Supplementary Material for Generalized Inverse Optimization through
Online Learning

Chaosheng Dong, Yiran Chen, Bo Zeng

A  Omitted mathematical reformulations

A.1 Single level reformulation for the Inverse Linear Optimization Problem

When the objective function is linear, namely, the optimization problem has the following form
T

min c¢'x
xE]R?r LP
sit. Ax>Db.

Suppose that the right hand side b changes over time ¢. That is, b = b; at time t. When trying to learn
c, the single level reformulation the inverse problem is

min e — i3 + mllye — x|3

ceO

sit. Ax >by, x>0,
ATu<c,
x < Mz,
c—ATu < Mi(1—2),
u < Mazo,

Ax — bt S Mg(l — ZQ),
x €RY, uelR?P, z €{0,1}", 2z e {0,1}"™,
where M; and M, are appropriate numbers used to bound x and ¢ — ATu, u and Ax — b, respectively.

We have a similar single level reformulation when learning the Right-hand side b. Clearly, this is a
Mixed Integer Second Order Cone program(MISOCP) when learning either ¢ or b.

A.2 Single level reformulation for the Inverse Quadratic Optimization Problem

When the objective functions are quadratic, namely, the optimization problem has the following form

min %XTQX +c’'x
xER™

QP
s.t. Ax>b.

Suppose that ¢ changes over time ¢. That is, ¢ = c¢; at time ¢. When trying to learn b, the single level
reformulation for the inverse problem is

1 2 2
min 3[|b —byll3 +nelly: — x|3

st. Ax>b,
u< Mz,
Ax —b < M(1-12),
Qx+c;—ATu=0,
beR™, xeR" ueR?}, ze{0,1}™,
where M is an appropriate number used to bound u and Ax — b.

We have a similar single level reformulation when learning the objective c. Clearly, this is a Mixed
Integer Second Order Cone program(MISOCP) when learning either ¢ or b.
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B Omitted Proofs

B.1 Proof of Lemma 3.1

Proof. By Assumption 3.1(b), we know that S(u, ) is a single-valued set for each u € U.
Yy € Y, Yu € U, V01,02 € O, without of loss of generality, let I(y,u,01) > l(y,u,02). Then,

|Z(Y>ua 01) - l(Yvuv 02)| = l(Y)“a 01) - l(Yauv 92)
= [ly = S(u, 00)[13 — lly = S(u,02)|13

1
= (S(u,02) — S(u,01),2y — S(u,01) — S(u, b)) (1)
< 2(B + R)HS(U, (92) — S(U, 91)”2
The last inequality is due to Cauchy-Schwartz inequality and the Assumptions 3.1(a), that is
12y — S(u,01) = S(u,02)[]2 < 2(B + R). (2)

Next, we will apply Proposition 6.1 in Bonnans and Shapiro [1998] to bound ||S(u, 62) — S(u, 601)]|2-
Under Assumptions 3.1 - 3.2, the conditions of Proposition 6.1 in Bonnans and Shapiro [1998] are
satisfied. Therefore,

2
|5(u.62) = S(u,01)ll2 < S[61 ~ bl (3)
Plugging (2) and (3) in (1) yields the claim. O

B.2 Proof of Theorem 3.2

Proof. we will use Theorem 3.2 in Kulis and Bartlett [2010] to prove our theorem.

Let G¢(0) = 1110 — 64]3 + ml(ye, wi, 0).

We will now show the loss function is convex. The first step is to show that if Assumption 3.3 holds,
then the loss function [(y,u, ) is convex in 0. Vy € Y, Yu € U, V01,05 € O, we have

al(y,u,01) + Bl(y,u,602) — Uy, u, ab + 62)
= aly = S(u,0)[3 + Blly — S(w,02) 13 — lly — S(u, afy + 862)[3
= ally = S(u, 00)[3 + Blly — S(u,02)[13 — lly — aS(u,01) — BS(u, 02)|3

+y — aS(u,01) — BS(u, 02)I3 — lly — S(u, a1 + 562)|3
= aBlS(u,01) = S(u, 02)[13 + ly — aS(u,01) — BS(u,02) 13 — lly — S(u, af + B62)[3 (4)
= aflS(u,01) — S(u, 62)II3

—(aS(u,01) + BS(u,b2) — S(u, by + 62),2y — S(u,ab; + 02) — aS(u,01) — BS(u,62))
aB||S(u, 01) — S(u,02)[13 — [[eS(u, 01) + BS(u, 02) — S(u, abr + B2) |22y — S(u, ab:
+802) — aS(u,01) — BS(u,b2)|2.

v

The last inequality is by Cauchy-Schwartz inequality. Note that

”OéS(’U,, 91) + ,BS(U, 92) — S(u, afy + 592)”2”2}’ — S(u,a91 + 592) — aS(u,Hl) — BS(’U,, 92)”2
< 2(B+ R)||aS(u,01) + 8S(u,02) — S(u,ab; + £02)]|2 (5)
< af||S(u,61) — S(u,02)||2 (By Assumption 3.3).

Plugging (5) in (4) yields the result.

Using Theorem 3.2 in Kulis and Bartlett [2010], for oy < Gé(f(gr)l) we have

Ry < S0 (1 — an)mil(ys, we, 00) + 2 (116: — 0°[13 — 1611 — 67[13)- (6)
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Notice that

Gi(0:) — Ge(Or41) = ne(U(ye, s, 00) — Uye, ue, Or11)) — 51100 — a3

< MH@ — Ops1ll2 = 5110¢ — Oria |13 g

B+R 2,22
< SEHRE
The first inequality follows by applying Lemma 3.1.

Let oy = Gé(e(”)l) Using (7), we have

2,22

(1 = ap)ml(ye, ue, 0r) = (1 — ar)Ge(0:) = Gi(6r) — Ge(Or41) < %. (8)

A

Plug (8) in (6), and note the telescoping sum,
T
B + R :‘i Nt 1 % %
Z +ZT(“0t_9 15— 116041 — 67]3).
t=1 =1 <"t

Setting 1y = ﬁ, we can upper bound the second summation by ZMQ(B+R)DH T since ||0; — 0*[|2 <

2D, v/t < /T, and then the sum telescopes. The first sum simplifies using Z =1 - < 2v/T — 1 to obtain
the result

2(B D
Ry < 32 LD 7

Note that choosing n; = % also yields O(v/T) regret, but the result above is tighter. O

B.3 Proof of Theorem 3.3

Proof. Since f(x,u,0) is strongly convex in x on R™ by Assumption 3.1, it is also strictly convex in x on
R™. Then, all the conditions required in Theorem 3. of Aswani et al. [2018] are naturally satisfied under
our assumptions. Applying that theorem yields

T Z l Ytautv —> E [Z(Y7u7 9*)] ) (9)
te[T]

where 07 = argmin{ > I(y¢, us,6)} is the estimation of the parameter in batch setting.

From Theorem 3.2 we have

8\@(3 + R)Dk
— Uy, ue, 0r) — = Uy, u, 0°) < — 0. 10
Z Y, U, Ut tez[;] Y, ut )\\/T ( )

Adding (9) and (10) up, we have the risk consistency result

1 )
T > Uy, ) = E iy, u, 0%)] .

te|T)
O
B.4 Proof of Corollary 3.3.1
Proof. Note that V0 € O,
Ell(y,u,0)] =E| min |x+¢e— )N(H%] =E [ mln Hx - x||2} + Elele] > E[e!e].
%€S(u,0) €S(u,
We further notice that E [mingeg(y 00 [% — X[|3] = 0, since x € S(u, ). Therefore, we have
E[U(y,u,0")] = E[i(y,u, 60)] = E[¢"¢].
Then, applying Theorem 3.3 yields the result, since we have shown E [I(y,u, 0*)] = E[e”]. O
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C Omitted Examples

C.1 Examples for which Assumption 3.3 holds
Consider for example the following quadratic program
iIelliRI}l xTQx + (c+u)Tx

s.it. Ax>b.

where (@) is a positive semidefinite matrix, and u is the external signal.

Suppose that the parameter we seek to learn is ¢, all the others are given. If for each v € U, the optimal
solution for the above program is in the interior of the feasible region, which essentially occurs when the
external signal v does not has a large range for the constrained QP. Then,

S(u,e1) = —Q Y(e1 +u); S(u,ca) = —Q ez +u); S(u,act + Bez) = —Q Haey + Bea + u);
Then, we have

0 = [|aS(u,c1) + BS(u,c2) — S(u,acy + fea)|l2 < aB||S(u,01) — S(u, 02)|]2/(2(B + R)).

D Data for the applications

D.1 Data for learning the consumer behavior

Table 1: True r
1.180 1.733 1.564 0.040 2.443 1.055 4.760 5.000 1.258 4.933

Table 2: True Q)
0 0

2.360
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D.2 Data for learning the transportation cost

Welet Ay =2, Ao =10, ue = 1.3 for all e € E, y; = 3 and yo = 1.5.

Table 3: True transportation cost for each edge
€13 C14 €23 €25 C34 €35
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