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Abstract

While designing the state space of an MDP, it is common to include states that are
transient or not reachable by any policy (e.g., in mountain car, the product space of
speed and position contains configurations that are not physically reachable). This
results in weakly-communicating or multi-chain MDPs. In this paper, we introduce
TUCRL, the first algorithm able to perform efficient exploration-exploitation in
any finite Markov Decision Process (MDP) without requiring any form of prior
knowledge. In particular, for any MDP with SC communicating states, A actions
and ΓC ≤ SC possible communicating next states, we derive a Õ(DC

√
ΓCSCAT )

regret bound, where DC is the diameter (i.e., the length of the longest shortest
path between any two states) of the communicating part of the MDP. This is in
contrast with existing optimistic algorithms (e.g., UCRL, Optimistic PSRL) that
suffer linear regret in weakly-communicating MDPs, as well as posterior sampling
or regularised algorithms (e.g., REGAL), which require prior knowledge on the bias
span of the optimal policy to achieve sub-linear regret. We also prove that in weakly-
communicating MDPs, no algorithm can ever achieve a logarithmic growth of the
regret without first suffering a linear regret for a number of steps that is exponential
in the parameters of the MDP. Finally, we report numerical simulations supporting
our theoretical findings and showing how TUCRL overcomes the limitations of the
state-of-the-art.

1 Introduction
Reinforcement learning (RL) [1] studies the problem of learning in sequential decision-making
problems where the dynamics of the environment is unknown, but can be learnt by performing
actions and observing their outcome in an online fashion. A sample-efficient RL agent must trade
off the exploration needed to collect information about the environment, and the exploitation of
the experience gathered so far to gain as much reward as possible. In this paper, we focus on the
regret framework in infinite-horizon average-reward problems [2], where the exploration-exploitation
performance is evaluated by comparing the rewards accumulated by the learning agent and an optimal
policy. Jaksch et al. [2] showed that it is possible to efficiently solve the exploration-exploitation
dilemma using the optimism in face of uncertainty (OFU) principle. OFU methods build confidence
intervals on the dynamics and reward (i.e., construct a set of plausible MDPs), and execute the optimal
policy of the “best” MDP in the confidence region [e.g., 2, 3, 4, 5, 6]. An alternative approach is
posterior sampling (PS) [7], which maintains a posterior distribution over MDPs and, at each step,
samples an MDP and executes the corresponding optimal policy [e.g., 8, 9, 10, 11, 12].

Weakly-communicating MDPs and misspecified states. One of the main limitations of UCRL [2]
and optimistic PSRL [12] is that they require the MDP to be communicating so that its diameter
D (i.e., the length of the longest path among all shortest paths between any pair of states) is finite.
While assuming that all states are reachable may seem a reasonable assumption, it is rarely verified in
practice. In fact, it requires a designer to carefully define a state space S that contains all reachable
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Figure 1: Examples of non-communicating domains. Fig. b represents a phase plane plot of the
Mountain car domain (x, ẋ) ∈ [−1.2, 0.6]× [−0.07, 0.07]. The initial state is (−0.5, 0) and the red
area corresponds to non-reachable states from the initial state. Other non-reachable states may exist.
Fig. a shows the initial state, one reachable state (middle) and an unreachable one (right).

states (otherwise it may not be possible to learn the optimal policy), but it excludes unreachable
states (otherwise the resulting MDP would be non-communicating). This requires a considerable
amount of prior knowledge about the environment. Consider a problem where we learn from images
e.g., the Atari Breakout game [13]. The state space is the set of “plausible” configurations of the
brick wall, ball and paddle positions. The situation in which the wall has an hole in the middle is a
valid state (e.g., as an initial state) but it cannot be observed/reached starting from a dense wall (see
Fig. 1a). As such, it should be removed to obtain a “well-designed” state space. While it may be
possible to design a suitable set of “reachable” states that define a communicating MDP, this is often
a difficult and tedious task, sometimes even impossible. Now consider a continuous domain e.g., the
Mountain Car problem [14]. The state is decribed by the position x and velocity ẋ along the x-axis.
The state space of this domain is usually defined as the cartesian product [−1.2, 0.6]× [−0.07, 0.07].
Unfortunately, this set contains configurations that are not physically reachable as shown on Fig. 1b.
The dynamics of the system is constrained by the evolution equations. Therefore, the car can not go
arbitrarily fast. On the leftmost position (x = −1.2) the speed ẋ cannot exceed 0 due to the fact that
such position can be reached only with velocity ẋ ≤ 0. To have a higher velocity, the car would need
to acquire momentum from further left (i.e., x < −1.2) which is impossible by design (−1.2 is the
left-boundary of the position domain). The maximal speed reachable for x > −1.2 can be attained by
applying the maximum acceleration at any time step starting from the state (x, ẋ) = (−1.2, 0). This
identifies the curve reported in the Fig. 1b which denotes the boundary of the unreachable region.
Note that other states may not be reachable. Whenever the state space is misspecified or the MDP is
weakly communicating (i.e., D = +∞), OFU-based algorithms (e.g.,UCRL) optimistically attribute
large reward and non-zero probability to reach states that have never been observed, and thus they
tend to repeatedly attempt to explore unreachable states. This results in poor performance and linear
regret. A first attempt to overcome this major limitation is REGAL.C [3] (Fruit et al. [6] recently
proposed SCAL, an implementable efficient version of REGAL.C), which requires prior knowledge of
an upper-bound H to the span (i.e., range) of the optimal bias function h∗. The optimism of UCRL
is then “constrained” to policies whose bias has span smaller than H . This implicitly “removes”
non-reachable states, whose large optimistic reward would cause the span to become too large.
Unfortunately, an accurate knowledge of the bias span may not be easier to obtain than designing
a well-specified state space. Bartlett and Tewari [3] proposed an alternative algorithm – REGAL.D–
that leverages on the doubling trick [15] to avoid any prior knowledge on the span. Nonetheless,
we recently noticed a major flaw in the proof of [3, Theorem 3] that questions the validity of the
algorithm (see App. A for further details). PS-based algorithms also suffer from similar issues.1 To
the best of our knowledge, the only regret guarantees available in the literature for this setting are
[17, 18, 19]. However, the counter-example of Osband and Roy [20] seems to invalidate the result of
Abbasi-Yadkori and Szepesvári [17]. On the other hand, Ouyang et al. [18] and Theocharous et al.
[19] present PS algorithms with expected Bayesian regret scaling linearly with H , where H is an
upper-bound on the optimal bias spans of all the MDPs that can be drawn from the prior distribution
([18, Asm. 1] and [19, Sec. 5]). In [18, Remark 1], the authors claim that their algorithm does not
require the knowledge of H to derive the regret bound. However, in App. B we show on a very simple
example that for most continuous prior distributions (e.g., uninformative priors like Dirichlet), it is
very likely that H = +∞ implying that the regret bound may not hold (similarly for [19]). As a

1We notice that the problem of weakly-communicating MDPs and misspecified states does not hold in the
more restrictive setting of finite horizon [e.g., 8] since exploration is directly tailored to the states that are
reachable within the known horizon, or under the assumption of the existence of a recurrent state [e.g., 16].
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result, similarly to REGAL.C, the prior distribution should contain prior knowledge on the bias span to
avoid poor performance.

In this paper, we present TUCRL, an algorithm designed to trade-off exploration and exploitation in
weakly-communicating and multi-chain MDPs (e.g., MDPs with misspecified states) without any
prior knowledge and under the only assumption that the agent starts from a state in a communicating
subset of the MDP (Sec. 3). In communicating MDPs, TUCRL eventually (after a finite number
of steps) performs as UCRL, thus achieving problem-dependent logarithmic regret. When the
true MDP is weakly-communicating, we prove that TUCRL achieves a Õ(

√
T ) regret that with

polynomial dependency on the MDP parameters. We also show that it is not possible to design
an algorithm achieving logarithmic regret in weakly-communicating MDPs without having an
exponential dependence on the MDP parameters (see Sec. 5). TUCRL is the first computationally
tractable algorithm in the OFU literature that is able to adapt to the MDP nature without any prior
knowledge. The theoretical findings are supported by experiments on several domains (see Sec. 4).

2 Preliminaries
We consider a finite weakly-communicating Markov decision process [21, Sec. 8.3] M = 〈S,A, r, p〉
with a set of states S and a set of actions A =

⋃
s∈S As. Each state-action pair (s, a) ∈ S × As

is characterized by a reward distribution with mean r(s, a) and support in [0, rmax] as well as a
transition probability distribution p(·|s, a) over next states. In a weakly-communicating MDP, the
state-space S can be partioned into two subspaces [21, Section 8.3.1]: a communicating set of states
(denoted SC in the rest of the paper) with each state in SC accessible –with non-zero probability–
from any other state in SC under some stationary deterministic policy, and a –possibly empty– set
of states that are transient under all policies (denoted ST). We also denote by S = |S|, SC = |SC|
and A = maxs∈S |As| the number of states and actions, and by ΓC = maxs∈SC,a∈A ‖p(·|s, a)‖0 the
maximum support of all transition probabilities p(·|s, a) with s ∈ SC. The sets SC and ST form a
partition of S i.e., SC ∩ ST = ∅ and SC ∪ ST = S . A deterministic policy π : S → A maps states to
actions and it has an associated long-term average reward (or gain) and a bias function defined as

gπM (s) := lim
T→∞

E
[

1

T

T∑

t=1

r
(
st, π(st)

)]
; hπM (s) := C- lim

T→∞
E
[ T∑

t=1

(
r(st, π(st))− gπM (st)

)]
,

where the bias hπM (s) measures the expected total difference between the rewards accumulated by
π starting from s and the stationary reward in Cesaro-limit2 (denoted C- lim). Accordingly, the
difference of bias values hπM (s)− hπM (s′) quantifies the (dis-)advantage of starting in state s rather
than s′. In the following, we drop the dependency on M whenever clear from the context and
denote by spS {hπ} := maxs∈S hπ(s) − mins∈S hπ(s) the span of the bias function. In weakly
communicating MDPs, any optimal policy π∗ ∈ arg maxπ g

π(s) has constant gain, i.e., gπ
∗
(s) = g∗

for all s ∈ S. Finally, we denote by D, resp. DC, the diameter of M , resp. the diameter of the
communicating part of M (i.e., restricted to the set SC):

D := max
(s,s′)∈S×S,s 6=s′

{τM (s→ s′)}, DC := max
(s,s′)∈SC×SC,s6=s′

{τM (s→ s′)}, (1)

where τM (s→ s′) is the expected time of the shortest path from s to s′ in M .

Learning problem. Let M∗ be the true (unknown) weakly-communicating MDP. We consider the
learning problem where S, A and rmax are known, while sets SC and ST, rewards r and transition
probabilities p are unknown and need to be estimated on-line. We evaluate the performance of a
learning algorithm A after T time steps by its cumulative regret ∆(A, T ) = Tg∗ −∑T

t=1 rt(st, at).
Furthermore, we state the following assumption.
Assumption 1. The initial state s1 belongs to the communicating set of states SC.

While this assumption somehow restricts the scenario we consider, it is fairly common in practice.
For example, all the domains that are characterized by the presence of a resetting distribution (e.g.,
episodic problems) satisfy this assumption (e.g., mountain car, cart pole, Atari games, taxi, etc.).

Multi-chain MDPs. While we consider weakly-communicating MDPs for ease of notation, all our
results extend to the more general case of multi-chain MDPs.3 In this case, there may be multiple

2For policies whose associated Markov chain is aperiodic, the standard limit exists.
3In the case of misspecified states, we implicitly define a multi-chain MDP, where each non-reachable state

has a self-loop dynamics and it defines a “singleton” communicating subset.
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communicating and transient sets of states and the optimal gain g∗ is different in each communicating
subset. In this case we define SC as the set of states that are accessible –with non-zero probability–
from s1 (s1 included) under some stationary deterministic policy. ST is defined as the complement of
SC in S i.e., ST := S \SC. With these new definitions of SC and ST, Asm. 1 needs to be reformulated
as follows:

Assumption 1 for Multi-chain MDPs. The initial state s1 is accessible –with non-zero probability–
from any other state in SC under some stationary deterministic policy. Equivalently, SC is a commu-
nicating set of states.

Note that the states belonging to ST can either be transient or belong to other communicating subsets
of the MDP disjoint from SC. It does not really matter because the states in ST will never be visited
by definition. As a result, the regret is still defined as before, where the learning performance is
compared to the optimal gain g∗(s1) related to the communicating set of states SC 3 s1.

3 Truncated Upper-Confidence for Reinforcement Learning (TUCRL)
In this section we introduce Truncated Upper-Confidence for Reinforcement Learning (TUCRL),
an optimistic online RL algorithm that efficiently balances exploration and exploitation to learn in
non-communicating MDPs without prior knowledge (Fig. 2).

Similar to UCRL, at the beginning of each episode k, TUCRL constructs confidence intervals for the
reward and the dynamics of the MDP. Formally, for any (s, a) ∈ S ×A we define

Bp,k(s, a) =
{
p̃(·|s, a) ∈ C : ∀s′ ∈ S, |p̃(s′|s, a)− p̂(s′|s, a)| ≤ βsas′p,k

}
, (2)

Br,k(s, a) := [r̂k(s, a)− βsar,k, r̂k(s, a) + βsar,k] ∩ [0, rmax], (3)

where C = {p ∈ RS |∀s′, p(s′) ≥ 0 ∧∑s′ p(s
′) = 1} is the (S − 1)-probability simplex, while the

size of the confidence intervals is constructed using the empirical Bernstein’s inequality [22, 23] as

βsar,k :=

√
14σ̂2

r,k(s, a)bk,δ

N+
k (s, a)

+
49
3 rmaxbk,δ

N±k (s, a)
, βsas

′

p,k :=

√
14σ̂2

p,k(s′|s, a)bk,δ

N+
k (s, a)

+
49
3 bk,δ

N±k (s, a)
,

where Nk(s, a) is the number of visits in (s, a) before episode k, N+
k (s, a) := max{1, Nk(s, a)},

N±k (s, a) := max{1, Nk(s, a)−1}, σ̂2
r,k(s, a) and σ̂2

p,k(s′|s, a) are the empirical variances of r(s, a)

and p(s′|s, a) and bk,δ = ln(2SAtk/δ). The set of plausible MDPs associated with the confidence
intervals is thenMk =

{
M = (S,A, r̃, p̃) : r̃(s, a) ∈ Br,k(s, a), p̃(·|s, a) ∈ Bp,k(s, a)

}
. UCRL

is optimistic w.r.t. the confidence intervals so that for all states s that have never been visited the
optimistic reward r̃(s, a) is set to rmax, while all transitions to s (i.e., p̃(s|·, ·)) are set to the largest
value compatible withBp,k(·, ·). Unfortunately, some of the states withNk(s, a) = 0 may be actually
unreachable (i.e., s ∈ ST) and UCRL would uniformly explore the policy space with the hope that at
least one policy reaches those (optimistically desirable) states. TUCRL addresses this issue by first
constructing empirical estimates of SC and ST (i.e., the set of communicating and transient states in
M∗) using the states that have been visited so far, that is SCk :=

{
s ∈ S

∣∣ ∑
a∈As Nk(s, a) > 0

}
∪

{stk} and STk := S \ SCk, where tk is the starting time of episode k.

In order to avoid optimistic exploration attempts to unreachable states, we could simply execute
UCRL on SCk, which is guaranteed to contain only states in the communicating set (since s1 ∈ SC by
Asm. 1, we have that SCk ⊆ SC). Nonetheless, this algorithm could under-explore state-action pairs
that would allow discovering other states in SC, thus getting stuck in a subset of the communicating
states of the MDP and suffering linear regret. While the states in SCk are guaranteed to be in the
communicating subset, it is not possible to know whether states in STk are actually reachable from
SCk or not. Then TUCRL first “guesses” a lower bound on the probability of transition from states
s ∈ SCk to s′ ∈ STk and whenever the maximum transition probability from s to s′ compatible with the
confidence intervals (i.e., p̂k(s′|s, a)+βsas

′

p,k ) is below the lower bound, it assumes that such transition
is not possible. This strategy is based on the intuition that a transition either does not exist or it should
have a sufficiently “big” mass. However, these transitions should be periodically reconsidered in
order to avoid under-exploration issues. More formally, let (ρt)t∈N be a non-increasing sequence
to be defined later, for all s′ ∈ STk, s ∈ SCk and a ∈ As, the empirical mean p̂k(s′|s, a) and variance
σ̂2
p,k(s′|s, a) are zero (i.e., this transition has never been observed so far), so the largest probability
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Input: Confidence δ ∈]0, 1[, rmax, S, A
Initialization: Set N0(s, a) := 0 for any (s, a) ∈ S ×A, t := 1 and observe s1.
For episodes k = 1, 2, ... do
1. Set tk = t and episode counters νk(s, a) = 0

2. Compute estimates p̂k(s′|s, a), r̂k(s, a) and a setMk

3. Compute an rmax/
√
tk-approximation π̃k of Eq. 5

4. While tk == t or
(∑

a∈Ast
Nk(st, a) > 0 and νk(st, π̃k(st)) ≤ max {1, Nk (st, π̃k(st))}

)
do

(a) Execute at = π̃k(st), obtain reward rt, and observe st+1

(b) Set νk(st, at) += 1 and set t += 1

5. Set Nk+1(s, a) = Nk(s, a) + νk(s, a)

Figure 2: TUCRL algorithm.

(most optimistic) of transition from s to s′ through any action a is p̃+
k (s′|s, a) = 49

3
bk,δ

N±k (s,a)
. TUCRL

compares p̃+
k (s′|s, a) to ρtk and forces all transition probabilities below the threshold to zero, while

the confidence intervals of transitions to states that have already been explored (i.e., in SCk) are
preserved unchanged. This corresponds to constructing the alternative confidence interval

Bp,k(s, a) = Bp,k(s, a) ∩
{
p̃(·|s, a) ∈ C : ∀s′ ∈ STk and p̃+

k (s′|s, a) < ρtk , p̃(s
′|s, a) = 0

}
. (4)

Given Bp,k, TUCRL (implicitly) constructs the corresponding set of plausible MDPsMk and then
solves the optimistic optimization problem

(M̃k, π̃k) = arg max
M∈Mk,π

{gπM}. (5)

The resulting algorithm follows the same structure as UCRL and it is shown in Fig. 2. The episode
stopping condition at line 4 is slightly modified w.r.t. UCRL. In fact, it guarantees that one action is
always executed and it forces an episode to terminate as soon as a state previously in STk is visited
(i.e., Nk(st, a) = 0). This minor change guarantees that Nk+1(s, a) = 0 for all the states s ∈ STk that
were not reachable at the beginning of the episode. The algorithm also needs minor modifications
to the extended value iteration (EVI) algorithm used to solve (5) to guarantee both efficiency and
convergence. All technical details are reported in App. C.

In practice, we set ρt =
49bt,δ

3

√
SA
t , so that the condition to remove transition reduces toN±k (s, a) >√

tk/SA. This shows that only transitions from state-action pairs that have been poorly visited so
far are enabled, while if the state-action pair has already been tried often and yet no transition to
s′ ∈ STk is observed, then it is assumed that s′ is not reachable from s, a. When the number of visits
in (s, a) is big, the transitions to “unvisited” states should be discarded because if the transition
actually exists, it is most likely extremely small and so it is worth exploring other parts of the MDP
first. Symmetrically, when the number of visits in (s, a) is small, the transitions to “unvisited” states
should be enabled because the transitions are quite plausible and the algorithm should try to explore
the outcome of taking action a in s and possibly reach states in STk. We denote the set of state-action
pairs that are not sufficiently explored by Kk =

{
(s, a) ∈ SCk ×A : N±k (s, a) ≤

√
tk/SA

}
.

3.1 Analysis of TUCRL

We prove that the regret of TUCRL is bounded as follows.
Theorem 1. For any weakly communicating MDP M , with probability at least 1− δ it holds that for
any T > 1, the regret of TUCRL is bounded as

∆(TUCRL, T ) = O

(
rmaxD

C

√
ΓCSCAT ln

(
SAT

δ

)
+ rmax

(
DC
)2

S3A ln2

(
SAT

δ

))
.

The first term in the regret shows the ability of TUCRL to adapt to the communicating part of the
true MDP M∗ by scaling with the communicating diameter DC and MDP parameters SC and ΓC. The
second term corresponds to the regret incurred in the early stage where the regret grows linearly.
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When M∗ is communicating, we match the square-root term of UCRL (first term), while the second
term is bigger than the one appearing in UCRL by a multiplicative factor DCS (ignoring logarithmic
terms, see Sec. 5).

We now provide a sketch of the proof of Thm. 1 (the full proof is reported in App. D). In order to
preserve readability, all following inequalities should be interpreted up to minor approximations and
in high probability.

Let ∆k :=
∑
s,a νk(s, a)(g∗ − r(s, a)) be the regret incurred in episode k, where νk(s, a) is the

number of visits to s, a in episode k. We decompose the regret as

∆(TUCRL, T ) .
m∑

k=1

∆k · 1{M∗ ∈Mk} .
m∑

k=1

∆k · 1{tk < C(k)}+

m∑

k=1

∆k · 1{tk ≥ C(k)}

where C(k) = O
(
(DC)2S3A ln2(2SAtk/δ)

)
defines the length of a full exploratory phase, where the

agent may suffer linear regret.

Optimism. The first technical difficulty is that whenever some transitions are disabled, the plausible
set of MDPsMk may actually be biased and not contain the true MDP M∗. This requires to prove
that TUCRL (i.e., the gain of the solution returned by EVI) is always optimistic despite “wrong”
confidence intervals. The following lemma helps to identify the possible scenarios that TUCRL can
produce (see App. D.2).4

Lemma 1. Let episode k be such that M∗ ∈ Mk, STk 6= ∅ and tk ≥ C(k). Then, either STk = ST
(case I) or Kk 6= ∅, i.e., ∃(s, a) ∈ SCk ×A for which transitions to STk are allowed (case II).

This result basically excludes the case where STk ⊃ ST (i.e., some states have not been reached) and
yet no transition from SCk to them is enabled. We start noticing that when STk = ∅, the true MDP
M∗ ∈ Mk = Mk w.h.p. by construction of the confidence intervals. Similarly, if STk = ST then
M∗ ∈Mk w.h.p., since TUCRL only truncates transitions that are indeed forbidden in M∗ itself. In
both cases, we can use the same arguments in [2] to prove optimism. In case II the gain of any state
s′ ∈ STk is set to rmax and, since there exists a path from SCk to STk, the gain of the solution returned
by EVI is rmax, which makes it trivially optimistic. As a result we can conclude that g̃k & g∗ (up to
the precision of EVI).

Per-episode regret. After bounding the optimistic reward r̃k(s, a) w.r.t. r(s, a), the only part left to
bound the per-episode regret ∆k is the term ∆̃k =

∑
s,a νk(s, a)(g̃k − r̃k(s, a)). Similar to UCRL,

we could use the (optimistic) optimality equation and rewrite ∆̃k as

∆̃k =
∑

s∈S
νk(s, π̃k(s))

(∑

s′∈S
p̃k(s′|s, π̃k(s))h̃k(s′)− h̃k(s)

)
= ν′k

(
P̃k − I

)
wk (6)

where wk := h̃k −mins∈S{h̃k}e is a shifted version of the vector h̃k returned by EVI at episode
k, and then proceed by bounding the difference between P̃k and Pk using standard concentration
inequalities. Nonetheless, we would be left with the problem of bounding the `∞ norm of wk
(i.e., the range of the optimistic vector h̃k) over the whole state space, i.e., ‖wk‖∞ = spS{h̃k} =

maxs∈S h̃k(s)−mins∈S h̃k(s). While in communicating MDPs, it is possible to bound this quantity
by the diameter of the MDP as spS {hk} ≤ D [2, Sec. 4.3], in weakly-communicating MDPs
D = +∞, thus making this result uninformative. As a result, we need to restrict our attention to the
subset of communicating states SC, where the diameter is finite. We then split the per-step regret
over states depending on whether they are explored enough or not as ∆k .

∑
s,a νk(s, a)(g̃k −

r̃k(s, a))1{(s, a) /∈ Kk} + rmax

∑
s,a νk(s, a)1{(s, a) ∈ Kk}. We start focusing on the poorly

visited state-action pairs, i.e., (s, a) ∈ Kk. In this case TUCRL may suffer the maximum per-step
regret rmax but the number of times this event happen is cumulatively “small” (App. D.4.1):
Lemma 2. For any T ≥ 1 and any sequence of states and actions {s1, a1, . . . . . . sT , aT } we have:
m∑

k=1

∑

s,a

νk(s, a)1{N±k (s, a) ≤
√
tk/SA︸ ︷︷ ︸

(s,a)∈Kk

} ≤
T∑

t=1

1

{
N±kt(st, at) ≤

√
t/SA

}
≤ 2

(√
SCAT + SCA

)

4Notice that M∗ ∈Mk is true w.h.p. sinceMk is obtained using non-truncated confidence intervals.
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Figure 3: Cumulative regret in the taxi with misspecified states (left-top) and in the communicating
taxi (left-bottom), and in the weakly communicating three-states domain with D = +∞ (right).
Confidence intervals βr,k and βp,k are shrunk by a factor 0.05 and 0.01 for the three-states domain
and taxi, respectively. Results are averaged over 20 runs and 95% confidence intervals are reported.

When (s, a) /∈ Kk (i.e., N±k (s, a) >
√
tk/SA holds),

∑
s,a νk(s, a)(g̃k − r̃k(s, a)) · 1{(s, a) /∈ Kk}

can be bounded as in Eq. 6 but now restricted on SCk, so that,

νk(P̃k − I)h̃k =
∑

s∈SC
k

νk(s, π̃k(s))

( ∑

s′∈SC
k

p̃k(s′|s, π̃k(s))wk(s′)− wk(s)

)
.

Since the stopping condition guarantees that νk(s, π̃k(s)) = 0 for all s ∈ STk, we can first restrict
the outer summation to states in SC. Furthermore, all state-action pairs (s, a) /∈ Kk are such that
the optimistic transition probability p̃k(s′|s, a) is forced to zero for all s′ ∈ STk, thus reducing the
inner summation. We are then left with providing a bound for the range of wk restricted to the
states in SCk, i.e., spSC

k
{wk} = maxs∈SC

k
{wk}. We recall that EVI run on a set of plausible MDPs

Mk returns a function h̃k such that h̃k(s′) − h̃k(s) ≤ rmax · τMk
(s → s′), for any pair s, s′ ∈ S,

where τMk
(s → s′) is the expected shortest path in the extended MDPMk. Furthermore, since

M∗ ∈Mk, for all s, s′ ∈ SCk, τMk
(s→ s′) ≤ DC. Unfortunately, since M∗ may not belong toMk,

the bound on the shortest path inMk (i.e., τMk
(s → s′)) may not directly translate into a bound

for the shortest path inMk, thus preventing from bounding the range of h̃k even on the subset of
states in SCk. Nonetheless, in App. E we show that a minor modification to the confidence intervals of
Mk makes the shortest paths between any two states s, s′ ∈ SCk equivalent in both sets of plausible
MDPs, thus providing the bound spSC

k
{wk} ≤ DC. 5 The final regret in Thm. 1 is then obtained by

combining all different terms.

4 Experiments
In this section, we present experiments to validate the theoretical findings of Sec. 3. We compare
TUCRL against UCRL and SCAL.6 We first consider the taxi problem [24] implemented in OpenAI
Gym [25].7 Even such a simple domain contains misspecified states, since the state space is con-
structed as the outer product of the taxi position, the passenger position and the destination. This
leads to states that cannot be reached from any possible starting configuration (all the starting states
belong to SC). More precisely, out of 500 states in S, 100 are non-reachable. On Fig. 3(left) we
compare the regret of UCRL, SCAL and TUCRL when the misspecified states are present (top)

5Note that there is not a single way to modify the confidence intervals ofMk to keep spSC
k
{wk} under

control. In App. F we present an alternative modifications for which the shortest paths between any two states
s, s′ ∈ SCk is not equal but smaller than inMk thus ensuring that spSC

k
{wk} ≤ DC.

6To the best of out knowledge, there exists no implementable algorithm to solve the optimization step of
REGAL and REGAL.D.

7The code is available on GitHub.
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Figure 4: 4a Expected regret of UCRL (with known horizon T given as input) as a function of T .
4b 4c Toy example illustrating the difficulty of learning non-communicating MDPs. We represent a
family of possible MDPsM = (Mε)ε∈[0,1] where the probability ε to go from x to y lies in [0, 1].

and when they are removed (bottom). In the presence of misspecified states (top), the regret of
UCRL clearly grows linearly with T while TUCRL is able to learn as expected. On the other hand,
when the MDP is communicating (bottom) TUCRL performs similarly to UCRL. The small loss in
performance is most likely due to the initial exploration phase during which the confidence intervals
on the transition probabilities used by UCRL (see definition ofMk) are tighter than those used by
TUCRL (see definition ofM+

k ). TUCRL uses a “loose” bound on the `1-norm while UCRL uses S
different bounds, one for every possible next state. Finally, SCAL outperforms TUCRL by exploiting
prior knowledge on the bias span.

We further study TUCRL regret in the simple three-state domain introduced in [6] (see App. H
for details) with different reward distributions (uniform instead of Bernouilli). The environment is
composed of only three states (s0, s1 and s2) and one action per state, except in s2 where two actions
are available. As a result, the agent only has the choice between two possible policies. Fig. 3(left)
shows the cumulative regret achieved by TUCRL and SCAL (with different upper-bounds on the
bias span) when the diameter is infinite i.e., SC = {s0, s2} and ST = {s1} (we omit UCRL, since
it suffers linear regret). Both SCAL and TUCRL quickly achieve sub-linear regret as predicted by
theory. However, SCAL and TUCRL seem to achieve different growth rates in regret: while SCAL
appears to reach a logarithmic growth, the regret of TUCRL seems to grow as

√
T with periodic

“jumps” that are increasingly distant (in time) from each other. This can be explained by the way the
algorithm works: while most of the time TUCRL is optimistic on the restricted state space SC (i.e.,
SCk = SC), it periodically allows transitions to the set ST (i.e., SCk = S), which is indeed not reachable.
Enabling these transitions triggers aggressive exploration during an entire episode. The policy played
is then sub-optimal creating a “jump” in the regret. At the end of this exploratory episode, SCk will be
set again to SC and the regret will stop increasing until the condition N±k ≤

√
tk/SA occurs again

(the time between two consecutive exploratory episodes grows quadratically). The cumulative regret
incurred during exploratory episodes can be bounded by the term plotted in green on Fig. 3(left). In
Lem. 2 we proved that this term is always bounded by O(

√
SCAT ). Therefore, it is not surprising

to observe a
√
T increase of both the green and red curves. Unfortunately, the growth rate of the

regret will keep increasing as
√
T and will never become logarithmic unlike SCAL (or UCRL when

the MDP is communicating). This is because the condition N±k ≤
√
tk/SA will always be triggered

Θ(
√
T ) times for any T . In Sec. 5 we show that this is not just a drawback specific to TUCRL, but it

is rather an intrinsic limitation of learning in weakly-communicating MDPs.

5 Exploration-exploitation dilemma with infinite diameter

In this section we further investigate the empirical difference between SCAL and TUCRL and prove
an impossibility result characterising the exploration-exploitation dilemma when the diameter is
allowed to be infinite and no prior knowledge on the optimal bias span is available.
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We first recall that the expected regretE[∆(UCRL,M, T )] of UCRL (with input parameter δ = 1/3T )
after T ≥ 1 time steps and for any finite MDP M can be bounded in several ways:

E[∆(UCRL,M, T )] ≤





rmaxT (by definition)
C1 · rmaxD

√
ΓSAT ln(3T 2) + 1

3 [2, Theorem 2]
C2 · rmax

D2ΓSA
γ ln(T ) + C3(M) [2, Theorem 4]

(7)

where γ = g∗M −maxs,π{gπM (s) : gπM (s) < g∗M} is the gap in gain, C1 := 34 and C2 := 342 are
numerical constants independent of M , and C3(M) := O(maxπ:π(s)=a Tπ) with Tπ a measure of
the “mixing time” of policy π. The three different bounds lead to three different growth rates for the
function T 7−→ E[∆(UCRL,M, T )] (see Fig. 4a): 1) for T †M ≥ T ≥ 0, the expected regret is linear
in T , 2) for T ∗M ≥ T ≥ T †M the expected regret grows as

√
T , 3) finally for T ≥ T ∗M , the increase in

regret is only logarithmic in T . These different “regimes” can be observed empirically (see [6, Fig.
5, 12]). Using (7), it is easy to show that the time it takes for UCRL to achieve sub-linear regret is
at most T †M = Õ(D2ΓSA). We say that an algorithm is efficient when it achieves sublinear regret
after a number of steps that is polynomial in the parameters of the MDP (i.e., UCRL is then efficient).
We now show with an example that without prior knowledge, any efficient learning algorithm must
satisfy T ∗M = +∞ when M has infinite diameter (i.e., it cannot achieve logarithmic regret).
Example 1. We consider a family of weakly-communicating MDPsM = (Mε)ε∈[0,1] represented
on Fig. 4(right). Every MDP instance inM is characterised by a specific value of ε ∈ [0, 1] which
corresponds to the probability to go from x to y. For ε > 0 (Fig. 4b), the optimal policy of Mε is
such that π∗(x) = b and the optimal gain is g∗ε = 1 while for ε = 0 (Fig. 4c) the optimal policy is
such that π∗(x) = d and the optimal gain is g∗0 = 1/2. We assume that the learning agent knows
that the true MDP M∗ belongs toM but does not know the value ε∗ associated to M∗ = Mε∗ . We
assume that all rewards are deterministic and that the agent starts in state x (coloured in grey).
Lemma 3. Let C1, C2, α, β > 0 be positive real numbers and f a function defined for all ε ∈]0, 1]
by f(ε) = C1(1/ε)α. There exists no learning algorithm AT (with known horizon T ) satisfying both
1. for all ε ∈]0, 1], there exists T †ε ≤ f(ε) such that E[∆(AT ,Mε, x, T )] < 1/6 · T for all T ≥ T †ε ,
2. and there exists T ∗0 < +∞ such that E[∆(AT ,M0, x, T )] ≤ C2(ln(T ))β for all T ≥ T ∗0 .

Note that point 1 in Lem. 3 formalizes the concept of “efficient learnability” introduced by Sutton
and Barto [26, Section 11.6] i.e., “learnable within a polynomial rather than exponential number of
time steps”. All the MDPs inM share the same number of states S = 2 ≥ Γ, number of actions
A = 2, and gap in average reward γ = 1/2. As a result, any function of S, Γ, A and γ will be
considered as constant. For ε > 0, the diameter coincides with the optimal bias span of the MDP and
D = spS {h∗} = 1/ε < +∞, while for ε = 0, D = +∞ but spS {h∗} = 1/2. As shown in Eq. 7
and Thm. 1, UCRL and TUCRL satisfy property 1. of Lem. 3 with α = 2 and C1 = O(S2A) but do
not satisfy 2. On the other hand, SCAL satisfies 2. with β = 1 and C2 = O(H2SA/γ) (although this
result is not available in the literature, it is straightforward to adapt the proof of UCRL [2, Theorem
4] to SCAL) but since [6, Theorem 12] holds only when H ≥ spS {h∗}, SCAL only satisfies 1. for
ε ≥ 1/H and ε = 0 (not for ε ∈]0, 1/H[). Lem. 3 proves that no algorithm can actually achieve both
1. and 2. As a result, since TUCRL satisfies 1., it cannot satisfy 2. This matches the empirical results
presented in Sec. 4 where we observed that when the diameter is infinite, the growth rates of the regret
of SCAL and TUCRL were respectively logarithmic and of order Θ(

√
T ). An algorithm that does not

satisfy 1. could potentially satisfy 2. but, by definition of 1., it would suffer linear regret for a number
of steps that is more than polynomial in the parameters of the MDP (more precisely, eD

1/β

). This is
not a very desirable property and we claim that an efficient learning algorithm should always prefer
finite time guarantees (1.) over asymptotic guarantees (2.) when they cannot be accommodated.

6 Conclusion
We introduced TUCRL, an algorithm that efficiently balances exploration and exploitation in weakly-
communicating and multi-chain MDPs, when the starting state s1 belongs to a communicating set
(Asm. 1). We showed that TUCRL achieves a square-root regret bound and that, in the general case,
it is not possible to design algorithm with logarithmic regret and polynomial dependence on the MDP
parameters. Several questions remain open: 1) relaxing Asm. 1 by considering a transient initial state
(i.e., s1 ∈ ST), 2) refining the lower bound of Jaksch et al. [2] to finally understand whether it is
possible to scale with spS {h∗} (at least in communicating MDPs) instead of D without any prior
knowledge (the flaw in REGAL.D may suggest it is indeed impossible).
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A Mistake in the regret bound of REGAL.D

A.1 Regularized optimistic RL (REGAL)

In weakly communicating MDPs, to avoid the over-optimism of UCRL, Bartlett and Tewari [3]
proposed to penalise the optimism on g∗ by the optimal bias span spS {h∗}. Formally, at each
episode k, their algorithm –REGAL– solves the following optimization problem:

M̃k = arg max
M∈Mk

{g∗M − Ck · spS {h∗M}} (8)

where Ck ≥ 0 is a regularisation coefficient. Note that such optimization requires to first compute
the optimal policy for a given MDP M ∈Mk and then evaluate the regularized gain. Implicitly, this
defines the optimistic policy π̃k = arg maxπ∈ΠSD{gπ

M̃k
}. The term spS {h∗} can be interpreted as a

measure of the complexity of the environment: the bigger spS {h∗}, the more difficult it is to achieve
the stationary reward g∗ by following the optimal policy. In supervised learning, regularisation is
often used to penalise the objective function by a measure of the complexity of the model so as to
avoid overfitting. It is thus reasonable to expect that over-optimism in online RL can also be avoided
through regularisation.

The regret bound of REGAL holds only when Ck is set to Θ(1/
∑
s,a νk(s, a)). This means that

REGAL requires the knowledge of (future) visit counts νk(s, a) before episode k begins in order to
tune the regularisation coefficient Ck. Unfortunately, an episode stops when the number of visits in a
state-action pair (s, a) ∈ S ×A has doubled and it is not possible to predict the future sequence of
states of a given policy for two reasons: 1) the true MDP M∗ is unknown and 2) what is observed
is a random sampled trajectory (as opposed to expected). As a result, REGAL is not implementable.
Bartlett and Tewari [3] proposed an alternative algorithm –REGAL.D– that leverages on the doubling
trick to guess the length of episode k (i.e.,

∑
s,a νk(s, a)) and proved a slightly worse regret bound

than for REGAL. REGAL.D divides an episode k into sub-iterations where it applies the doubling trick
techniques. At each sub-iteration j, REGAL.D guesses that the length of the episode will be at most
2j and it solves problem (8) with Ck,j ∝ 1/

√
2j . Then, it executes the optimistic policy π̃k,j on the

true MDP until the UCRL stopping condition is reached or 2j steps are performed. In the first case
the episode k ends since the guess was correct, while, in the second case, a new sub-iteration j + 1 is
started. This implies that for any k, j:

∑

s,a

νk,j(s, a) ≤ 2j , (9)

where νk,j(s, a) denotes the number of visits to (s, a) during episode k and sub-iteration j.

A.2 The doubling trick issue

The mistake in REGAL.D is located in the proof of the regret [3, Theorem 3] (see Sec. 6.3). Let h̃k,j
denote the optimistic bias span at episode k and sub-iteration j induced by the doubling trick. At a
high level, the mistake comes from the attempt to upper-bound the term x ·∑s,a νk,j(s, a) by x · 2j
(for a given x) using the fact the

∑
s,a νk,j(s, a) ≤ 2j . Unfortunately, this is possible only under the

assumption that x ≥ 0 that does not hold in the case of REGAL.D.

Formally, while bounding
∑
k∈G ∆k, the authors have to deal with the term (derived by the combina-

tion of [3, Eq. 15] and [3, Lem. 11] with [3, Eq. 14]):

U :=
∑

k∈G

∑

j

spS
{
h̃k,j

}

c
√∑

s,a

νk,j(s, a)− Ck,j
∑

s,a

νk,j(s, a)




where c := 2S
√

12 ln(2AT/δ) +
√

2 ln(1/δ) ≥ 0 and recall that
∑
s,a νk,j(s, a) denotes the actual

length of the episode k at sub-iteration j. In the REGAL.D proof the authors directly replaced the actual
length of the episode with the guessed length 2j := `k,j showing that the first term can be upper-

bounded by c ·
√∑

s,a νk,j(s, a) ≤ c ·
√

2j (due to Eq. 9). Concerning the second term, they write

−Ck,j
∑
s,a νk,j(s, a)≤− Ck,j2j . Since −Ck,j := −c/

√
2j ≤ 0 is negative, this last inequality is
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not true and the reverse inequality holds instead (using Eq. 9): −Ck,j
∑
s,a νk,j(s, a)≥ − Ck,j2j .

Therefore, it is not possible to guarantee that U ≤ 0 as claimed by Bartlett and Tewari [3] (the
authors probably didn’t pay attention to the sign). To do this, we would need to lower-bound∑
s,a νk,j(s, a). Unfortunately, the only lower bound with probability 1 available for that term is

mins,a{Nk(s, a)}+ 2. This is not big enough to cancel the term c
√∑

s,a νk,j(s, a) and Ck,j needs

to be increased. As a result, the term spS {h?}
∑
k∈G

∑
j Ck,j

√∑
s,a νk,j(s, a) becomes too big

and all the proof collapses.

Notice that a similar mistake is contained in the work by Maillard et al. [27] where they use a
regularized approach to learn a state representation in online settings. Similarly to [3], the authors
have to bound the term

∑
s,a νk,j(s, a)(g∗ − g̃k,j). By exploiting the fact that g∗ − g̃k,j ≤ α (we

omit the full expression of α for sake of clarity) [27, Eq. 17 Sec. 5.2] the authors derived the bound∑
s,a νk,j(s, a)(g∗− g̃k,j) ≤ 2j ·α [27, Eq. 18]. The difference g∗− g̃k,j might be negative in which

case the result does not hold. Actually for the case in which there is no regularization Ck,j = 0,
g∗ ≤ g̃k,j which is what is used in the regret proof of UCRL. Therefore, it is very likely that the sign
of g∗ − g̃k,j can sometimes be negative.

In conclusion, it seems unavoidable to use a lower-bound (and not an upper-bound) on
∑
s,a νk,j(s, a)

to derive a correct regret bound for REGAL.D. As already mentioned, given the current stopping
condition of an episode, the only reasonable lower bound is mins,a{Nk(s, a)}+ 2 and it does not
seem sufficient to derive a sensible regret bound. Another research direction could be to change the
stopping condition. However, one of the terms in the regret bound of REGAL (and of REGAL.D) scales
as m
√
T log2(T ) where m is the number of episodes. The term m is highly sensitive to the stopping

condition and there is very little margin if we want to avoid m
√
T log2(T ) to become the leading

term in the regret bound. All the efforts we put in this direction were unsuccessful. We conjecture
that regularising by the optimal bias span might not allow to learn MDPs with infinite diameter.

B Unbounded optimal bias span with continuous Bayesian priors/posteriors

Recently, Ouyang et al. [18] and Theocharous et al. [19] proposed posterior sampling algorithms and
proved bounds on the expected Bayesian regret. The regret bounds that they derive scale linearly with
H , whereH is the highest optimal bias span of all the MDPs that can be drawn from the prior/posterior
distribution. Formally, let f(θ) be the density function of the prior/posterior distribution over the
family of MDPs (Mθ) parametrised by θ. Then:

H := sup
θ:f(θ)>0

{spS {h∗θ}}.

In this section we present an example where H is infinite and argue that it is probably the case for
most priors/posteriors used in practice.
Example 2 (Unbounded optimal bias span with continuous prior/posterior). Consider the example of
Fig. 5. There is only one action in every state and so one optimal policy. The (unique) action that can
be played in state s0 loops on s0 with probability 1− θ and goes to s1 with probability θ. The reward
associated to this action is 0. Symmetrically, the (unique) action that can be played in state s1 loops
on s1 with probability 1− θ and goes to s1 with probability θ. The reward associated to this action is
1. This MDP is characterised by the parameter θ and we denote it by Mθ. For any θ ∈ [0, 1], we
denote by g∗θ (resp. h∗θ) the optimal gain (resp. bias) of Mθ. Observe that when θ > 0, Mθ is ergodic

x y

r = 0

r = 1

θ

1− θ

θ

1− θ
Figure 5: Toy example of a parametrised MDP Mθ with a single policy (one action per state).
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and therefore the optimal gain g∗θ = 1/2 is state-independent whereas when θ = 0, Mθ is multichain
and the optimal gain does depend on the initial state: g∗0(x) = 0 < 1 = g∗0(y).

Let’s assume that the prior/posterior distribution we use on Mθ is characterised by a probability
density function f satisfying f(θ) > 0 for all θ > 0 and f(0) = 0. Note that this assumption does
not constrain the “smoothness” of f e.g., f can have continuous derivatives of all orders. Under this
assumption, f is non-zero only for ergodic MDPs. It goes without saying that for all θ ∈ [0, 1] (0
included), spS {h∗θ} < +∞ by definition (the optimal bias span is always finite). More precisely we
have:

g∗θ =

{
[1/2, 1/2]T if θ > 0

[0, 1]T if θ = 0
and spS {h∗θ} =

{
1
2θ if θ > 0

0 if θ = 0

As a result, although spS {h∗θ} is always finite, i.e., ∀θ ∈ [0, 1], spS {h∗θ} < +∞, it is unbounded
on the set of plausible MDPs θ ∈]0, 1] satisfying f(θ) > 0, i.e.,

H := sup
θ∈]0,1]

{spS {h∗θ}} = lim
θ→0+

1

2θ
= +∞

Therefore, the regret bound Õ(HS
√
AT ) proved by Ouyang et al. [18], Theocharous et al. [19] does

not hold with prior/posterior f since H = +∞. One might argue that the proofs in [18, 19] could
be fixed by showing that H is bounded with probability 1. Unfortunately, for any C ∈ [0,+∞[,
the probability P(spS {h∗θ} ≥ C) =

∫ 1
2C

θ=0
f(θ)dθ > 0 of sampling an MDP with spS {h∗θ} ≥ C is

strictly positive. We therefore conjecture that for this specific choice of priors/posteriors, the regret
proof in [18, 19] cannot be fixed without major changes and new arguments. More generally, let’s
imagine that we have a prior/posterior distribution f satisfying:

• there exists θ0 such that Mθ0 has non-constant gain i.e., spS
{
g∗θ0
}
> 0,

• there exists an open neighbourhood of θ0 denoted Θ0 such that ∀θ ∈ Θ0, Mθ has constant
gain (e.g., Mθ is weakly-communicating) and f(θ) > 0.

In this case we will face the same problem as in Ex. 2 i.e.,
sup

θ: f(θ)>0

{spS {h∗θ}} = +∞ and ∀C ∈ [0,+∞[, P(spS {h∗θ} ≥ C) > 0

When the set of plausible MDPs is finite, this problem cannot occur. But most priors/posteriors used
in practice are continuous distributions. For instance, a Dirichlet distribution will most likely satisfy
the above assumptions.

C Algorithmic Details

For technical reasons (see App. E), we consider a slight relaxation of the optimization problem (5)
in whichMk is replaced by a relaxed extended MDPM+

k ⊇ Mk defined by using `1-norm con-
centration inequalities for p(·|s, a).8 Let B+

p,k(s, a) = {p̃(·|s, a) ∈ C : ‖p̃(·|s, a) − p̂(·|s, a)‖1 ≤∑
s′ β

sas′

p,k } (resp. B
+

p,k) be the relaxed confidence interval, thenM+
k (resp.M+

k ) is the correspond-
ing (relaxed) set of plausible MDPs. This relaxed optimistic optimization problem is solved by
running extended value iteration (EVI) onM+

k (up to accuracy εk = rmax/
√
tk). Technically, we

restrict EVI to work on the set of states SEVI
k that are optimistically reachable from the communicating

set SCk. In practice, SEVI
k = SCk when Kk = ∅ since all the transitions to STk are forbidden, otherwise

SEVI
k = S . Alg. 1 shows this variation of EVI that we name Truncated EVI. Then, at each episode k,

TUCRL runs TEVI with the following parameters: (g̃k, h̃k, π̃k) = TEVI(0,M+

k ,SEVI
k , εk). Starting

from an initial vector v0 = 0, TEVI iteratively applies (on a subset SEVI
k of states) the optimal

Bellman operator L̃M+
k

associated to the (extended) MDPM+

k defined as

∀v ∈ RS , L̃M+
k
v(s) := max

a∈As

{
max

r̃∈Br,k(s,a)
r̃ + (p̃sa)Tv

}
, (10)

8We recently noticed that is possible to obtain a tighter relaxation that preserves the Bernstein nature of
the confidence intervals (instead of resorting to `1-norm). This version may be more efficient in practical
applications. More details on this are reported in Sec. F.
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Algorithm 1 TRUNCATED EXTENDED VALUE ITERATION (TEVI)

Input: value vector v0, extended MDPM, set of states S , accuracy ε
Output: gn, vn, πn
n := 0
v1(s) := L̃Mv0(s) := maxa∈As

{
maxr̃∈Br(s,a) r̃ + maxp̃∈Bp(s,a) p̃

Tv0

}
, ∀s ∈ S (see App. C)

while maxs∈S {vn+1(s)− vn(s)} −mins∈S {vn+1(s)− vn(s)} > ε do
n := n+ 1
vn+1(s) := L̃Mvn(s), ∀s ∈ S

end while
gn := 1

2

(
maxs∈S {vn+1(s)− vn(s)}+ mins∈S {vn+1(s)− vn(s)}

)

πn(s) ∈ arg maxa∈As
{

maxr̃∈Br(s,a) r̃ + maxp̃∈Bp(s,a) p̃
Tvn

}
, ∀s ∈ S

where p̃sa = arg max
p̃∈B+

p,k(s,a)
{p̃T v} can be solved using [2, Fig. 2], except for (s, a) /∈ Kk

for which we force p̃sa(s′) := 0 for any s′ ∈ STk (see Alg. 2). If TEVI is stopped when
spSEVI

k
{vn+1 − vn} ≤ εk and the true MDP is sufficiently explored, then the greedy policy π̃k := πn

w.r.t. vn is εk-optimistic, i.e., g̃k := gn ≥ g∗M∗ − εk (see Sec. 3.1 for details). The policy π̃k is
then executed until the number of visits to a state-action pair is doubled or a new state is “discov-
ered” (i.e., st ∈ STkt). Note that the condition spSEVI

k
{vn+1 − vn} ≤ εk is always met after a finite

number of steps since the extended MDPM+

k is communicating on the restricted state space SEVI
k .

Finally, notice that when the true MDP M∗ is communicating, there exists an episode k s.t. for all
k ≥ k, STk = ∅ and TUCRL can be reduced to UCRL by consideringMk in place ofM+

k .

D Regret of TUCRL

We follow the proof structure of Jaksch et al. [2], Fruit et al. [6] and use similar notations. Nonetheless,
several parts of the proof significantly differ from [2, 6]:

• in Sec. D.2 we prove that after a finite number of steps, TUCRL is gain-optimistic (which is
not as straightforward as in the case of UCRL),

• in Sec. D.3 we show that the sums taken over the whole state space S that appear in the main
term of the regret decomposition of UCRL can be restricted to sums over SCk thanks to the
new stopping condition used for episodes and the use of the condition N±k (s, a) >

√
tk/SA

(see (18)),
• in Sec. D.4.1, we bound the number of time steps spent in “bad” state-action pairs (s, a)

satisfying N±k (s, a) ≤
√
tk/SA,

• in Sec. D.4.3, we bound the number of episodes with the new stopping condition.

D.1 Splitting into episodes

The regret of TUCRL after T time steps is defined as: ∆(TUCRL, T ) := Tg∗ −∑T
t=1 rt(st, at).

Defining ∆k =
∑
s∈S,a∈A νk(s, a) (g∗ − r(s, a)) and using the same arguments as in [2, 6], it holds

with probability 1− δ
12T 4/5 that:

∆(TUCRL, T ) ≤
m∑

k=1

∆k + rmax

√
5

2
T ln

(
8T

δ

)
(11)

D.2 Episodes with M∗ ∈Mk

We now assume that M∗ ∈ Mk. As done in App. C, let’s denote by g̃k, h̃k and π̃k the outputs of
TEVI(0,M�k,SEVI

k , εk) (see Alg. 1) where εk := rmax/
√
tk and

SEVI
k =

{SCk if Kk = ∅
S otherwise

, M�k =

{
Mk =Mk if STk = ∅
M+

k otherwise
. (12)
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TEVI returns an approximate solution of a slightly modified version of Problem 5:

(M̃k, π̃k) = arg max
M∈M�k,π

{gπM}.

In order to bound ∆k we first show that g̃k & g∗ (up to rmax/
√
tk-accuracy). If STk = ∅ then by

definitionM�k =Mk =Mk 3M∗ and so we can use the same argument as in [2, Sec. 4.3 & Thm.
7]. If STk 6= ∅, the true MDP M∗ might not be “included” in the extended MDPM+

k considered by
EVI and we cannot use the same argument. To overcome this problem we first assume that tk is big
enough which allows us to prove a useful lemma (Lem. 4):

tk ≥
2401

9

(
DC
)2

SA

(
ST
k ln

(
2SAtk
δ

))2

:= C(k) (13)

where ST
k := |STk| is the cardinal of STk.

Lemma 4. Let episode k be such that M∗ ∈Mk, STk 6= ∅ and (13) holds. Then,
(
∀(s, a) ∈ SCk ×A, N±k (s, a) >

√
tk
SA

)
=⇒ STk = ST

Proof. Assume that episode k is such that (13) holds and that for any state-action pair (s, a) ∈ SCk×A

N±k (s, a) >

√
tk
SA
≥ 49

3
DCST

k ln

(
2SAtk
δ

)

Since STk 6= ∅ and M∗ ∈Mk, for any (s, a, s′) ∈ SCk ×A× STk

p(s′|s, a)︸ ︷︷ ︸
transition probability inM∗

≤ p̂k(s′|s, a)︸ ︷︷ ︸
=0

+βsas
′

k =

√
14σ̂2

p,k(s′|s, a) ln(2SAtk/δ)

N+
k (s, a)

︸ ︷︷ ︸
=0

+
49 ln(2SAtk/δ)

3N±k (s, a)

≤ 49 ln (2SAtk/δ)

3N±k (s, a)
<

1

DCST
k

where we have exploited the fact that p̂(s′|s, a) = 0 and σ̂2
p,k(s′|s, a) = 0 for any state s′ ∈ STk

(remember that Nk(s, a, s′) = 0).

We denote by τM∗(s → s′) the shortest path between any pair of states (s, s′) ∈ S × S in the
true MDP M∗. Fix an arbitrary target state s ∈ STk and denote by τ(s) := τM∗(s → s) and
τmin := mins∈SC

k
{τ(s)}. We have

τ(s) = 0

∀s ∈ SCk τ(s) = 1 + min
a∈As




∑

s′∈S
p(s′|s, a)τ(s′)︸ ︷︷ ︸

≥0




≥ 1 + min

a∈As




∑

s′∈SC
k

p(s′|s, a) τ(s′)︸ ︷︷ ︸
≥τmin





≥ 1 + τmin ·min
a∈A




∑

s′∈SC
k

p(s′|s, a)



 = 1 + τmin ·min

a∈A





1−
∑

s′∈ST
k

p(s′|s, a)︸ ︷︷ ︸
< 1
DCST

k





> 1 + τmin


1−

∑

s′∈ST
k

1

DCST
k


 = 1 + τmin

(
1− 1

DC

)

Applying the above inequality to s̃ ∈ SCk achieving τ(s̃) = τmin yields τmin > DC. This implies that
the shortest path in M∗ between any state s ∈ SCk ⊆ SC and any state in s ∈ STk is strictly bigger
than DC but by definition DC is the longest shortest path between any pair of states in SC. Therefore,
s ∈ ST. Since s ∈ STk was chosen arbitrarily, then STk = ST.
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As a consequence of Lem. 4, under the assumptions that M∗ ∈Mk, STk 6= ∅ and (13) holds, there
are only two possible cases:

1. Either STk = ST,

2. or ∃(s, a) ∈ SCk ×A : N±k (s, a) ≤
√

tk
SA .

Case 1: STk = ST implies that M∗ ∈M+

k . This is because for any (s, a, s′) ∈ SCk ×A×STk we have
p(s′|s, a) = p̃k(s′|s, a) = 0 and for any (s, a, s′) /∈ SCk×A×STk we have |p(s′|s, a)− p̂k(s′|s, a)| ≤
βsas

′

p,k and so p(·|s, a) ∈ B+

p,k(s, a). Since M∗ ∈M+

k , we can use the same argument as Jaksch et al.
[2, Sec. 4.3 & Theorem 7] to prove g̃k ≥ g∗ − rmax√

tk
.

Case 2: For any (s, a) ∈ STk × A, B
+

p,k(s, a) = C is the (S − 1)-simplex denoting the maximal
uncertainty about the transition probabilities, and Br,k(s, a) = [0, rmax]. We will now construct
an MDP M ′ ∈ M+

k with optimal gain rmax. For all (s, a) ∈ STk × A, we set the transitions to

pM ′(s|s, a) = 1 and rewards to rM ′(s, a) = rmax. Let (s, a) ∈ SCk×A such that N±k (s, a) ≤
√

tk
SA

(which exists by assumption). We set pM ′(s′|s, a) > 0 for all s′ ∈ STk. This is possible because by
definition ofM+

k , the support of p(·|s, a) is not restricted to SCk. Finally, for all state-action pairs
(s, a) ∈ SCk ×A, we set pM ′(s|s, a) > 0. This is possible because by definition ofM+

k , the support
of p(·|s, a) is only restricted to SCk and s ∈ SCk. In M ′, for all policies, all states in STk are absorbing
states (i.e., loop on themselves with probability 1) with maximal reward rmax and all other states
s ∈ SCk are transient. The optimal gain of M ′ is thus rmax and since M ′ ∈ M+

k we conclude that
g̃k ≥ rmax − rmax√

tk
≥ g∗ − rmax√

tk
.

In conclusion, TEVI is always returning an optimistic policy when the assumptions of Lem. 4 hold.
The regret ∆k accumulated in episode k can thus be upper-bounded as:

∆k =
∑

s,a

νk(s, a)(g∗ − r(s, a)) =
∑

s,a

νk(s, a)( g∗︸︷︷︸
≤g̃k+ rmax√

tk

−r̃k(s, a)) +
∑

s,a

νk(s, a)(r̃k(s, a)− r(s, a))

≤
∑

s,a

νk(s, a)(g̃k − r̃k(s, a))

︸ ︷︷ ︸
:=∆̃k

+
∑

s,a

νk(s, a)(r̃k(s, a)− r(s, a)) + rmax

∑

s,a

νk(s, a)√
tk

To bound the difference between the optimistic reward r̃k and the true reward r we introduce the
estimated reward r̂k:

∀s, a ∈ S ×A, r̃k(s, a)− r(s, a) = r̃k(s, a)− r̂k(s, a)︸ ︷︷ ︸
≤βsar,k by construction

+ r̂k(s, a)− r(s, a)︸ ︷︷ ︸
≤βsar,k since M∈Mk

≤ 2βsar,k

and so in conclusion:

∆k ≤ ∆̃k + 2
∑

s,a

νk(s, a)βsar,k + rmax

∑

s,a

νk(s, a)√
tk

︸ ︷︷ ︸
:=U1

k

(14)

D.3 Bounding ∆̃k

The goal of this section is to bound the term ∆̃k :=
∑
s,a νk(s, a)(g̃k − r̃k(s, a)). We start by

discarding the state-action pairs (s, a) ∈ Kk that have been poorly visited so far:

∆̃k =
∑

s,a

νk(s, a)(g̃k − r̃k(s, a))1{(s, a) /∈ Kk}︸ ︷︷ ︸
:=1k(s,a)

+
∑

s,a

νk(s, a) (g̃k − r̃k(s, a))︸ ︷︷ ︸
≤rmax

1{(s, a) ∈ Kk}

≤
∑

s,a

νk(s, a)(g̃k − r̃k(s, a))1k(s, a)

︸ ︷︷ ︸
:=∆̃′k

+rmax

∑

s,a

νk(s, a)1{(s, a) ∈ Kk} (15)
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We will now bound the term ∆̃′k =
∑
s νk(s, π̃k(s))(g̃k − r̃k(s, π̃k(s)))1k(s, π̃k(s)). We recall that

the policy π̃k is obtained by executing TEVI(0,M�k,SEVI
k , εk) (see Alg. 1) where εk := rmax/

√
tk

and SEVI
k andM�k are defined in (12). In all possible cases for both SEVI

k andM�k, this amounts to
applying value iteration to a communicating MDP with finite state space SEVI

k and compact action
space. By [21, Thm. 8.5.6], since the convergence criterion of value iteration is met we have:

∀s ∈ SEVI
k ,

∣∣∣∣∣h̃k(s) + g̃k − r̃k(s, π̃k(s))−
∑

s′∈S
p̃k(s′|s, π̃k(s))h̃k(s′)

∣∣∣∣∣ ≤
rmax√
tk

(16)

For all s /∈ SCk, νk(s, π̃k(s)) = 0 due to the stopping condition of episode k. Therefore we can
plug (16) in ∆̃′k and derive an upper bound restricted to the set SCk ⊆ SEVI

k . Before to do that, we
further decompose ∆̃′k as:

∆̃′k ≤
∑

s

νk(s, π̃k(s))

(∑

s′∈S
p̃k(s′|s, π̃k(s))h̃k(s′)− h̃k(s) +

rmax√
tk

)
1k(s, π̃k(s))

= ν′k
(
P̃k − I

)
h̃k + rmax

∑

s,a

νk(s, a)√
tk

1k(s, a)

(17)

where ν′k = (νk(s, π̃k(s))1k(s, π̃k(s)))s∈S is the vector of visit counts for each state and the corre-
sponding action chosen by π̃k multiplied by the indicator function 1k, P̃k = (P̃k(s′|s, π̃k(s)))s,s′∈S
is transition matrix associated to π̃k in M+

k and I is the identity matrix. We now focus on the
term ν′k(P̃k − I)h̃k. Since the rows of P̃k sum to 1, ∀λ ∈ R,

(
P̃k − I

)
h̃k =

(
P̃k − I

)(
h̃k + λe

)

where e = (1, . . . 1)ᵀ is the vector of all ones. Let’s take λ := −mins∈SC
k
{h̃k(s)} and define

wk := h̃k + λe so that for all s ∈ SCk, wk(s) ≥ 0 and mins∈SC
k
{wk(s)} = 0. We have:

ν′k(P̃k − I)h̃k =
∑

s∈S
νk(s, π̃k(s))1k(s, π̃k(s))

(∑

s′∈S
p̃k(s′|s, π̃k(s))wk(s′)− wk(s)

)

We denote by kt := sup{k ≥ 1 : tk ≤ t} the current episode at time t. Whenever st ∈ STkt , episode
kt stops before executing any action (see the stopping condition of TUCRL in Fig. 2) implying that
∀s ∈ STk, νk(s, π̃k(s)) = 0. Therefore we have:

ν′k(P̃k − I)h̃k =
∑

s∈SC
k

νk(s, π̃k(s))1k(s, π̃k(s))

(∑

s′∈S
p̃k(s′|s, π̃k(s))wk(s′)− wk(s)

)

For all states s such that 1k(s, π̃k(s)) = 1, i.e., satisfying N±k (s, π̃k(s)) >
√
tk/SA, we force TEVI

to set p̃k(s′|s, π̃k(s)) = 0, ∀s′ ∈ STk, by construction ofM+

k so that:

ν′k(P̃k − I)h̃k =
∑

s∈SC
k

νk(s, π̃k(s))1k(s, π̃k(s))


∑

s′∈SC
k

p̃k(s′|s, π̃k(s))wk(s′)− wk(s)


 (18)

We can now introduce p:
∑

s′∈SC
k

p̃k(s′|s, π̃k(s))wk(s′)− wk(s) =
∑

s′∈SC
k

p̃k(s′|s, π̃k(s))wk(s′)− p(s′|s, π̃k(s))wk(s′) (19)

+


∑

s′∈SC
k

p(s′|s, π̃k(s))wk(s′)− wk(s)


 (20)

By definition SCk ⊆ SC and using (1,∞)-Hölder’s inequality , the term (19) can be bounded as
(19) ≤ ‖p̃k(·|s, π̃k(s))− p(·|s, π̃k(s))‖1,SC · maxs′∈SC

k
{wk(s′)} where for any vector v ∈ RS ,

‖v‖1,SC :=
∑
s∈SC |v(s)|. Define s ∈ arg maxs∈SC

k
{wk(s)} and s̃ ∈ arg mins∈SC

k
{wk(s)}. By

definition s, s̃ ∈ SCk and wk(s̃) = mins∈SC
k
{wk(s)} = 0. By Lem. 7, we know that for all s, s′ ∈ SCk,
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the difference wk(s′)−wk(s) = h̃k(s′)− h̃k(s) is upper bounded by rmax · τM+
k

(s→ s′). We also

know by Lem. 6 that for all s, s′ ∈ SCk, τM+
k

(s → s′) = τM+
k

(s → s′). Since M∗ ∈ M+
k (M∗ is

the true MDP), we also have that for all s, s′ ∈ SCk ⊆ SC, τM+
k

(s → s′) ≤ τM∗(s → s′) ≤ DC.
In conclusion, ∀s, s′ ∈ SCk, wk(s′) − wk(s) ≤ rmaxD

C and in particular maxs′∈SC
k
{wk(s′)} =

wk(s) = wk(s)− wk(s̃) ≤ rmaxD
C. Similarly to what we did to bound |r̃k − r| (14), we bound the

distance in `1-norm between p̃k and p by introducing p̂k:

‖p̃k − p‖1,SC ≤ ‖p̃k − p̂k‖1,SC + ‖p̂k − p‖1,SC ≤ 2

(∑

s′∈SC

β
sπ̃k(s)s′

p,k

)
(21)

We now bound the contribution of the term (20). Jaksch et al. [2] decompose this term into a
martingale difference sequence and a telescopic sum but due to the indicator function 1k, in our case
the sum is not telescopic anymore and an additional term appears.

(20) =
∑

s∈S
νk(s, π̃k(s))1k(s, π̃k(s))



∑

s′∈SC
k

p(s′|s, π̃k(s))wk(s′)︸ ︷︷ ︸
≥0, ∀s′∈SC

k

1{s ∈ SCk} − wk(s)1{s ∈ SCk}




≤
∑

s∈S
νk(s, π̃k(s))1k(s, π̃k(s))


∑

s′∈SC
k

p(s′|s, π̃k(s))wk(s′)− wk(s)1{s ∈ SCk}




=

tk+1−1∑

t=tk


∑

s′∈S1
k

p(s′|st, π̃k(st))wk(s′)− wk(st)1{st ∈ SCk}


1k(st, π̃k(st))

=

tk+1−1∑

t=tk


∑

s′∈S1
k

p(s′|st, π̃k(st))wk(s′)− wk(st+1)1{st+1 ∈ SCk}


1k(st, π̃k(st))

︸ ︷︷ ︸
:=Xt

(22)

+

tk+1−1∑

t=tk

(
wk(st+1)1{st+1 ∈ SCk} − wk(st)1{st ∈ SCk}

)
1k(st, π̃k(st))

︸ ︷︷ ︸
not telescopic due to 1k!

(23)

Define the filtration Ft = σ(s1, a1, r1, . . . , st+1). Since kt is Ft−1-measurable:

E
[
wkt(st+1)1{st+1 ∈ SCkt}1kt(st, π̃kt(st))|Ft−1

]
=
∑

s′∈SC
kt

p(s′|st, π̃kt(st))wkt(s′)1kt(st, π̃kt(st))

︸ ︷︷ ︸
Ft−1−measurable

implying E[Xt|Ft−1] = 0 and so (Xt,Ft)t≥1 is a martingale difference sequence (MDS) with
|Xt| ≤ rmaxD

C. We will bound (22) in the next section (Sec. D.4) using Azuma’s inequality. Using
the fact that 1k(st, π̃k(st)) = 1{(st, π̃k(st)) /∈ Kk} = 1 − 1{(st, π̃k(st)) ∈ Kk} we can make a
telescopic sum appear and rewrite (23) as:

(23) =

tk+1−1∑

t=tk

wk(st+1)1{st+1 ∈ SCk} − wk(st)1{st ∈ SCk}
︸ ︷︷ ︸

=wk(stk+1
)1{stk+1

∈SC
k}−wk(stk )1{stk∈SC

k}≤rmaxDC

(telescopic sum)

+

tk+1−1∑

t=tk

(
wk(st)1{st ∈ SCk} − wk(st+1)1{st+1 ∈ SCk}

)
︸ ︷︷ ︸

≤rmaxDC

1{(st, π̃k(st)) ∈ Kk}

≤ rmaxD
C + rmaxD

C
∑

s,a

νk(s, a)1{(st, π̃k(st)) ∈ Kk} (24)
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By gathering (15), (17), (21), (22) and (24) we obtain the following bound for ∆̃k:

∆̃k ≤ 2rmaxD
C
∑

s,a

∑

s′∈SC

1k(s, a)︸ ︷︷ ︸
≤1

νk(s, a)βsas
′

p,k︸ ︷︷ ︸
≥0

+

tk+1−1∑

t=tk

Xt + rmaxD
C

+ rmax(DC + 1)
∑

s,a

νk(s, a)1{N±k (s, a) ≤
√
tk/SA}+ rmax

∑

s,a

νk(s, a)√
tk︸ ︷︷ ︸
≥0

1k(s, a)︸ ︷︷ ︸
≤1

≤ 2rmaxD
C
∑

s,a

∑

s′∈SC

νk(s, a)βsas
′

p,k + rmax(DC + 1)
∑

s,a

νk(s, a)1{(s, a) ∈ Kk}

+

tk+1−1∑

t=tk

Xt + rmaxD
C + rmax

∑

s,a

νk(s, a)√
tk

:= U2
k

(25)

D.4 Summing over episodes with M∗ ∈Mk and tk ≥ C(k)

Denote by 1(k) := 1{tk ≥ C(k)} · 1{M∗ ∈Mk} the indicator function taking value 1 only when
both M∗ ∈Mk and tk ≥ C(k). By gathering (14) and (25) we obtain:

m∑

k=1

∆k · 1(k) ≤
m∑

k=1

U1
k︸︷︷︸
≥0

·1(k)︸︷︷︸
≤1

+

m∑

k=1

U2
k︸︷︷︸
≥0

·1(k)︸︷︷︸
≤1

≤
m∑

k=1

U1
k + U2

k (26)

and so
m∑

k=1

∆k · 1(k) ≤2

m∑

k=1

∑

s,a

νk(s, a)

(
rmaxD

C
∑

s′∈SC

βsas
′

p,k + βs,ar,k

)
+ 2rmax

m∑

k=1

∑

s,a

νk(s, a)√
tk

(27)

+ rmax(DC + 1)

m∑

k=1

∑

s,a

νk(s, a)1{(s, a) ∈ Kk}+

T∑

t=1

Xt1(kt) + rmaxmD
C

We will now upper-bound the terms appearing in (27). The main novelty of (27) compared to UCRL
is the term

∑m
k=1

∑
s,a νk(s, a)1{(s, a) ∈ Kk} which is not present in the proof of Jaksch et al. [2].

We will show in the next section that this term is bounded by O(
√
SCAT ). All the other terms are

similar to those found in UCRL.

D.4.1 Poorly visited state-action pairs

We first notice that by definition tkt ≤ t where kt := sup{k ≥ 1 : tk ≤ t} is the current episode at
time t. As a result,

1 {(s, a) ∈ Kkt} := 1

{
N±kt(st, at) ≤

√
tkt/SA

}
≤ 1

{
N±kt(st, at) ≤

√
t/SA

}

Instead of directly bounding
∑m
k=1

∑
s,a νk(s, a)1{(s, a) ∈ Kk} we will bound the number of visits

ZT in state-action pairs that have been visited less than
√
t/SA times

ZT :=

T∑

t=1

1

{
N±kt(st, at) ≤

√
t/SA

}
≥

m∑

k=1

∑

s,a

νk(s, a)1 {(s, a) ∈ Kk}

Note that the quantity Nk(s, a) is updated only after the end of episode k and the stopping condition
of episodes used by TUCRL implies that (see Fig. 2):

∀k ≥ 1, ∀(s, a) ∈ S ×A, νk(s, a) ≤ N+
k (s, a) (28)

Moreover, for all (s, a) /∈ SC × A, νk(s, a) = 0 implying that only the states s ∈ SC should be
considered in the above sums. Using (28), we prove the following lemma:
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Lemma 5. For any T ≥ 1 and any sequence of states and actions {s1, a1, . . . . . . sT , aT } we have:

ZT ≤ 2
√
SCAT + 2SCA.

Proof. For any episode k starting at time tk, and for any state-action pair (s, a) we recall thatNk(s, a)
denotes the number of visits in (s, a) prior to episode k (k not included) and by νk(s, a) the number
of visits in (s, a) during episode k:

Nk(s, a) :=

tk−1∑

t=1

1{(st, at) = (s, a)} and νk(s, a) :=

tk+1−1∑

t=tk

1{(st, at) = (s, a)}

and so k(s, a) =
∑k−1
i=1 νi(s, a). By convention, we denote by NkT+1(s, a) :=

∑T
t=1 1{(st, at) =

(s, a)} the total number of visits in (s, a) after T time steps (T included). We first decompose ZT as:

ZT :=
∑

s,a

T∑

t=1

1

{
max{1, Nkt(s, a)− 1} ≤

√
t/SA

}
· 1
{

(st, at) = (s, a)
}

=
∑

s∈SC

∑

a

ZT (s, a)

where ZT (s, a) :=

T∑

t=1

1

{
max{1, Nkt(s, a)− 1} ≤

√
t/SA

}
· 1
{

(st, at) = (s, a)
}

Using the fact that for all t ≥ 1, tkt ≤ t ≤ tkt+1 − 1 we have:

∀T ≥ τ ≥ 1, Zτ (s, a) =

τ∑

t=1

1

{
max{1, Nkt(s, a)− 1} ≤

√
t/SA

}

︸ ︷︷ ︸
≤1

·1{(st, at) = (s, a)}︸ ︷︷ ︸
≥0

≤
τ∑

t=1

1{(st, at) = (s, a)} ≤
tkτ+1−1∑

t=1

1{(st, at) = (s, a)}

= Nkτ+1(s, a) (29)
Let’s define ts,a as the last time that Zt(s, a) was incremented by 1:

ts,a := max
{
T ≥ t ≥ 1 : max{1, Nkt(s, a)− 1} ≤

√
t/SA and (st, at) = (s, a)

}

= min
{
T ≥ t ≥ 1 : Zt(s, a) = ZT (s, a)

}

We denote by ms,a := kts,a the corresponding episode. By definition,

ZT (s, a) = Zts,a(s, a) (30)
and

max{1, Nms,a(s, a)− 1} ≤
√
ts,a/SA (31)

Using (29) with τ = ts,a we obtain:
Zts,a ≤ Nms,a+1(s, a) (32)

Moreover, by definition of Nk(s, a) and (28):
Nms,a+1(s, a) = Nms,a(s, a) + νms,a(s, a)︸ ︷︷ ︸

≤N+
ms,a (s,a)

≤ 2 max{1, Nms,a(s, a)}︸ ︷︷ ︸
≤max{1,Nms,a (s,a)−1}+1

=⇒ Nms,a+1(s, a) ≤ 2 ·max{1, Nms,a(s, a)− 1}+ 2 (33)
Gathering (30), (31), (32), and (33) we obtain:
ZT (s, a) = Zts,a(s, a) ≤ max{1, Nms,a+1(s, a)− 1}+ 1 ≤ 2 ·max{1, Nms,a(s, a)− 1}+ 2

≤ 2
√
ts,a/SA + 2

≤ 2
√
T/SA + 2

=⇒ ZT =
∑

s∈SC

∑

a

ZT (s, a) ≤ 2
√
SCAT + 2SCA

where for the last inequality we used the fact that SC ≤ S (by definition) implying SC/
√
S =√

SC/S ·
√
SC ≤

√
SC. This concludes the proof.
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As a consequence of Lem. 5:

m∑

k=1

∑

s,a

νk(s, a)1{N±k (s, a) ≤
√
tk/SC

A} ≤ ZT ≤ 2
√
SCAT + 2SCA (34)

D.4.2 Confidence bounds βsar,k and βsas
′

p,k

Since (28) holds, Lemma 19 of Jaksch et al. [2] can still be applied. Moreover, exploiting again the
fact that for all (s, a) /∈ SC ×A, νk(s, a) = 0 we obtain

m∑

k=1

∑

s,a

νk(s, a)√
tk

≤
m∑

k=1

∑

s,a

νk(s, a)√
N+
k (s, a)

≤
(√

2 + 1
)√

SCAT (35)

and as shown in [6, Appendix F.7] (with the difference that S is restricted to SC) we have:

m∑

k=1

∑

s,a

νk(s, a)

N±k (s, a)
≤ 6SCA+ 2SCA ln(T ) (36)

The terms
∑m
k=1

∑
s,a νk(s, a)βsar,k and

∑m
k=1

∑
s,a,s′∈SC νk(s, a)βsas

′

p,k can then be bounded exactly
as in [6, App. F.7] with S replaced by SC (except in the logarithm).

D.4.3 Number of episodes

The stopping condition of episodes used by TUCRL (see Fig. 2) combines the original stopping
condition of UCRL with the condition st ∈ STkt . Using only inequality (28), Jaksch et al. [2, Figure
1] proved that for any any sequence {s1, a1, . . . , sT , aT }, the number of episodes is bounded by
1 + 2SA+ SA log2

(
T
SA

)
. Since (28) also holds in our case, the total number of episodes m after T

time steps can be bounded by the same quantity (with S replaced by SC since sates in ST will never
be visited) plus the number of times the event st ∈ STkt occurs. Since whenever st ∈ STkt state st is
removed from STkt+1 and st necessarily belongs to SC (by definition), this event can happen at most
SC times. By Proposition 18 in [2] we thus have:

m ≤ 1 + 2SCA+ SCA log2

(
T

SCA

)
+ SC (37)

D.4.4 Martingale Difference Sequence Xt · 1(kt)

In Sec. D.3 we already proved that (Xt,Ft)t≥1 is an MDS i.e., for all t ≥ 1, E[Xt|Ft−1] = 0.
Since kt is Ft−1-measurable, we also have E[Xt1(kt)|Ft−1] = 1(kt) · E[Xt|Ft−1] = 0 with
|Xt1(kt)| ≤ rmaxD

C. Therefore, (Xt1(kt),Ft)t≥1 is also an MDS. By Azuma’s inequality (see for
example [2, Lemma 10]):

T∑

t=1

Xt1(kt) ≤ rmaxD
C

√
5

2
T ln

(
8T

δ

)
w.p. ≥ 1− δ

12T 5/4
(38)
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D.5 Completing the regret bound

By gathering (27), (34), (35), (36), (38) and (37) we conclude that with probability at least 1− δ
12T 5/4 :

m∑

k=1

∆k · 1(k) ≤ 2
(√

28 +
√

14
)
rmax

√
SCAT ln

(
2SAT

δ

)(
DC
√

(ΓC − 1) + 1
)

+
196

3
rmaxS

CA ln

(
2SAT

δ

)
(3 + ln(T ))

(
DCSC + 1

)

+ 2rmax(DC + 1)(
√
SCAT + SCA)

+ rmaxD
C

√
5

2
T ln

(
8T

δ

)
+ 2

(√
2 + 1

)
rmax

√
SCAT

+ rmaxD
C
(

1 + 2SCA+ SCA log2

(
T

SA

)
+ SC

)

≤C ·
(
rmaxD

C

√
ΓCSCAT ln

(
SAT

δ

)
+ rmaxD

C (SC)2A ln2

(
SAT

δ

))

(39)

where C is a numerical constant independent of the MDP instance.

From (11), with probability at least 1− δ
12T 5/4 :

∆(TUCRL, T ) ≤
m∑

k=1

∆k + rmax

√
5

2
T ln

(
8T

δ

)

=

m∑

k=1

∆k1(k)

︸ ︷︷ ︸
see (39)

+

m∑

k=1

∆k · (1− 1(k)) + rmax

√
5

2
T ln

(
8T

δ

)

where 1− 1(k) is the complement of 1(k) i.e., takes value 1 only when either tk < C(k) (see (13)
for the definition of C(k)) or M∗ /∈Mk. As is proved in Appendix F.2 of [6], since both (28) and
Theorem 1 of Fruit et al. [6] hold, we have that with probability at least 1− δ

20T 5/4 ≥ 1− δ
12T 5/4 :

m∑

k=1

∆k1{M∗ 6∈ Mk} ≤ rmax

√
T (40)

As a consequence of (28) tk+1 ≤ 2tk. Thus, by definition of the condition tk < C(k) we have
m∑

k=1

∆k · 1{tk < C(k)}︸ ︷︷ ︸
≥0

≤ 2rmaxC(k) ≤ 4802

9
rmax

(
DC)2 S3A ln2

(
2SAT

δ

)
(41)

Finally, by Boole’s inequality: 1− 1(k) ≤ 1{M∗ /∈Mk}+ 1{tk < C(k)} and so
m∑

k=1

∆k · (1− 1(k)) ≤
m∑

k=1

∆k · 1{M∗ /∈Mk}
︸ ︷︷ ︸

see (40)

+

m∑

k=1

∆k · 1{tk < C(k)}
︸ ︷︷ ︸

see (41)

In conclusion, there exists a numerical constant C independent of the MDP instance such that for any
MDP and any T > 1, with probability at least 1− δ

12T 5/4 − δ
12T 5/4 − δ

12T 5/4 = 1− δ
4T 5/4 we have:

∆(TUCRL, T ) ≤ C ·
(
rmaxD

C

√
ΓSCAT ln

(
SAT

δ

)
+ rmax

(
DC)2 S3A ln2

(
SAT

δ

))
(42)

Since
∑+∞
T=2

δ
4T 5/4 = δ, by taking a union bound we have that the regret bound (42) holds with

probability at least 1− δ for all T > 1.
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Algorithm 2 OPTIMISTIC TRANSITION PROBABILITIES (OTP) [2]
Input: Probability estimate p̂ ∈ Rn, confidence interval β ∈ R, value vector v ∈ Rn, subset of
states I ⊆ {s1, . . . , sm}, m ≤ n, such that

∑
s∈I p̂(s) = 1

Output: Optimistic probabilities p̃ ∈ Rn

Let I = {s1, s2, . . . , sm} such that v(s1) ≥ v(s2) ≥ . . . ≥ v(sm)

p̃1(s1) = min
{

1, p̂(s1) + β
2

}

p̃1(sj) = p̂(sj), ∀1 < j ≤ m
j = m
i = 1
while

∑
s∈I p̃i(s) > 1 do

i = i+ 1
p̃i(s) = p̃i−1(s), ∀s 6= sj

p̃i(sj) = max
{

0, 1−∑s∈I\{sj} p̃i−1(s)
}

j = j − 1
end while
p̃i(s) := 0, ∀s ∈ S \ I
p̃ := p̃i

E Shortest Path Analysis

We are interesting in comparing the shortest path of any pair (s, s) ∈ S × SCk in M+
k and M+

k .
Formally, given a target state s, the stochastic shortest path τM (s) := τM (s→ s) of an (extended)
MDP M is the (negation) solution of the following Bellman equation

τM (s) = −1 + max
a∈As,p∈Bp(s,a)

{
pTτM

}
, ∀s 6= s

τM (s) = 0
(43)

E.1 Equivalence of Shortest Path inM+
k andM+

k

We start by proving the following.
Lemma 6. For any pair (s, s) ∈ S × SCk, τM+

k
(s→ s) = τM+

k
(s→ s).

In order to analyse the properties of the stochastic shortest path we need to investigative the maximiza-
tion over the confidence interval Bp(s, a) either inM+

k orM+

k . This problem can be solved using
Alg. 2. For any state-action pair (s, a), we define p̃M+

k
(·|s, a) = OTP(p̂(·|s, a), B+

p,k(s, a), τ,S) and

p̃M+
k

(·|s, a) = OTP(p̂(·|s, a), B
+

p,k(s, a), τ,S). It is easy to notice that the optimistic probability

vectors built by Alg. 2 satisfy (either inM+
k or inM+

k )

∀i ∈ {1, . . . , n}, p̃i(s1) ≥ p̂(s1)

∀i ∈ {2, . . . , n},∀l ∈ {n− i+ 2, n}, p̃i(sl) = max



0, 1−

∑

s′ 6=sl
p̃i−1(s′)





= max

{
0, p̂(sl)−

(∑

s′

p̃i−1(s′)− 1

)}

≤ p̂(sl)
where s1, . . . , sn are such that τ(s1) ≥ . . . ≥ τ(sn). The algorithm may stop before n iterations but
this means that the states not processed are kept at p̂.

We start considering the case in which (s, a) ∈ Kk. Recall that ∀s′ ∈ STk, p̂(s′|s, a) = 0 by
definition since s′ is not reachable from SCk (i.e., Nk(s, a, s′) = 0) and thatM+

k andM+

k consider
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the same empirical average for the transition probabilities (i.e., p̂). The shortest path to s is such that
maxs{τ(s)} = τ(s) = 0 and τ(s) ≤ −1 for any state s ∈ S \ {s} (either inM+

k orM+

k ). As a
consequence, s1 = s and for any s′ ∈ STk,

p̃M+
k

(s′) ≤ p̂(s′) = 0, and p̃M+
k

(s′) ≤ p̂(s′) = 0

which ensures that ∀(s, a) ∈ Kk the constraints inM+

k hold. This results is independent from the
vector v provided to OTP. Then, for any vector v ∈ V = {v ∈ RS |v(s) = 0 ∧ v(s) ≤ −1, ∀s ∈
S \ {s}}, we have that I1 = I2, since β1 = β2 and p̃M+

k
(s) = p̃M+

k
(s) = 0 for any s ∈ S2

k then:
p̃M+

k
(s′) = p̃M+

k
(s′), ∀s′ ∈ S. Finally, ∀(s, a) ∈ (S ×A) \ Kk it is trivial to notice that: ∀s′ ∈ S,

∀v ∈ V , p̃M+
k

(s′) = p̃M+
k

(s′) since B+
p,k(s, a) = B

+

p,k(s, a).

The proof follows by noticing that τM+
k
∈ V and τM+

k
∈ V .

E.2 Bounding the bias span

Lemma 7. Consider an (extended) MDP M and define LM as the associated optimal (extended)
Bellman operator. Given h0 = 0, and hi = (LM )ih0 we have that

∀s, s′ ∈ S, hi(s′)− hi(s) ≤ rmaxτM (s→ s′)

where τM (s→ s′) is the minimum expected shortest path from s to s′ in M .

Proof. The proof follows from the application of the argument in [2, Sec. 4.3.1].

F Tighter Regret Bound

In this section we present a different relaxation ofMk that preserves the Bernstein nature of the
confidence intervals (although the final regret bound is the same). This relaxation makes the transition
from TUCRL to UCRL smooth when ST = ∅ and may perform better empirically. We initially
introduced the relaxation using `1-norm in order to prove the equivalence of the shortest paths
(Lem. 6) implying that spSC

k
{wk} ≤ DC. We now show that the same result (i.e., spSC

k
{wk} ≤ DC)

can be obtained by consider a perturbation of Bp,k that preserves the Bernstein-like confidence
intervals.

We start defining the new confidence set Z
k

p for any (s, a, s′) ∈ S ×A× S as

Zp,k(s, a, s′) :=





Bkp (s, a, s′) if s ∈ STk
Bkp (s, a, s′) if s ∈ SCk and p+

k (s, a) ≥ ρtk(s, a)

{0} if s ∈ SCk, p+
k (s, a) < ρtk(s, a), and s′ ∈ STk[

p̂k(s′|s, a)− βsas′p,k , p̂k(s′|s, a) + βsas
′

p,k + ζsap,k

]
∩
[
0, 1
]

otherwise

(44)

where for any (s, a) ∈ S ×A

ζsap,k :=
∑

s′∈ST
k

p+
k (s′|s, a) = ST

k · p+
k (s, a)︸ ︷︷ ︸

:=min

{
1, 493

bk,δ

N
±
k

(s,a)

} (45)

We then defineM+

k :=
{
S, A, rk(s, a) ∈ Br,k(s, a), pk(s′|s, a) ∈ Zp,k(s, a, s′), pk(·|s, a) ∈ C

}
.

It is possible to prove that

Lemma 8. For any pair (s, s) ∈ S × SCk, τM+
k

(s → s) ≤ τMk
(s → s). As a consequence, let

hi = (LM+
k

)i0, then

spSC
k
{hi} ≤ rmax max

s,s∈SC
k

{τM+
k

(s→ s)} ≤ rmax max
s,s∈SC

k

{τMk
(s→ s)} ≤ rmaxD

C
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G Proof of Lem. 3

We prove the statement by contradiction: we assume that there exists a learning algorithm denoted
AT satisfying

1. for all ε ∈]0, 1], there exists T †ε ≤ f(ε) such that E[∆(AT ,Mε, x, T )] < 1/6 · T for all T ≥ T †ε ,

2. there exists T ∗0 < +∞ such that E[∆(AT ,M0, x, T )] ≤ C2(ln(T ))β for all T ≥ T ∗0 .

Any randomised strategy for choosing an action at time t is equivalent to an (a priori) random
choice from the set of all deterministic strategies. Thus, it is sufficient to show a contradiction
when the action played by AT at any time t is a deterministic function of the past trajectory ht :=
{s1, a1, r1, . . . , st}. In the rest of the proof we assume that AT maps any sequence of observations
ht = {s1, a1, r1, . . . , st} to a (single) action at.

By trivial induction it is easy to see that as long as state y has not been visited, the history ht is
independent of ε (AT can not distinguish between different values of ε and plays exactly the same
action when the past history is the same).

Let’s define N0
T (x, b) :=

∑T
t=1 1{(st, at) = (x, b)} the number of visits in (x, b) with at = AT (ht)

and ε = 0. Note that N0
T (x, b) is not random since when ε = 0 both action b and action d loop on x

with probability 1. For any ε ∈ [0, 1] and any horizon T define the event:

F (T, ε) :=
⋂

1≤t≤T
{st 6= y}

where the sequence of states st is obtained by executing AT on MDP Mε. We will denote by F (T, ε)
the complement of F (T, ε).

For any horizon T , and independently of ε, there is only one possible trajectory hT =
{s1, a1, r1, . . . , sT } that never goes to y and which corresponds to the trajectory observed when
ε = 0. When ε = 0, the probability of this trajectory is 1 and so P (F (T, 0)) = 1 (recall that
everything is deterministic in this case) while in general we have:

∀T ≥ 1, ∀ε ∈ [0, 1], P (F (T, ε)) = (1− ε)N
0
T (x,b) (46)

We now prove by contradiction that

lim
T→+∞

N0
T (x, b) = +∞ (47)

Let’s assume that C := max
{

10,maxT≥1{N0
T (x, b)}

}
< +∞. Taking ε = 1/C and applying the

law of total expectation we obtain:

∀T ≥ 1, E[∆(AT ,M1/C , x, T )] = E
[
∆(AT ,M1/C , x, T )|F (T, 1/C)

]
︸ ︷︷ ︸

=T/2+1/2·N0
T (x,b)≥T/2

·P (F (T, 1/C))︸ ︷︷ ︸
=(1−1/C)N

0
T

(x,b)

+E

[
∆(AT ,M1/C , x, T )|F (T, 1/C)

]
·P
(
F (T, 1/C)

)

︸ ︷︷ ︸
≥0

≥ T

2
·
(

1− 1

C

)N0
T (x,b)

≥ T

2
·
(

1− 1

C

)C

︸ ︷︷ ︸
≥1/3 by Lem. 9

≥ T

6

where we used the fact that

• N0
T (x, b) ≤ C and (1−1/C) ∈ [0, 1] by definition, implying

(
1− 1

C

)N0
T (x,b) ≤

(
1− 1

C

)C
,

• since C ≥ 10 we have
(
1− 1

C

)C ≥ 1/3 by Lem. 9 applied to x = 1/C,

• and finally under event F (T, 1/C), the regret incurred is exactly T/2 + 1/2 ·N0
T (x, b) ≥

T/2.
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This contradicts our assumption that there exists T †1/C < +∞ such that for all T ≥ T †1/C ,
E[∆(AT ,M1/C , x, T )] < T/6 and so (47) holds.

Since limT→+∞N0
T (x, b) = +∞, it is possible to construct a strictly increasing sequence (Tn)n∈N

such that:

∀n ∈ N, N0
Tn+1

(x, b) > N0
Tn(x, b), T0 = T ∗0 , T1 ≥ C2, T1 ≥ C2(ln(T1))β and N0

T1
(x, b) ≥ 10

We also define the (strictly decreasing) sequence: εn := 1/N0
Tn

(x, b), ∀n ≥ 1. By the law of total
expectation:

E[∆(ATn ,Mεn , x, Tn)] = E [∆(ATn ,Mεn , x, Tn)|F (Tn, εn)]︸ ︷︷ ︸
≥Tn/2

· P (F (Tn, εn))︸ ︷︷ ︸
=(1−εn)

N0
Tn

(x,b)

+E

[
∆(ATn ,Mεn , x, Tn)|F (Tn, εn)

]
·P
(
F (Tn, εn)

)

︸ ︷︷ ︸
≥0

≥ Tn
2
· (1− εn)

N0
Tn

(x,b)
=
Tn
2
· (1− εn)

1/εn

︸ ︷︷ ︸
≥1/3 by Lem. 9

≥ Tn
6

(48)

where we applied Lem. 9 to x = εn ≤ 1/10 since N0
Tn

(x, b) ≥ 10 for all n ≥ 1. Moreover, since by
construction for all n ≥ 1, Tn > T0 = T ∗0 we have by assumption that

∀n ≥ 1, E[∆(ATn ,M0, x, Tn)] =
1

2
N0
Tn(x, b) =

1

2εn
≤ C2(ln(Tn))β

=⇒ Tn ≥ exp

(
1

(2C2 · εn)
1/β

)

Since limn→+∞ 1/εn = +∞ and limx→+∞ exp
(
x1/β

)
/xα = +∞ there exists N ∈ N such that

for all n ≥ N , Tn ≥ f(εn). By assumption, for all n ≥ N ,

E[∆(ATn ,Mεn , x, Tn)] <
Tn
6

which contradicts (48) therefore concluding the proof.

Lemma 9. For all x ∈]0, 1/10], we have (1− x)1/x ≥ 1/3.

Proof. It is easy to verify that the derivative of x 7−→ (1− x)1/x is:

∀x ∈]0, 1/10],
d

dx

(
(1− x)1/x

)
= − (1− x)1/x−1

x2︸ ︷︷ ︸
≥0

· ((1− x) ln(1− x) + x)

It is well known that for all x ∈]0, 1[, x < − ln(1− x) < x
1−x implying that (1− x) ln(1− x) + x

is positive. Therefore, d
dx

(
(1− x)1/x

)
is negative on ]0, 1/10] implying that x 7−→ (1 − x)1/x is

decreasing. As a result: ∀x ∈]0, 1/10], (1− x)1/x ≥ 0.910 > 1/3.

H Experiments - Three-State Domain

This domain was introduced in [6] in order to show the inability of UCRL to learn in weakly
communicating MDPs. The graphical representation of the domain is reported in Fig. 6. We keep the
same means for the rewards (reported on Fig. 6) but we change the distributions: uniform distributions
with range 1/5 instead of Bernouillis. In the main paper we showed how the algorithms behave when
δ = 0. Here we consider the case the MDP is communicating by defining δ = 0.005. Fig. 7 shows
that, as expected, TUCRL behaves similarly to UCRL. In this example it is able to outperform UCRL
since the preliminary phase in which transitions to non-observed states are forbidden leads to a more
conservative exploration that, due to the structure of the problem (s1 is difficult to reach but it is also
non-optimal), results in a smaller regret.
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Figure 6: Three-state domain introduced in [6]
Figure 7: Communicating three-state domain
(δ = 0.005)

28


	Introduction
	Preliminaries
	Truncated Upper-Confidence for Reinforcement Learning (TUCRL)
	Analysis of TUCRL

	Experiments
	Exploration-exploitation dilemma with infinite diameter
	Conclusion
	Mistake in the regret bound of Regal.D
	Regularized optimistic RL (Regal)
	The doubling trick issue

	Unbounded optimal bias span with continuous Bayesian priors/posteriors
	Algorithmic Details
	Regret of TUCRL
	Splitting into episodes
	Episodes with M* Mk
	Bounding "0365k
	Summing over episodes with M* Mk and tk C(k)
	Poorly visited state-action pairs
	Confidence bounds r,ksa and p,ksas'
	Number of episodes
	Martingale Difference Sequence Xt1(kt)

	Completing the regret bound

	Shortest Path Analysis
	Equivalence of Shortest Path in Mk+ and Mk+
	Bounding the bias span

	Tighter Regret Bound
	Proof of Lem. 3
	Experiments - Three-State Domain

