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A Justification of the Observation 2.

Here we provide the justification and intuition of the observation 2 in Section 4.3 of the main paper.

Observation 2. The true posterior of the target retain probability p(zt = 1|x,y) is 1, if we exclude
the case z1 = z2 = · · · = zK = 0, i.e. the retain probability for every class is 0.

To verify it, we first need to understand what it means by saying zt = 0 even after the observation of
the target y. Firstly, suppose that the target mask zt = 0 and there exists at least one nontarget mask
zj 6=t = 1. Then, the corresponding likelihood and the true posterior becomes

p(y|x, zt = 0, z\t) =
(0 + ε) exp(ot)

(1 + ε) exp(oj) +
∑
k 6=j(zk + ε) exp(ok)

≈ 0 (1)

p(zt = 0, z\t|x,y) = p(y|x, zt = 0, z\t)
p(zt = 0, z\t|x)

p(y|x)
≈ 0 (2)

where ε > 0 is a sufficiently small constant (e.g. 10−20). In other words, after knowing which class
is the target, it is impossible to reason that the target class has been dropped out while some nontarget
classes have not.

Secondly, suppose zt = 0 and z\t = 0. Then the likelihood and the true posterior becomes

p(yt = 1|x, z = 0) =
(0 + ε) exp(ot)∑
k(0 + ε) exp(ok)

=
exp(ot)∑
k exp(ok)

> 0 (3)

p(z = 0|x,y) = p(y|x, z = 0)
p(z = 0|x)
p(y|x)

≥ 0 (4)

In other words, after observing the label, it is one of the possible scenarios that all the target and
nontarget classs have been dropped out at the same time. Combining (2) and (4), we can conclude
that zt = 0 only if z\t = 0, given y. Ohterwise, zt = 1.

Then, how can we express this relationship with the approximate posterior q(z|x,y) =∏
k q(zk|x,y)? It is impossible because we do not consider the correlations between z1, . . . , zK

under the mean-field approximation. In such a case, if we allow q(zt|x,y) < 1 somehow while
having no means to force zt = 0→ z\t = 0, then whenever zt is realized to be 0, we always see the
devation from the true posterior by the amount q(z\t|x,y) deviates from

∏
k 6=t Ber(zk; 0). It also

causes severe learning instability since reverting zt back to 1 requires huge gradients. Considering
that the case z\t = 0, one of the 2K−1 combinations, is insignificant, we ignore this case and let
q(zt|x,y) = Ber(zt; 1). Except that case, the solution exactly matches the true marginal posterior
p(zt|x,y).
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B Stability of Gradients

The effect of DropMax regularization can be also explained in the context of the stability of stochastic
gradient descent (SGD) [1, 2], where a stable algorithm is preferred to achieve small generalization
error. Suppose that the current model correctly classifies an example with small confidence. DropMax
regularization incurs a penalty to restrict the model from classifying an example too much perfectly
(i.e. ot � maxk∈[K]\{t} ok). This automatically suggests that the magnitude of gradients of DropMax
at this example is smaller than that of softmax, which helps to prevent from over-fitting and generalize
better, as discussed in [2].

Denoting ψ = {W,b}, we consider the expected cross entropy as our loss function:

N∑
i=1

l(xi,yi;ψ) =

N∑
i=1

Ezi

[
− log p (yi,t = 1|hi, zi;ψ)

]
, (5)

where hi = NN(xi;ω) is the last feature vector of an arbitrary neural network, zi and p(yi,t =
1|hi, zi;ψ) are defined in Eq. (5) in the main paper. We consider an example that is correctly
classified with small confidence;
Condition 1. Suppose that we are given a labeled example xi and yi. We assume that the retain prob-
abilities denoted by {ρk}Kk=1 follow the case: For a target class t, ρt is greater than maxk∈[K]\{t} ρk.
For a non-target class k, ρk is equal to the one of any non-target classes.

We further assume that Bernoulli parameter for zi is fixed, but different for each example. For
simplicity, we denote ok(xi;ψ) as ok when the context is clear.

We then decompose the expected loss into the standard cross entropy with softmax and the regulariza-
tion term introduced by DropMax;

N∑
i=1

(
l̂(xi,yi;ψ) +M(xi,yi, zi)

)
, (6)

where l̂(xi,yi;ψ) = − log exp(ot)∑K
k=1 exp(ok)

that is the standard cross-entropy loss with softmax and

M(xi,yi, zi) = Ezi

[
log

∑K
k=1(zk+ε) exp(ok)

(zt+ε)
∑K

k=1 exp(ok)

]
. We derive the upper bound on the regularization

term by Jensen’s inequality and keep terms only related to ψ;
N∑
i=1

[
log

K∑
k=1

(ρk + ε) exp(ok)− log

K∑
k=1

(exp(ok))

]
(7)

We now compute the magnitude of gradient of DropMax to show if it is smaller than the one of
softmax, which helps to stabilize the learning procedure. For ease of analysis, we consider the
gradient for a target class1:

∂M(xi,yi, zi)

∂wt
≤
(

(ρt + ε) exp(ot)∑
k(ρk + ε) exp(ok)

− exp(ot)∑
k exp(ok)

)
∂ot
∂wt

(8)

∂l̂(xi,yi;ψ)

∂wt
=

(
exp(ot)∑
k exp(ok)

− 1

)
∂ot
∂wt

. (9)

According to Condition 1, it is easy to see that

0 <

(
(ρt + ε) exp(ot)∑
k(ρk + ε) exp(ok)

− exp(ot)∑
k exp(ok)

)
, (10)

which suggests that the gradient direction of regularizer is opposite to that of l̂(xi,yi;ψ). For an
example that can be correctly classified with small margin, DropMax regularization incurs a penalty to
restrict the model from classifying an example too much perfectly (i.e. ot � maxk∈[K]\{t} ok). This
means that DropMax is relatively more stable than softmax in the notion of magnitude of gradient,
which helps to prevent from over-fitting and generalize better.

1We can make the similar arguments for non-target classes.
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Figure 1: Contour plots of softmax and DropMax with different retain probabilities. For DropMax,
we sampled the Bernoulli variables for each data point with fixed probabilities.

(a) (b) (c)

Figure 2: (a) Monte-Carlo sampling of the target probabilities (S = 1000) w.r.t. the different amount of noise
on an instance from class 1. (b) Same as (a), except we do not sample the target mask to reduce the unnecessary
variances (simply replace zt ∼ Ber(ρt) with ρt). (c) MC sampling with real examples having different level of
difficulties.

The convergence plot of MNIST-55K dataset (Figure 3(a) in the main paper) supports agrees with our
argument that DropMax generalizes better by improving the stability of learning. Once the retain
probabilies are trained to some degree and can roughly classify target and nontarget classes with
minimum risk, then the burden to the softmax classifier is lessened, resulting in more stable gradients
for the main softmax classifier.

C Experimental Setup

Here we explain the experimental setup for the each dataset.

1) MNIST. The batchsize is set to 50 and the training epoch is set to 2000, 500, and 100 for 1K,5K,
and 55K dataset, respectively. We use Adam optimizer [3], with learning rate starting from 10−4.
The `2 weight decay parameter is searched in the range of {0, 10−5, 10−4, 10−3}. All the hyper-
parameters are tuned with a holdout set.

2) CIFAR-10. We set batchsize to 128 and the number of training epoch to 200. We use stochastic
gradient descent (SGD) optimizer with 0.9 momentum. Learning rate starts from 0.1 and multiplied
by 0.1 at 80, 120, 160 epochs. The `2 weight decay parameter is fixed at 10−4.

3) CIFAR-100. We used the same setup as CIFAR-10.

4) AWA. Batchsize is set to 125 and the number of training epochs is set to 300. We use SGD
optimizer with 0.9 momentum. Learning rate starts from 10−2, and is multiplied by 0.1 at 150 and
250 epochs. Weight decay is set to 10−4.

5) CUB-200-2011. Batchsize is set to 125 and the number of training epochs is set to 400. SGD
optimizer with 0.9 momentum is used. Learning rate starts from 10−2 and is multiplied by 0.1 at 200
and 300 epochs. We set the weight decay to 10−3 which is bigger than the other datasets, considering
that the size of the dataset is small compared to the network capacity.

3



References
[1] O. Bousquet and A. Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2:499–526,

Mar. 2002.

[2] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In ICML, 2016.

[3] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

4


	Justification of the Observation 2.
	Stability of Gradients
	Experimental Setup

