
A Proof of (2) from Theorem 1

First, let us calculate L(w⇤). Observe that

(X>X)�1 =

cz }| {⇣
1 +

n� d

d
�
2
⌘�1

I,

and w⇤ = cX>y = c1d.

The loss L(w) of any w 2 Rd can be decomposed as L(w) =
Pd

i=1 Li(w), where Li(w) is the
total loss incurred on all input vectors ei or �ei. For w⇤, the i-th component is

Li(w
⇤) = (1� c)2 +

1
c�1

z }| {
n� d

d
�
2
c
2 = 1� c.

Note that i-th leverage score of X is equal li = x>
i (X

>X)�1xi = c, so we obtain that

L(w⇤) = d (1� c) =
dX

i=1

(1� li). (8)

Next, we compute L(w⇤
S). Suppose that S ✓ {1..n} is produced by size k standard volume sampling.

Note that if for some 1  i  d we have i 62 S, then (w⇤
S)i = 0 and therefore Li(w⇤

S) = 1.
Moreover, denoting bi

def

= 1[i2S],

(X>
SXS)

�1⌫(X>X)�1=c I, and X>
SyS=(b1, . . . , bd)

>
,

so if i 2 S, then (w⇤
S)i � c and

Li(w
⇤
S) �

n� d

d
�
2
c
2 =

⇣1
c
� 1

⌘
c
2 = c Li(w

⇤).

Putting the cases of i 2 S and i 62 S together, we get

Li(w
⇤
S) � c Li(w

⇤) + (1� c Li(w
⇤)) (1� bi)

� c Li(w
⇤) + c

2(1� bi).

Applying the marginal probability formula for volume sampling (see (4)), we note that

E[1� bi] = 1� Pr(i 2 S) =
n� k

n� d
(1� c) =

n� k

n� d
Li(w

⇤).

Taking expectation over Li(w⇤
S) and summing the components over i 2 [d], we get

E[L(w⇤
S)] � L(w⇤)

⇣
c+ c

2n� k

n� d

⌘
.

Note that as � ! 0, we have c ! 1, thus showing (2).

B Properties of rescaled volume sampling

We give proofs of the properties of rescaled volume sampling which hold for any rescaling distribution
q. In this section, we will use Z = d!

�k
d

�
det(X>X) as the normalization constant for rescaled volume

sampling.

B.1 Proof of Proposition 2

First, we apply the Cauchy-Binet formula to the determinant term specified by a fixed sequence
⇡ 2 [n]k:

det(X>Q⇡X) =
X

S2([k]d)

det(X>Q⇡SX) =
X

S2([k]d)

det(X⇡S )
2
Y

i2S

1

q⇡i

.
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Next, we compute the sum, using the above identity:

X

⇡2[n]k

det(X>Q⇡X)
kY

i=1

q⇡i =
X

⇡2[n]k

X

S2([k]d)

det(X⇡S )
2

Y

i2[k]\S

q⇡i

=

✓
k

d

◆ X

⇡̄2[n]d

det(X⇡̄)
2

X

⇡̃2[n]k�d

k�dY

i=1

q⇡̃i

=

✓
k

d

◆ X

⇡̄2[n]d

det(X⇡̄)
2
⇣ nX

i=1

qi

⌘k�d

=

✓
k

d

◆
d!

X

S2([n]d)

det(XS)
2 = k(k�1) · · · (k�d+1) det(X>X),

where the steps closely follow the corresponding derivation for Theorem 3, given in Section 3.1.

B.2 Proof of Theorem 4

We will prove that for any vector v 2 Rd,

E
⇥
v>(X>Q⇡X)�1v

⇤
 v>(X>X)�1v

k�d+1
,

which immediately implies the corresponding matrix inequality. First, we use Sylvester’s formula,
which holds whenever a matrix A 2 Rd⇥d is full rank:

det(A+ vv>) = det(A)
�
1 + v>A�1v

�
.

Note that whenever the matrix is not full rank, its determinant is 0 (in which case we avoid computing
the matrix inverse), so we have for any ⇡ 2 [n]k:

det(X>Q⇡X) v>(X>Q⇡X)�1v  det(X>Q⇡X+ vv>)� det(X>Q⇡X)

(⇤)
=

X

S2( [k]
d�1)

det(X>
⇡S

X⇡S + vv>)
Y

i2S

1

q⇡i

,

where (⇤) follows from applying the Cauchy-Binet formula to both of the determinants, and cancelling
out common terms. Next, we proceed in a standard fashion, summing over all ⇡ 2 [n]k:

Z E
⇥
v>(X>Q⇡X)�1v

⇤
=

X

⇡2[n]k

v>(X>Q⇡X)�1v det(X>Q⇡X)
kY

i=1

q⇡i


X

⇡2[n]k

X

S2( [k]
d�1)

det(X>
⇡S

X⇡S + vv>)
Y

i2[k]\S

q⇡i

=

✓
k

d�1

◆ X

⇡̄2[n]d�1

det(X>
⇡̄X⇡̄ + vv>)

X

⇡̃2[n]k�d+1

k�d+1Y

i=1

q⇡i

=

✓
k

d�1

◆
(d�1)!

X

S2( [n]
d�1)

det(X>
SXS + vv>)

=
d!
�k
d

�

k�d+1

�
det(X>X+ vv>)� det(X>X)

�
= Z

v>(X>X)�1v

k�d+1
.
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B.3 Proof of Proposition 5

First, we compute the marginal probability of a fixed element of sequence ⇡ containing a particular
index i 2 [n] under q-rescaled volume sampling:

Z Pr(⇡k= i) =
X

⇡2[n]k�1

det(X>Q[⇡,i]X) qi

k�1Y

t=1

q⇡t

= qi

X

⇡2[n]k�1

X

S2([k�1]
d )

det(X⇡S )
2

Y

t2[k�1]\S

q⇡t

| {z }
T1

+
X

⇡2[n]k�1

X

S2([k�1]
d�1)

det(X>
⇡S

X⇡S + xix
>
i )

Y

t2[k�1]\S

q⇡t

| {z }
T2

,

where the first term can be computed by following the derivation in Appendix B.1, obtaining
T1 = qi

k�d
k Z, and the second term is derived as in Appendix B.2, obtaining T2 = li

k Z. Putting this
together, we get

Pr(⇡k= i) =
1

k

�
(k�d) qi + li

�
.

Note that by symmetry this applies to any element of the sequence. We can now easily compute the
desired expectation:

E
⇥
(Q⇡)ii

⇤
=

1

qi

kX

t=1

Pr(⇡t= i) = (k�d) +
li

qi
.

B.4 Proof of Lemma 7

First step of the reverse iterative sampling procedure described in Section 2 involves removing one
row from the given matrix with probability proportional to the square volume of that submatrix:

8i2S Pr(i |⇡S) =
det(X>Q⇡S\iX)

(|S|� d) det(X>Q⇡SX)
.

Suppose that k = s� 1 and let ⇡̃ = ⇡S 2 [n]s�1 denote the sequence obtained after performing one
step of the row-removal procedure. Then,

Pr(⇡̃) =
X

⇡2[n]k:
⇡̃ is a subsequence of ⇡

Pr(⇡̃ |⇡) Pr(⇡) (⇤)
=

nX

i=1

s

removing one rowz }| {
Pr(i | [⇡̃, i])

rescaled samplingz }| {
Pr([⇡̃, i])

=
nX

i=1

s
det(X>Q⇡̃X)

(s�d) det(X>Q[⇡̃,i]X)

det(X>Q[⇡̃,i]X) (
Qs�1

j=1 q⇡̃j ) qi
s!

(s�d)! det(X
>X)

=
det(X>Q⇡̃X)(

Qs�1
j=1 q⇡̃j )

s�d
s

s!
(s�d)! det(X

>X)

nX

i=1

qi =
det(X>Q⇡̃X) (

Qs�1
j=1 q⇡̃j )

(s�1)!
(s�1�d)! det(X

>X)
,

where (⇤) follows because the ordering of sequence ⇡ does not affect the probabilities, and the factor
s next to the sum counts the number of ways to place index i into the sequence ⇡̃ to obtain ⇡. Thus,
by induction, for any k < s the algorithm correctly samples from q-rescaled volume sampling.

C Proof of Theorem 8

We rewrite the expected square norm as:

E
���

1

k
U>Q⇡r�U>r

���
2
�
= E

���U>
⇣1
k
Q⇡�I

⌘
r
���
2
�
= E


r>

⇣1
k
Q⇡�I

⌘
UU>

⇣1
k
Q⇡�I

⌘
r

�

= r> E
⇣1

k
Q⇡�I

⌘
UU>

⇣1
k
Q⇡�I

⌘�
r

 �max

⇣ �
E[(zi�1)(zj�1)]u>

i uj

�
ij| {z }

M

⌘
krk2, where zi =

1

k
(Q⇡)ii.
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It remains to bound �max(M). By Proposition 5, for leveraged volume sampling E[(Q⇡)ii] = k, so

E[(zi�1)(zj�1)] =
1

k2

⇣
E
⇥
(Q⇡)ii(Q⇡)jj

⇤
� E

⇥
(Q⇡)ii

⇤
E
⇥
(Q⇡)jj

⇤⌘
=

1

k2
cov

⇥
(Q⇡)ii, (Q⇡)jj

⇤
.

For rescaled volume sampling this is given in the following lemma, proven in Appendix C.1.

Lemma 11 For any X and q, if sequence ⇡ 2 [n]k is sampled from q-rescaled volume sampling then

cov
⇥
(Q⇡)ii, (Q⇡)jj

⇤
= 1i=j

1

qi
E
⇥
(Q⇡)ii

⇤
� (k�d)� (x>

i (X
>X)�1xj)2

qiqj
.

Since kuik2 = li = dqi and u>
i (U

>U)�1uj = u>
i uj , we can express matrix M as follows:

M = diag

✓
d E

⇥
(Q⇡)ii

⇤

kuik2k2
kuik2

◆n

i=1

� k�d

k2
UU> � d

2

k2

✓
(u>

i uj)3

kuik2kujk2

◆

ij

.

The first term simplifies to d
k I, and the second term is negative semi-definite, so

�max(M)  d

k
+

d
2

k2

����

✓
(u>

i uj)3

kuik2kujk2

◆

ij

����.

Finally, we decompose the last term into a Hadamard product of matrices, and apply a classical
inequality by [3] (symbol “�” denotes Hadamard matrix product—i.e., elementwise multiplication):

����

✓
(u>

i uj)3

kuik2kujk2

◆

ij

���� =

����

✓
u>
i uj

kuik kujk

◆

ij

�
✓

(u>
i uj)2

kuikkujk

◆

ij

����


����

✓
(u>

i uj)2

kuikkujk

◆

ij

���� =

����

✓
u>
i uj

kuik kujk

◆

ij

�UU>

����

 kUU>k = 1.

Thus, we conclude that E[k 1
kU

>Q⇡r�U>rk2]  ( dk + d2

k2 )krk2, completing the proof.

C.1 Proof of Lemma 11

We compute marginal probability of two elements in the sequence ⇡ having particular values i, j 2 [n]:

Z Pr
�
(⇡k�1= i) ^ (⇡k=j)

�
=

X

⇡2[n]k�2

X

S2([k]d)

det(X>
[⇡,i,j]S

X[⇡,i,j]S )
Y

t2[k]\S

q[⇡,i,j]t .

We partition the set
�[k]
d

�
of all subsets of size d into four groups, and summing separately over each

of the groups, we have

Z Pr
�
(⇡k�1= i) ^ (⇡k=j)

�
= T00 + T01 + T10 + T11, where:

1. Let G00 = {S2
�[k]
d

�
: k�1 62S, k 62S}, and following derivation in Appendix B.1,

T00 = qi qj

X

⇡2[n]k�2

X

S2G00

det(X⇡S )
2

Y

t2[k�2]\S

q⇡t = qi qj
(k�d�1)(k�d)

(k�1) k
Z.

2. Let G10 = {S2
�[k]
d

�
: k�12S, k 62S}, and following derivation in Appendix B.2,

T10 = qj

X

⇡2[n]k�1

X

S2G10

det(X[⇡,i]S )
2

Y

t2[k�1]\S

q[⇡,i]t = li qj
(k�d)

(k�1) k
Z.

3. G01 = {S2
�[k]
d

�
: k�1 62S, k2S}, and by symmetry, T01 = lj qi

(k�d)
(k�1) k Z.
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4. Let G11 = {S2
�[k]
d

�
: k�12S, k2S}, and the last term is

T11 =
X

⇡2[n]k�1

X

S2G11

det(X[⇡,i,j]S )
2

Y

t2[k]\S

q[⇡,i,j]t

=

✓
k�2

d�2

◆ X

⇡2[n]d�2

det(X[⇡,i,j])
2

=

✓
k�2

d�2

◆
(d�2)!

�
det(X>X)� det(X>

�iX�i)� det(X>
�jX�j) + det(X>

�i,jX�i,j)
�

(⇤)
=

d!
�k
d

�

k(k�1)
det(X>X)

⇣
1� (1�li)| {z }

det(X>
�iX�i)

det(X>X)

� (1�lj)| {z }
det(X>

�jX�j)

det(X>X)

+(1�li)(1�lj)� l
2
ij| {z }

det(X>
�i,jX�i,j)

det(X>X)

⌘

=
Z

k(k�1)

�
`i`j � `

2
ij

�
,

where lij = x>
i (X

>X)�1xj , and (⇤) follows from repeated application of Sylvester’s determinant
formula (as in Appendix B.2). Putting it all together, we can now compute the expectation for i 6= j:

E
⇥
(Q⇡)ii (Q⇡)jj

⇤
=

1

qi qj

kX

t1=1

kX

t2=1

Pr
�
(⇡k�1= i) ^ (⇡k=j)

�

=
k(k�1)

qi qj

1
Z (T00+T10+T01+T11)z }| {

Pr
�
(⇡k�1= i) ^ (⇡k=j)

�

= (k�d�1)(k�d) + (k�d)
li

qi
+ (k�d)

lj

qj
+

lilj

qi qj
�

l
2
ij

qi qj

=
⇣
(k�d)qi +

li

qi

⌘⇣
(k�d)qj +

lj

qj

⌘
� (k�d)�

l
2
ij

qi qj

= E
⇥
(Q⇡)ii

⇤
E
⇥
(Q⇡)jj

⇤
� (k�d)�

l
2
ij

qiqj
.

Finally, if i = j, then

E[(Q⇡)ii (Q⇡)ii] =
1

q2i

kX

t1=1

kX

t2=1

Pr(⇡t1 = i ^ ⇡t2 = i)

=
k(k�1)

q2i

Pr(⇡k�1= i ^ ⇡k= i) +
k

q2i

Pr(⇡k= i)

=
�
E
⇥
(Q⇡)ii

⇤�2 � (k�d)� l
2
i

q2i

+
1

qi
E
⇥
(Q⇡)ii

⇤
.

D Proof of Theorem 9

We break the sampling procedure down into two stages. First, we do leveraged volume sampling
of a sequence ⇡ 2 [n]m of size m � C0d

2
/�, then we do standard volume sampling size k from

matrix (Q
1/2
[1..n]U)⇡. Since rescaled volume sampling is closed under this subsampling (Lemma 7),

this procedure is equivalent to size k leveraged volume sampling from U. To show that the first stage
satisfies the subspace embedding condition, we simply use the bound from Theorem 8 (see details in
Appendix D.1):

Lemma 12 There is an absolute constant C0, s.t. if sequence ⇡ 2 [n]m is generated via leveraged

volume sampling of size m at least C0 d
2
/� from U, then

Pr

✓
�min

⇣ 1

m
U>Q⇡U

⌘
 1

2

◆
 �.
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The size of m is much larger than what we claim is sufficient. However, we use it to achieve a tighter
bound in the second stage. To obtain substantially smaller sample sizes for subspace embedding than
what Theorem 8 can deliver, it is standard to use tail bounds for the sums of independent matrices.
However, applying these results to joint sampling is a challenging task. Interestingly, [26] showed
that volume sampling is a strongly Raleigh measure, implying that the sampled vectors are negatively
correlated. This guarantee is sufficient to show tail bounds for real-valued random variables [see,
e.g., 30], however it has proven challenging in the matrix case, as discussed by [21]. One notable
exception is uniform sampling without replacement, which is a negatively correlated joint distribution.
A reduction argument originally proposed by [22], but presented in this context by [20], shows that
uniform sampling without replacement offers the same tail bounds as i.i.d. uniform sampling.

Lemma 13 Assume that �min

�
1
mU>Q⇡U

�
� 1

2 . Suppose that set T is a set of fixed size sampled

uniformly without replacement from [m]. There is a constant C1 s.t. if |T | � C1 d ln(d/�), then

Pr
⇣
�min

⇣ 1

|T |U
>Q⇡TU

⌘
 1

4

⌘
 �.

The proof of Lemma 13 (given in appendix D.2) is a straight-forward application of the argument
given by [20]. We now propose a different reduction argument showing that a subspace embedding
guarantee for uniform sampling without replacement leads to a similar guarantee for volume sampling.
We achieve this by exploiting a volume sampling algorithm proposed recently by [13], shown
in Algorithm 3, which is a modification of the reverse iterative sampling procedure introduced
in [11]. This procedure relies on iteratively removing elements from the set S until we are left
with k elements. Specifically, at each step, we sample an index i from a conditional distribution,
i ⇠ Pr(i |S) = (1� 1

q⇡i
u>
⇡i
(U>Q⇡SU)�1u⇡i)/(|S|� d). Crucially for us, each step proceeds via

rejection sampling with the proposal distribution being uniform. We can easily modify the algorithm,
so that the samples from the proposal distribution are used to construct a uniformly sampled set T , as
shown in Algorithm 4. Note that sets S returned by both algorithms are identically distributed, and
furthermore, T is a subset of S, because every index taken out of S is also taken out of T .

Algorithm 3: Volume sampling
1: S  [m]
2: while |S| > k
3: repeat
4: Sample i unif. out of S
5: p 1� 1

q⇡i
u>
⇡i
(U>Q⇡SU)�1u⇡i

6: Sample Accept ⇠ Bernoulli(p)
7: until Accept = true
8: S  S\{i}
9: end

10: return S

Algorithm 4: Coupled sampling
1: S, T  [m]
2: while |S| > k
3: Sample i unif. out of [m]
4: T  T � {i}
5: if i 2 S
6: p 1� 1

q⇡i
u>
⇡i
(U>Q⇡SU)�1u⇡i

7: Sample Accept ⇠ Bernoulli(p)
8: if Accept = true, S  S\{i} end
9: end

10: end
11: return S, T

By Lemma 13, if size of T is at least C1 d log(d/�), then this set offers a subspace embedding
guarantee. Next, we will show that in fact set T is not much smaller than S, implying that the same
guarantee holds for S. Specifically, we will show that |S \ T | = O(d log(d/�)). Note that it suffices
to bound the number of times that a uniform sample is rejected by sampling A = 0 in line 7 of
Algorithm 4. Denote this number by R. Note that R =

Pm
t=k+1 Rt, where m = |Q| and Rt is the

number of times that A = 0 was sampled while the size of set S was t. Variables Rt are independent,
and each is distributed according to the geometric distribution (number of failures until success), with
the success probability

rt =
1

t

X

i2S

⇣
1� 1

q⇡i

u>
⇡i
(U>Q⇡SU)�1u⇡i

⌘
=

1

t

⇣
t� tr

�
(U>Q⇡SU)�1U>Q⇡SU

�⌘
=

t� d

t
.

Now, as long as m�d
k�d  C0 d

2
/�, we can bound the expected value of R as follows:

E[R] =
mX

t=k+1

E[Rt] =
mX

t=k+1

⇣
t

t� d
� 1

⌘
= d

m�dX

t=k�d+1

1

t
 d ln

⇣
m� d

k � d

⌘
 C2 d ln(d/�).
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In this step, we made use of the first stage sampling, guaranteeing that the term under the logarithm
is bounded. Next, we show that the upper tail of R decays very rapidly given a sufficiently large gap
between m and k (proof in Appendix D.3):

Lemma 14 Let Rt ⇠ Geom( t�d
t ) be a sequence of independent geometrically distributed random

variables (number of failures until success). Then, for any d < k < m and a > 1,

Pr
�
R � a E[R]

�
 e

a
2

⇣
k � d

m� d

⌘ a
2�1

for R =
mX

t=k+1

Rt.

Let a = 4 in Lemma 14. Setting C = C1 + 2aC2, for any k � C d ln(d/�), using m =

max{C0
d2

� , d+ e2 k
� }, we obtain that

R  aC2 d ln(d/�)  k/2, w.p. � 1� e2
k � d

m� d
� 1� �,

showing that |T | � k �R � C1 d ln(d/�) and k  2|T |.
Therefore, by Lemmas 12, 13 and 14, there is a 1� 3� probability event in which

�min

⇣ 1

|T |U
>Q⇡TU

⌘
� 1

4
and k  2|T |.

In this same event,

�min

⇣1
k
U>Q⇡SU

⌘
� �min

⇣1
k
U>Q⇡TU

⌘
� �min

⇣ 1

2|T |U
>Q⇡TU

⌘
� 1

2
· 1
4
=

1

8
,

which completes the proof of Theorem 9.

D.1 Proof of Lemma 12

Replacing vector r in Theorem 8 with each column of matrix U, we obtain that for m � C
d
✏ ,

E
⇥
kU>Q⇡U�U>Uk2F

⇤
 ✏ kUk2F = ✏ d.

We bound the 2-norm by the Frobenius norm and use Markov’s inequality, showing that w.p. � 1� �

kU>Q⇡U� Ik  kU>Q⇡U� IkF 
p
✏ d/�.

Setting ✏ = �
4d , for m � C0 d

2
/�, the above inequality implies that

�min

⇣ 1

m
U>Q⇡U

⌘
� 1

2
.

D.2 Proof of Lemma 13

Let ⇡ denote the sequence of m indices selected by volume sampling in the first stage. Suppose that
i1, ..., ik are independent uniformly sampled indices from [m], and let j1, ..., jk be indices sampled
uniformly without replacement from [m]. We define matrices

Z
def

=
kX

t=1

Ztz }| {
1

kqit

uitu
>
it , and bZ def

=
kX

t=1

bZtz }| {
1

kqjt

ujtu
>
jt .

Note that kZtk = d
k li

kuitk2 = d
k and, similarly, kbZtk = d

k . Moreover,

E[Z] =
kX

t=1


1

m

mX

i=1

1

kqi
uiu

>
i

�
= k

1

k

1

m
U>Q⇡U =

1

m
U>Q⇡U.

Combining Chernoff’s inequality with the reduction argument described in [20], for any �, and ✓ > 0,

Pr
�
�max(�bZ) � �

�
 e�✓� E

h
tr
�
exp(✓(�bZ))

�i
 e�✓� E

h
tr
�
exp(✓(�Z))

�i
.

Using matrix Chernoff bound of [32] applied to �Z1, ...,�Zk with appropriate ✓, we have

e�✓� E
h
tr
�
exp(✓(�Z))

�i
 d exp

⇣
� k

16d

⌘
, for � =

1

2
�max

⇣
� 1

m
U>Q⇡U

⌘
 �1

4
.

Thus, there is a constant C1 such that for k � C1 d ln(d/�), w.p. at least 1� � we have �min(bZ) � 1
4 .
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D.3 Proof of Lemma 14

We compute the moment generating function of the variable Rt ⇠ Geom(rt), where rt =
t�d
t :

E
⇥
e✓Rt

⇤
=

rt

1� (1� rt)e✓
=

t�d
t

1� d
t e✓

=
t� d

t� d e✓
.

Setting ✓ = 1
2d , we observe that de✓  d+ 1, and so E[e✓Rt ]  t�d

t�d�1 . Letting µ = E[R], for any
a > 1 using Markov’s inequality we have

Pr(R � aµ)  e�a✓µ E
⇥
e✓R

⇤
 e�a✓µ

mY

t=k+1

t� d

t� d� 1
= e�a✓µ m� d

k � d
.

Note that using the bounds on the harmonic series we can estimate the mean:

µ = d

m�dX

t=k�d+1

1

t
� d (ln(m� d)� ln(k � d)� 1) = d ln

⇣
m� d

k � d

⌘
� d,

so e�a✓µ  ea/2 exp

✓
� a

2
ln

⇣
m� d

k � d

⌘◆
= ea/2

⇣
m� d

k � d

⌘�a/2
.

Putting the two inequalities together we obtain the desired tail bound.

E Experiments

We present experiments comparing leveraged volume sampling to standard volume sampling and to
leverage score sampling, in terms of the total square loss suffered by the subsampled least-squares
estimator. The three estimators can be summarized as follows:

volume sampling: w⇤
S = (XS)

+yS , Pr(S) ⇠ det(X>
SXS), S 2

✓
[n]

k

◆
;

leverage score sampling: w⇤
⇡ = (Q

1/2
⇡ X)+Q

1/2
⇡ y, Pr(⇡) =

kY

i=1

l⇡i

d
, ⇡ 2 [n]k;

leveraged volume sampling: w⇤
⇡ = (Q

1/2
⇡ X)+Q

1/2
⇡ y, Pr(⇡) ⇠ det(X>Q⇡X)

kY

i=1

l⇡i

d
.

Both the volume sampling-based estimators are unbiased, however the leverage score sampling
estimator is not. Recall that Q⇡ =

P|⇡|
i=1 q

�1
⇡i

e⇡ie
>
⇡i

is the selection and rescaling matrix as defined
for q-rescaled volume sampling with qi =

li
d . For each estimator we plotted its average total loss,

i.e., 1
nkXw � yk2, for a range of sample sizes k, contrasted with the loss of the best least-squares

estimator w⇤ computed from all data.

Dataset Instances (n) Features (d)
bodyfat 252 14
housing 506 13

mg 1,385 21
abalone 4,177 36
cpusmall 8,192 12
cadata 20,640 8
MSD 463,715 90

Table 1: Libsvm regression datasets [9] (to in-
crease dimensionality of mg and abalone, we
expanded features to all degree 2 monomials,
and removed redundant ones).

Plots shown in Figures 1 and 2 were averaged over
100 runs, with shaded area representing standard er-
ror of the mean. We used seven benchmark datasets
from the libsvm repository [9] (six in this section
and one in Section 1), whose dimensions are given in
Table 1. The results confirm that leveraged volume
sampling is as good or better than either of the base-
lines for any sample size k. We can see that in some
of the examples standard volume sampling exhibits
bad behavior for larger sample sizes, as suggested
by the lower bound of Theorem 1 (especially notice-
able on bodyfat and cpusmall datasets). On the other
hand, leverage score sampling exhibits poor perfor-
mance for small sample sizes due to the coupon col-
lector problem, which is most noticeable for abalone

dataset, where we can see a very sharp transition after which leverage score sampling becomes
effective. Neither of the variants of volume sampling suffers from this issue.
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Figure 2: Comparison of loss of the subsampled estimator when using leveraged volume sampling vs
using leverage score sampling and standard volume sampling on six datasets.

F Faster algorithm via approximate leverage scores

Fast leveraged volume sampling
Input: X2Rn⇥d, k � d, ✏ � 0

Compute A = (1± ✏)X>X
Compute l̃i = (1± 1

2 ) li 8i2[n]

s max{k, 8d2}
repeat

⇡  empty sequence
while |⇡| < s

Sample i ⇠ (l̃1, . . . , l̃n)

a ⇠ Bernoulli
⇣
(1�✏)x

>
i A�1xi

2l̃i

⌘

if a = true, then ⇡  [⇡, i]
end
Q⇡  

Ps
j=1 d (x

>
⇡j

A�1x⇡j )
�1e⇡je

>
⇡j

Sample Acc ⇠ Bernoulli
⇣

det( 1
sX>Q⇡X)

det(A)

⌘

until Acc = true
S  VolumeSample

�
(Q

1/2
[1..n]X)⇡ , k

�

return ⇡S

In some settings, the primary computational cost of
deploying leveraged volume sampling is the preprocessing
cost of computing exact laverage scores for matrix
X 2 Rn⇥d, which takes O(nd2). There is a large body
of work dedicated to fast estimation of leverage scores
(see, e.g., [16, 27]), and in this section we examine
how these approaches can be utilized to make leveraged
volume sampling more efficient. The key challenge here
is to show that the determinantal rejection sampling
step remains effective when distribution q consists of
approximate leverage scores. Our strategy, which is
described in the algorithm fast leveraged volume sampling,
will be to compute an approximate covariance matrix
A = (1 ± ✏)X>X and use it to compute the rescaling
distribution qi ⇠ x>

i A
�1xi. As we see in the lemma

below, for sufficiently small ✏, this rescaling still retains
the runtime guarantee of determinantal rejection sampling
from Theorem 6.
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Lemma 15 Let X 2 Rn⇥d
be a full rank matrix, and suppose that matrix A 2 Rd⇥d

satisfies

(1� ✏)X>X � A � (1 + ✏)X>X, where
✏

1� ✏
 1

16d
.

Let ⇡1, . . . ,⇡s be sampled i.i.d. ⇠ (l̂1, . . . , l̂n), where l̂i = x>
i A

�1xi. If s � 8d2, then

for Q⇡ =
sX

j=1

d

l̂⇡j

e⇡je
>
⇡j
,

det( 1sX
>Q⇡X)

det(A)
 1 and E


det( 1sX

>Q⇡X)

det(A)

�
� 3

4
.

Proof of Lemma 15 follows along the same lines as the proof of Theorem 6. We can compute matrix
A�1 efficiently in time eO(nd+ d

3
/✏

2) using a sketching technique called Fast Johnson-Lindenstraus
Transform [1], as described in [16]. However, the cost of computing the entire rescaling distribution
is still O(nd2). Standard techniques circumvent this issue by performing a second matrix sketch.
We cannot afford to do that while at the same time preserving the sufficient quality of leverage
score estimates needed for leveraged volume sampling. Instead, we first compute weak estimates
l̃i = (1± 1

2 )li in time eO(nd+ d
3) as in [16], then use rejection sampling to sample from the more

accurate leverage score distribution, and finally compute the correct rescaling coefficients just for
the obtained sample. Note that having produced matrix A�1, computing a single leverage score
estimate l̂i takes O(d2). The proposed algorithm with high probability only has to compute O(s)
such estimates, which introduces an additional cost of O(sd2) = O((k + d

2) d2). Thus, as long
as k = O(d3), dominant cost of the overall procedure still comes from the estimation of matrix A,
which takes eO(nd+ d

5) when ✏ is chosen as in Lemma 15.

It is worth noting that fast leveraged volume sampling is a valid q-rescaled volume sampling dis-
tribution (and not an approximation of one), so the least-squares estimators it produces are exactly
unbiased. Moreover, proofs of Theorems 8 and 9 can be straightforwardly extended to the setting
where q is constructed from approximate leverage scores, so our loss bounds also hold in this case.
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