
Appendix

Measure: op_u hid_u g_op_b Huber

Model stride (g) / step (s) P R F1 P R F1 P R F1 ·10−4

Input 64 / 15 0.74 0.27 0.40 0.00 0.00 0.00 0.97 0.25 0.39 32.05
PS 0.66 0.41 0.50 0.50 0.30 0.38 0.97 0.48 0.64 28.97
PM. 0.43 0.68 0.53 0.43 0.53 0.47 0.94 0.70 0.80 37.41
PM+R 0.25 0.70 0.37 0.20 0.57 0.30 0.95 0.82 0.88 -
conv-lstm 0.53 0.75 0.62 0.47 0.67 0.56 0.94 0.91 0.92 10.40
conv 0.48 0.61 0.53 0.46 0.58 0.51 0.91 0.86 0.89 19.43

input 32 / 30 0.44 0.15 0.23 0.00 0.00 0.00 0.97 0.29 0.45 1.173
PS 0.32 0.34 0.33 0.25 0.26 0.25 0.97 0.65 0.78 1.269
PM. 0.24 0.42 0.31 0.21 0.32 0.26 0.94 0.69 0.80 2.031
PM+R 0.10 0.45 0.17 0.07 0.36 0.12 0.95 0.81 0.88 -
conv-lstm 0.43 0.51 0.47 0.43 0.44 0.44 0.91 0.90 0.90 0.503
conv 0.44 0.52 0.48 0.44 0.45 0.44 0.94 0.90 0.92 0.503

input 32 / 15 0.50 0.15 0.22 0.00 0.00 0.00 0.97 0.25 0.39 1.134
PS 0.32 0.36 0.34 0.24 0.29 0.26 0.97 0.64 0.77 1.254
PM. 0.22 0.47 0.30 0.19 0.38 0.25 0.94 0.70 0.80 2.443
PM+R 0.09 0.50 0.16 0.07 0.41 0.12 0.95 0.82 0.88 -
conv-lstm 0.47 0.55 0.51 0.47 0.49 0.48 0.96 0.92 0.94 0.430
conv 0.45 0.52 0.48 0.44 0.45 0.45 0.93 0.90 0.91 0.488

input 32 / 5 0.63 0.15 0.24 0.00 0.00 0.00 0.98 0.21 0.34 1.079
PS 0.32 0.39 0.35 0.23 0.31 0.27 0.97 0.61 0.75 1.196
PM. 0.18 0.53 0.27 0.16 0.45 0.24 0.94 0.71 0.81 3.285
PM+R 0.08 0.57 0.15 0.07 0.48 0.12 0.95 0.83 0.89 -
conv-lstm 0.49 0.56 0.52 0.46 0.49 0.47 0.96 0.93 0.95 0.424
conv 0.49 0.55 0.52 0.46 0.48 0.47 0.94 0.89 0.91 0.431

input 32 / 0 0.63 0.15 0.24 0.00 0.00 0.00 0.98 0.21 0.34 1.079
PS 0.32 0.39 0.35 0.23 0.31 0.27 0.97 0.61 0.75 1.196
PM. 0.18 0.53 0.27 0.16 0.45 0.24 0.94 0.71 0.81 3.285
PM+R 0.08 0.57 0.15 0.07 0.48 0.12 0.95 0.83 0.89 -
conv-lstm 0.48 0.52 0.50 0.45 0.45 0.45 0.94 0.85 0.89 0.465
conv 0.50 0.54 0.52 0.48 0.47 0.47 0.94 0.88 0.91 0.429

Table 4: Performance of our proposed models and all considered baselines for each task on F1,
precision, and recall.

Model Hyperparameters

Because there was little prior research on the types of models that would work well for this task,
we arrived to our final models through a combination of hand tuning and random grid search. The
hyperparameters we tuned over were:

• Model structure:

– A purely convolutional encoder, described as ConvNet in Section 4.

– A convolutional encoder with spatially replicated LSTMs, described as Convolutional-
LSTMs in Section 4.

– A encoder decoder model without an RNN, with convolutions in the temporal dimen-
sion as well. This did not work as well as models with an LSTM, in preliminary
experiments.

• Model depth - 4, 9, or 16 layers. In the convolutional-LSTM models, this corresponds to 1,
2, or 3 extra LSTM layers.

• Whether we predict a delta from the previous frame or the full value.

12



• Whether there is a skip connection that bypasses the encoder or not.

• Huber vs MSE loss.

• Optimizer parameters, including learning rate [1e-2, 1e-3, 1e-4, 1e-5], SGD vs. Adam,
decaying the learning rate, momentum [0, 0.9, 0.99].

• Basic ConvNet blocks being either [basic convolution, gated convolution, residual block].

• Nonlinearity [ELU, ReLU, SeLU].

The convolutions were fixed to have 128 channels at all layers, and the LSTM was fixed to have 256
channels whenever they occur. The ConvNet structure had 300k parameters at 4 layers and 600k at 9
layers. The Convolutional-LSTM had 450k at 4 layers and 800k at 9 layers. We noticed that the
number of layers did not seem to impact results, so we believe that the number of parameters was not
a big factor in comparing the different model structures. In the final experiments, we fixed predicting
a delta over previous frame, huber loss, Adam with learning rate 1e-4, and an ELU nonlinearity. We
sweeped over [4, 9] layers, and [basic convolution, gated convolution, residual block], and picked the
best performing hyperparameters for each structure to report in the table.

Complexity of StarCraft

StarCraft is a Real-Time Strategy game, as such: it has approximately 24 turns/second and units
can take simultaneous moves. We make some approximations to try to compute the complexity of
the game. Each unit can perform thousands of actions per frame, i.e. move to each location on the
map. If we consider actions to be the same if they create the same trace in the next few frames,
we can estimate that there might be 25 different actions per unit over a short time span. We also
approximate 50 units for a given player, producing a branching factor b = 2550. The depth of the
game corresponds to the number of frames, and the average length of high level of skill human games
is approximately 15 minutes [19], d = 21600. Thus, we give a back-of-the-envelope possible number
of games at (2550)21600 [23, 24].

The size of the state space is equivalently gigantic, let us assume that 512 × 512 is an adequate
resolution to play at the highest level of play. There are various elevations and “walkability” of terrain,
as well as a limit on the number of units a player can have between 100 and 400. Those units have
static (range, speed, attack, armor, etc) and dynamic (location, hit points, cooldown, energy, velocity,
acceleration, etc) properties. For the sake of argument, we assume 15 continuous properties that we
can bin into 100 bins each, and 50 discrete properties of 2 values each, being the 50 or so flags are
that exposed in BWAPI. The state space is then around 1045 per unit. As we assumed 50 units on

Figure 4: Screenshot of a replay viewed in StarCraft: Brood War. The thin white lines are marking
squares of 32 by 32 walk tiles for which we predict accumulated unit counts by type. During normal
play, fog of war (not shown) would prevent the orange player on the bottom right from observing the
highlighted building on the upper left hand corner due to limited vision of their units.

13



each side, this gives a back of the envelope calculation of 10010
45

states. Of course, many of these
states are highly improbable and/or hard to reach.

Since we ignore the attributes and only focus on the locations, and we do somewhat aggressive
binning, the problem that we present in this paper is far less complex. Each frame of the dataset
has 230 channels, representing each unit type - 115 different units and 2 sides. We are to predict to
non-partially observed forward prediction of each unit type in each spatial location. At a maximum
map size of 512 and grid size of 32, Each frame is thus 16× 16× 230, and the output is of the same
size. Thus, each frame has 58880 regression problems – the number of units in each spatial cell.
We also have approximately “60k games × 70 time steps × 2 sides” = 8.4 million frames. This
dataset is on the same order of magnitude as ImageNet, with an output structure comparable to image
segmentation.

Name StarCraft Race Achievement

IronBot Terran 1st Place, AIIDE 2016
LetaBot Terran 1st Place, SSCAIT 2017
McRave Protoss 4th Place, SSCAIT 2018
Skynet Protoss 1st Place, AIIDE 2011 + 2012
tscmoo Terran/Protoss 1st Place, AIIDE 2015
UAlbertaBot Terran/Protoss 1st Place, AIIDE 2013

Table 5: Set of bots used as opponents in our full-game experiments.

14


