proof:

Instead ofN×Lmatrix Z, let us represent our assignment variables with a vector z ∈ [0, 1]LN , which
is of length Lmultiplied byN and takes the form [z1, z2, . . . , zN ]. As in the paper, each zp is a vector
of dimension L containing the probability variables of all labels for point p: zp = [zp,1, . . . , zp,L]t.

Let Ψ = −K ⊗ IN , where ⊗ denotes the Kronecker product and IN the N × N identity matrix.
Now, observe that we can write the relaxed Laplacian term in (1) in the following convenient form:

−λ
∑
p,q

k(xp,xq)ztpzq = λztΨz (4)

Notice that Kronecker product Ψ is negative semi-definite when K is positive semi-definite. In this
case, function zTψz is concave and, therefore, is upper bounded by its first-order approximation
at current solution zi (iteration i). In fact, concavity arguments are standard in deriving auxiliary
functions for bound-optimization algorithms [1]. With this condition, we have the following auxiliary
function for the Laplacian-term relaxation in (1):

−
∑
p,q

k(xp,xq)ztpzq ≤ (zi)tΨzi + (Ψzi)t(z− zi) (5)
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(a) SLK-MS for MNIST (GAN) (b) SLK-BO for MNIST (GAN)

(c) SLK-MS for LabelMe (Alexnet) (d) SLK-BO for LabelMe (Alexnet)

Figure 1: Relaxed SLK objective (2) in the paper: Convergence of the inner iterations of z-updates
shown for MNIST (GAN) and LabelMe (Alexnet) datasets.

Now, notice that, for each cluster l, the mode is by definition: ml = arg maxy∈∈X
∑

p zp,lk(xp,y).

Therefore, ∀y ∈ X, we have −
∑N

p=1 zp,lk(xp,ml) ≤ −
∑N

p=1 zp,lk(xp,y). Applying this result
to y = mi

l , we obtain the following auxiliary function on the K-mode term :

−
N∑

p=1

zp,lk(xp,ml) ≤ −
N∑

p=1

zp,lk(xp,m
i
l) (6)

Combining (5) and (6), it is easy to see that (2) is an upper bound on our concave-convex relaxation
in (1), up to an additive constant2. It easy to check that both bounds in (5) and (6) are tight at the
current solution. This complete the proof that (2) is an auxiliary function for our concave-convex
relaxation, up to an additive constant.

2 Convergence of SLK

Figures 1 and 2 show the convergence of the inner and outer iterations of SLK-BO and SLK-MS
using MNIST (GAN) and LabelME (Alexnet) datasets. In Figure 1, the relaxed objective (1), i.e.,
objective (2) in the paper, decreases monotonically and converges within 50/10 iterations of the

2The additive constant depends only on the zi’s, the assignment variables computed at the previous iteration.
This additive constant is ignored in the expression of the auxiliary function in Eq. (2).
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(a) SLK-MS for MNIST (GAN) (b) SLK-BO for MNIST (GAN)

(c) SLK-MS for LabelMe (Alexnet) (d) SLK-BO for LabelMe (Alexnet)

Figure 2: Convergence of the outer iterations (mode updates): For each cluster, the convergence of
the outer loop is shown as the difference in mode values within two consecutive outer iterations. The
plots are for MNIST (GAN) and LabelMe (Alexnet) datasets.

(z-updates) of SLK for MNIST (GAN)/LabelMe (Alexnet). For each cluster, the convergence of the
outer loop (mode updates) is shown as the difference in mode values within two consecutive outer
iterations. Notice that both SLK-BO and SLK-MS converge within less than 5 outer iterations, with
SLK-MS typically taking more outer iterations. This might be due to the fact that SLK-BO updates
the modes from valid data points within the input set, whereas SLK-MS updates the modes as local
means via mean-shift iterations.

References
[1] Kenneth Lange, David R Hunter, and Ilsoon Yang. Optimization transfer using surrogate objective

functions. Journal of computational and graphical statistics, 9(1):1–20, 2000.

3


	Proof of Proposition 1
	Convergence of SLK

