A Proofs

A.1 Proof of Theorem 1

Recall that we consider a fixed $\theta \in \Theta$, $x_0 \in \mathcal{X}$, $y_0 \in \mathcal{Y}$, and $z_0 = g(\theta_f; x_0)$. We begin by noting that since $\text{Im}(g(\theta_f; \cdot)) = \mathbb{R}^p$, we have

$$(\theta; (x_0, y_0)) = \sup_{x \in \mathcal{X}} \left\{ \ell(\theta; (x, y_0)) - \gamma c_{\theta}((x, y_0), (x_0, y_0)) \right\}$$

=
$$\sup_{z \in \mathbb{R}^p} \left\{ \ell(\theta; (z, y_0)) - \frac{\gamma}{2} \| z - z_0 \|_2^2 =: h(z) \right\}.$$
 (12)

Similarly as x_{ϵ}^{\star} , let z_{ϵ}^{\star} be an ϵ -optimizer to the problem (12)

$$z_{\epsilon}^{\star} \in \epsilon \operatorname{-} \operatorname*{arg\,max}_{z \in \mathbb{R}^{p}} \left\{ \ell(\theta; (z, y_{0})) - \frac{\gamma}{2} \left\| z - z_{0} \right\|_{2}^{2} \right\}.$$

To further ease notation, let us denote

 ϕ_{γ}

$$\ell_1(\theta; (z, y_0)) := \ell(\theta; (z_0, y_0)) + \nabla_z \ell(\theta; (z_0, y_0))^\top (z - z_0)$$

$$\ell_2(\theta; (z, y_0)) := \ell(\theta; (z_0, y_0)) + \nabla_z \ell(\theta; (z_0, y_0))^\top (z - z_0) + \frac{1}{2} (z - z_0)^\top \nabla_{zz} \ell(\theta; (z_0, y_0)) (z - z_0),$$

the first- and second-order approximation of $z \mapsto \ell(\theta; (z, y_0))$ around $z = z_0$ respectively.

First, we note that $\|\nabla_{zz}\ell(\theta;(z,y))\| \le L_1 < \gamma$ by hypothesis and hence, $\widehat{g}_{newton}(\theta_f;x_0)$ attains the maximum in the problem

$$\widehat{g}_{\text{newton}}(\theta_{f}; x_{0}) = z_{0} + \frac{1}{\gamma} \left(I - \frac{1}{\gamma} \nabla_{zz} \ell(\theta; (z_{0}, y_{0})) \right)^{-1} \nabla_{z} \ell(\theta; (z_{0}, y_{0}))$$

$$= \underset{z \in \mathbb{R}^{p}}{\operatorname{arg\,max}} \left\{ \ell_{2}(\theta; (z, y_{0})) - \frac{\gamma}{2} \| z - z_{0} \|_{2}^{2} := h_{2}(z) \right\}$$
(13)

Now, note that $h_2(z) = \ell_2(\theta; (z, y_0)) - \frac{\gamma}{2} ||z - z_0||_2^2$ is $(\gamma - L_1)$ - strongly concave since $\lambda_{\min}(-\nabla_{zz}h(z)) \ge \gamma - \lambda_{\max}(\nabla_{zz}\ell_2(\theta; (z, y_0))) \ge \gamma - L_1$

by Assumption 1, where λ_{\max} and λ_{\min} denotes the maximum and minimum eigenvalue respectively. Recalling the definition of h(z) given in Eq (12), we then have

$$\frac{\gamma - L_1}{2} \left\| z_{\epsilon}^{\star} - \widehat{g}_{\text{newton}}(\theta_f; x_0) \right\|_2^2 \leq h_2 \left(z_{\epsilon}^{\star} \right) - h_2 \left(\widehat{g}_{\text{newton}}(\theta_f; x_0) \right) \\ = h \left(z_{\epsilon}^{\star} \right) - h \left(\widehat{g}_{\text{newton}}(\theta_f; x_0) \right) + h_2 \left(z_{\epsilon}^{\star} \right) - h \left(z_{\epsilon}^{\star} \right) \\ + h \left(\widehat{g}_{\text{newton}}(\theta_f; x_0) \right) - h_2 \left(\widehat{g}_{\text{newton}}(\theta_f; x_0) \right) \\ \leq \epsilon + h_2 \left(z_{\epsilon}^{\star} \right) - h \left(z_{\epsilon}^{\star} \right) \\ + h \left(\widehat{g}_{\text{newton}}(\theta_f; x_0) \right) - h_2 \left(\widehat{g}_{\text{newton}}(\theta_f; x_0) \right) \tag{14}$$

where we used the definition of z_{ϵ}^{\star} in the last inequality.

Next, we note that h_2 and h are close by Taylor expansion.

Lemma 2 ([29, Lemma 1]). Let $f : \mathbb{R}^p \to \mathbb{R}$ have a *L*-Lipschitz Hessian so that for all $z, z' \in \mathbb{R}^p$, $\|\nabla_{zz}f(z) - \nabla_{zz}f(z')\| \le L \|z - z'\|_2$. Then, for all $z, z' \in \mathbb{R}^p$,

$$\left| f(z') - f(z) - \nabla f(z)^{\top} (z'-z) - \frac{1}{2} (z'-z)^{\top} \nabla_{zz} f(z) (z'-z) \right| \le \frac{L}{6} \left\| z'-z \right\|_{2}^{2}.$$

Applying Lemma 2, we have that

$$|h_2(z) - h(z)| \le \frac{L_2}{6} ||z - z_0||_2^3.$$

Using this inequality in the bound (14), we arrive at

$$\frac{\gamma - L_1}{2} \left\| z_{\epsilon}^{\star} - \widehat{g}_{\text{newton}}(\theta_f; x_0) \right\|_2^2$$

$$\leq \epsilon + \frac{L_2}{6} \left(\left\| z_0 - z_{\epsilon}^{\star} \right\|_2^3 + \left\| z_0 - \widehat{g}_{\text{newton}}(\theta_f; x_0) \right\|_2^3 \right)$$
(15)

From definition (13) of $\widehat{g}_{newton}(\theta_f; x_0)$, we have

$$\|z_0 - \widehat{g}_{\text{newton}}(\theta_f; x_0)\|_2^3 \le \left(\frac{1}{\gamma}\right)^3 \left(\frac{\gamma}{\gamma - L_1}\right)^3 L_0^3.$$
(16)

Next, to bound $||z_0 - z_{\epsilon}^{\star}||_2$ in the bound (15), we show that z_{ϵ}^{\star} and z_0 are at most $O(1/\gamma)$ -away. We defer the proof of the following lemma to Appendix A.2

Lemma 3. Let Assumption 1 hold and $Im(g(\theta_f; \cdot)) = \mathbb{R}^p$. Then,

$$\left\| z_{\epsilon}^{\star} - z_0 - \frac{1}{\gamma} \nabla_z \ell(\theta; (z_0, y_0)) \right\|_2 \le \frac{4L_0}{\gamma} + \sqrt{\frac{2\epsilon}{\gamma}}.$$

Applying Lemma 3 to bound $||z_0 - z_{\epsilon}^{\star}||_2^3$ on the right hand side of inequality (15), and using the bound (16) for $||z_0 - \widehat{g}_{newton}(\theta_f; x_0)||_2^3$, we obtain

$$\frac{\gamma - L_1}{2} \left\| z_{\epsilon}^{\star} - \widehat{g}_{\text{newton}}(\theta_f; x_0) \right\|_2^2 \le \epsilon + \frac{L_2}{6} \left[\left(\frac{5L_0}{\gamma} \right)^3 + \left(\frac{2\epsilon}{\gamma} \right)^{\frac{3}{2}} + \left(\frac{L_0}{\gamma - L_1} \right)^3 \right].$$

This gives the final result.

A.2 Proof of Lemma 3

We use the following key lemma which says that for functions that satisfy a growth condition, its minimum is stable to perturbations to the function.

Lemma 4 ([4, Proposition 4.32]). Suppose that f_0 satisfies the second-order growth condition: there exists a c > 0 such that if we denote by z^* the minimizer of f so that $f_0(z^*) = \inf_{z \in \mathbb{R}^p} f_0(z)$, we have for all z

$$f_0(z) \ge f_0(z^*) + c ||z - z^*||_2^2.$$

If there is a function $f_1 : \mathbb{R}^p \to \mathbb{R}$ such that $f_0 - f_1$ is κ -Lipschitz on a neighborhood N of x^* , then z, any ϵ -approximate minimizer of f_1 in N, satisfies

$$||z - z^{\star}||_2 \le c^{-1}\kappa + c^{-1/2}\epsilon^{1/2}$$

Letting $f_0(z) := -\ell_1(\theta; (z, y_0)) + \frac{\gamma}{2} ||z - z_0||_2^2$ and $f_1(z) := -h(z) = -\ell(\theta; (z, y_0)) + \frac{\gamma}{2} ||z - z_0||_2^2$, note first that f_0 is γ -strongly convex. Further, $f_0(z) - f_1(z) = \ell(\theta; (z, y_0)) - \ell_1(\theta; (z, y_0))$ is $2L_0$ -Lipschitz by Assumption 1. Applying Lemma 4, we obtain the result.

A.3 Proof of Theorem 2

Again, we abuse notation by writing $\ell(\theta; (z, y)) = \ell(\theta; (x, y))$ for $z = g(\theta_f; x) \in \mathbb{R}^p$, and similarly $p_j(\theta; z)$ and $\phi_\gamma(\theta; z)$. We begin by noting that since $\operatorname{Im}(g(\theta, \cdot)) = \mathbb{R}^p$, we have

$$\phi_{\gamma}(\theta;(x,y)) = \sup_{z' \in \mathbb{R}^p} \left\{ \ell(\theta;(z',y)) - \frac{\gamma}{2} \left\| z - z' \right\|_2^2 \right\}.$$

The following claim will be crucial.

Claim 5. If $z \mapsto \nabla_z \ell(\theta; (z, y))$ is L-Lipschitz with respect to the $\|\cdot\|_2$ -norm, then

$$\frac{1}{\gamma+L} \left\| \nabla_z \ell(\theta;(z,y)) \right\|_2^2 \le \phi_\gamma(\theta;(z,y)) - \ell(\theta;(z,y)) \le \frac{1}{\gamma-L} \left\| \nabla_z \ell(\theta;(z,y)) \right\|_2^2.$$

Proof of Claim From Taylor's theorem, we have

$$|\ell(\theta; (z', y)) - \ell(\theta; (z, y)) - \nabla_z \ell(\theta; (z, y))^\top (z' - z)| \le \frac{1}{2} L ||z - z'||_2^2.$$

Using this approximation in the definition of $\phi_{\gamma}(\theta; (z, y))$, we get

$$\begin{split} \phi_{\gamma}(\theta;(z,y)) &\leq \sup_{z'} \left\{ \ell(\theta;(z,y)) + \nabla_{z} \ell(\theta;(z,y))^{\top} (z'-z) - \frac{\gamma - L}{2} \|z - z'\|_{2}^{2} \right\} \\ &= \ell(\theta;(z,y)) + \frac{1}{2(\gamma - L)} \|\nabla_{z} \ell(\theta;(z,y))\|_{2}^{2}. \end{split}$$

Similarly, we can compute the lower bound

$$\phi_{\gamma}(\theta;(z,y)) \ge \sup_{z'} \left\{ \ell(\theta;(z,y)) + \nabla_{z} \ell(\theta;(z,y))^{\top} (z-z') - \frac{\gamma+L}{2} \|z-z'\|_{2}^{2} \right\}$$
$$= \ell(\theta;(z,y)) + \frac{1}{2(\gamma+L)} \|\nabla_{z} \ell(\theta;(z,y))\|_{2}^{2}.$$

Combining the two bounds, the claim follows.

From the claim, it suffices to show that $z \mapsto \nabla_z \ell(\theta; (z, y))$ is *L*-Lipschitz. From $\nabla_z \ell(\theta; (z, y)) = -\theta_{c,y} + \sum_{j=1}^m p_j(\theta; z) \theta_{c,j}$, we have

$$\|\nabla_{z}\ell(\theta;(z',y)) - \nabla_{z}\ell(\theta;(z,y))\|_{2} = \left\|\sum_{j=1}^{m} (p_{j}(\theta;z) - p_{j}(\theta;z'))\theta_{j}\right\|_{2}.$$

Now, since

$$\left\|\nabla_{z}p_{j}(\theta;z)\right\|_{2} = \left\|-p_{j}(\theta;z)\left(\theta_{j}-\sum_{l=1}^{m}p_{l}(\theta;z)\theta_{l}\right)\right\|_{2} \leq 2 \max_{1\leq j\leq m}\left\|\theta_{c,j}\right\|_{2},$$

we conclude that

$$\|\nabla_z \ell(\theta; (z', y)) - \nabla_z \ell(\theta; (z, y))\|_2 \le L(\theta) \|z - z'\|_2.$$

Figure 3. Results obtained by running ADDA algorithm [39] using 10, 000 labeled MNIST samples and a number of target samples indicated on the x-axis. The *blue* lines indicate results obtained with our method with K = 2 and $\gamma = 1.0$. Test sets are MNIST-M (*left*), SYN (*middle*) and USPS (*right*).

B Additional Experimental Results

Table 1 reports results associated with the digit experiment (Section 4.1, Figure 2). In particular, it reports numerical results (averaged over 10 different runs) obtained with models trained with Algorithm 1 by varying the hyperparameters K and γ . Training set is constituted by 10,000 MNIST samples, models were tested on SVHN, MNIST-M, SYN and USPS (see Figure 1 (*top*)). The baselines (accuracies achieved by models trained with ERM) are:

- SVHN: 0.283 ± 0.032
- MNIST-M: 0.548 ± 0.021
- SYN: 0.406 ± 0.022
- USPS: 0.789 ± 0.017

Table 2 reports results associated with the semantic segmentation experiment (Section 4.2, Figure 3). To summarize, it reports results obtained by training models on *Highway* and testing them on *New York-like City* and *Old European Town*, and by training models on *New York-like City* and testing them on *Highway* and *Old European Town* (see Figure 1 (*bottom*) to observe the different weather/time/date conditions). The comparison is between models trained with ERM (*ERM rows*) and our method (*Ours rows*), e.g.Algorithm 1 with K = 1 and $\gamma = 1.0$.

Finally, Figure 4 reports a comparison between our method (*blue*) and the unsupervised domain adaptation algorithm ADDA [39] (*yellow*), by varying the number of target images fed to the latter during training. Note that, since unsupervised domain adaptation algorithms make use of target data during training while our method does not, the comparison is not fair. However, we are interested in evaluating to which extent our method can compete with a well performing unsupervised domain adaptation algorithm [39]. While on MNIST \rightarrow USPS split ADDA clearly outperforms our method, on MNIST \rightarrow MNIST-M the accuracies reached by our method are just slightly lower than the ones reached by ADDA, and on MNIST \rightarrow SYN our method outperforms it, even if the domain adaptation algorithm has access to a large number of samples from the target domain. Finally, note that MNIST \rightarrow SVHN results are not provided because ADDA would not converge on this split (in effect, these results are neither reported in the original work [39]). Instead, models trained on MNIST samples using our method better generalize to SVHN, as shown in Section 4.1.

	K=1	K=2	K=3	K=4
SVHN				
$\gamma = 10^{-6}$	0.287 ± 0.006	0.327 ± 0.016	0.334 ± 0.031	0.328 ± 0.033
$\gamma = 10^{-5}$	0.201 ± 0.000 0.284 ± 0.036	0.321 ± 0.010 0.311 ± 0.033	0.304 ± 0.001 0.316 ± 0.036	0.320 ± 0.000 0.331 ± 0.026
$\gamma = 10^{-4}$	0.204 ± 0.000 0.331 ± 0.018	0.311 ± 0.000 0.324 ± 0.026	0.310 ± 0.000 0.336 ± 0.020	0.301 ± 0.020 0.325 ± 0.030
$\gamma = 10^{-3}$	0.391 ± 0.010 0.294 ± 0.023	0.324 ± 0.020 0.316 ± 0.029	0.300 ± 0.020 0.309 ± 0.024	0.323 ± 0.030 0.343 ± 0.017
$\gamma = 10^{-2}$	0.291 ± 0.020 0.290 ± 0.041	0.320 ± 0.029 0.320 ± 0.030	0.360 ± 0.021 0.341 ± 0.030	0.346 ± 0.033
$\gamma = 10^{-1}$ $\gamma = 10^{-1}$	0.280 ± 0.011 0.284 ± 0.007	0.320 ± 0.000 0.324 ± 0.017	0.307 ± 0.026	0.323 ± 0.029
$\gamma = 10^{0}$	0.284 ± 0.0012	0.306 ± 0.008	0.314 ± 0.022	0.335 ± 0.029
$\gamma = 10^{1}$	0.305 ± 0.031	0.301 ± 0.035	0.316 ± 0.027	0.343 ± 0.030
$\gamma = 10^{2}$	0.304 ± 0.032	0.300 ± 0.017	0.327 ± 0.026	0.321 ± 0.034
$\gamma = 10^{3}$	0.289 ± 0.030	0.314 ± 0.032	0.300 ± 0.017	0.304 ± 0.025
$\dot{\gamma} = 10^4$	0.300 ± 0.020	0.299 ± 0.028	0.325 ± 0.015	0.340 ± 0.026
MNIST-M				
$\gamma = 10^{-6}$	0.561 ± 0.013	0.584 ± 0.008	0.581 ± 0.009	0.588 ± 0.013
$\gamma = 10^{-5}$	0.564 ± 0.024	0.573 ± 0.010	0.573 ± 0.024	0.589 ± 0.017
$\gamma = 10^{-4}$	0.583 ± 0.011	0.572 ± 0.010	0.586 ± 0.015	0.578 ± 0.031
$\dot{\gamma} = 10^{-3}$	0.562 ± 0.026	0.579 ± 0.010	0.567 ± 0.023	0.601 ± 0.018
$\gamma = 10^{-2}$	0.539 ± 0.037	0.578 ± 0.013	0.590 ± 0.014	0.598 ± 0.014
$\dot{\gamma} = 10^{-1}$	0.556 ± 0.017	0.589 ± 0.021	0.576 ± 0.018	0.576 ± 0.019
$\gamma = 10^0$	0.557 ± 0.017	0.579 ± 0.009	0.571 ± 0.010	0.584 ± 0.024
$\gamma = 10^1$	0.568 ± 0.022	0.564 ± 0.028	0.579 ± 0.024	0.589 ± 0.016
$\gamma = 10^2$	0.564 ± 0.025	0.569 ± 0.013	0.579 ± 0.019	0.578 ± 0.021
$\gamma = 10^3$	0.558 ± 0.016	0.568 ± 0.017	0.568 ± 0.010	0.567 ± 0.021
$\gamma = 10^4$	0.567 ± 0.022	0.561 ± 0.023	0.570 ± 0.015	0.579 ± 0.016
SYN				
$\gamma = 10^{-6}$	0.415 ± 0.013	0.445 ± 0.007	0.440 ± 0.012	0.443 ± 0.013
$\gamma = 10^{-5}$	0.409 ± 0.029	0.432 ± 0.020	0.437 ± 0.024	0.443 ± 0.014
$\gamma = 10^{-4}$	0.439 ± 0.011	0.437 ± 0.011	0.446 ± 0.018	0.440 ± 0.022
$\gamma = 10^{-3}$	0.417 ± 0.018	0.437 ± 0.021	0.436 ± 0.017	0.450 ± 0.010
$\gamma = 10^{-2}$	0.417 ± 0.022	0.439 ± 0.015	0.447 ± 0.020	0.450 ± 0.014
$\gamma = 10^{-1}$	0.405 ± 0.011	0.439 ± 0.009	0.438 ± 0.018	0.439 ± 0.021
$\gamma = 10^{\circ}$	0.418 ± 0.004	0.431 ± 0.017	0.426 ± 0.021	0.441 ± 0.013
$\gamma = 10^{1}$	0.421 ± 0.016	0.427 ± 0.020	0.436 ± 0.020	0.445 ± 0.016
$\gamma = 10^2$	0.427 ± 0.017	0.427 ± 0.016	0.436 ± 0.021	0.432 ± 0.014
$\gamma = 10^3$	0.410 ± 0.027	0.424 ± 0.019	0.422 ± 0.019	0.418 ± 0.015
$\gamma = 10^4$	0.422 ± 0.018	0.423 ± 0.015	0.441 ± 0.010	0.443 ± 0.016
USPS				
$\gamma = 10^{-6}$	0.778 ± 0.019	0.783 ± 0.016	0.784 ± 0.012	0.784 ± 0.012
$\gamma = 10^{-3}$	0.775 ± 0.016	0.774 ± 0.017	0.778 ± 0.010	0.782 ± 0.016
$\gamma = 10^{-4}$	0.781 ± 0.010	0.760 ± 0.021	0.772 ± 0.013	0.774 ± 0.021
$\gamma = 10^{-3}$	0.758 ± 0.012	0.788 ± 0.014	0.771 ± 0.011	0.784 ± 0.011
$\gamma = 10^{-2}$	0.700 ± 0.012 0.772 \to 0.11	0.773 ± 0.024	0.774 ± 0.021	0.110 ± 0.011 0.776 \pm 0.019
$\gamma = 10^{-1}$	0.778 ± 0.007	0.701 ± 0.013 0.772 \pm 0.010	0.774 ± 0.011	0.770 ± 0.018 0.768 \pm 0.021
$\gamma \equiv 10^{\circ}$ $\alpha = 10^{1}$	0.110 ± 0.001 0.767 ± 0.019	0.112 ± 0.010 0.774 \pm 0.012	0.114 ± 0.011 0.770 \pm 0.016	0.700 ± 0.021 0.773 \pm 0.014
$\gamma = 10^{-2}$	0.707 ± 0.018 0.774 \pm 0.014	0.114 ± 0.013 0.789 \pm 0.019	0.119 ± 0.010 0.776 \pm 0.019	0.110 ± 0.014 0.771 ± 0.021
$\gamma = 10$ $\gamma = 10^3$	0.774 ± 0.014 0.774 \pm 0.012	0.762 ± 0.013 0.774 ± 0.017	0.770 ± 0.010 0.775 ± 0.019	0.771 ± 0.021 0.763 + 0.025
$\gamma = 10^{-10}$ $\gamma = 10^{4}$	0.774 ± 0.013 0.778 ± 0.013	0.773 ± 0.017 0.773 ± 0.012	0.773 ± 0.012 0.774 ± 0.012	0.703 ± 0.023 0.781 + 0.011
$_{1} - 10$	0.110 ± 0.010	0.110 ± 0.012	0.11 ± 1.012	0.101 ± 0.011

Table 1. Results obtained by training models with Algorithm 1 on 10,000 MNIST samples and testing them on SVHN, MNIST-M, SYN and USPS. Results are averaged over 20 different runs.

		New York-like City				Old European Town					
		Dawn	Fog	Night	Spring	Winter	Dawn	Fog	Night	Spring	Winter
Highway/Dawn	ERM Ours	18.9 24.0	14.7 17.0	10.7 19.1	14.5 22.9	13.4 20.2	22.0 27.6	20.8 25.0	14.5 22.4	18.6 27 .1	15.3 19.0
Highway/Fog	ERM Ours	12.6 17.4	27.8 28.4	9.0 11.0	12.9 18.4	$13.4 \\ 18.4$	13.6 18.5	20.7 27.5	12.1 16.4	15.1 22.0	12.7 19.0
Highway/Night	ERM Ours	13.0 18.5	7.7 14.5	$13.9 \\ 24.8$	13.2 22.9	10.9 22.0	16.6 22 .2	11.5 20.1	19.0 28.1	15.7 25.5	9.9 19 .1
Highway/Spring Highway/Winter	ERM Ours	15.2 22.6	16.0 19.4	$10.8 \\ 14.6$	15.8 25.5	14.8 23.5	18.8 25 .1	21.2 26.5	14.7 21 .5	19.2 29.9	13.9 24.5
	ERM Ours	14.1 16.9	$\begin{array}{c} 15.9 \\ 17.4 \end{array}$	11.7 12.5	14.8 21.0	16.8 24.0	15.2 17.0	19.3 20.5	14.6 14.9	16.9 23.1	20.0 26.8
		Highway				Old European Town					
		Dawn	Fog	Night	Spring	Winter	Dawn	Fog	Night	Spring	Winter
NY.Like C./ Dawn	ERM Ours	19.6 22.8	19.1 22.8	13.1 17.8	18.8 21 .4	15.9 18.5	27.9 31.0	23.5 25.9	16.3 22 .4	21.7 26.0	$17.0 \\ 22.3$
NY.Like C./Fog	ERM Ours	12.5 15.4	15.9 23 .1	9.1 16.3	11.8 18.7	10.7 18.2	24.2 17.3	26.5 26 .4	17.8 17.5	21.7 24.3	$16.0 \\ 21.6$
NY.Like C./Night NY.Like C./Spring	ERM Ours	14.9 19.4	14.7 20.2	16.3 22.1	13.5 19.7	13.1 17.3	25.4 23.3	24.7 23.9	24.4 27.2	23.3 27.2	17.0 22 .1
	ERM Ours	17.1 14.5	18.0 14.7	12.8 11.8	16.3 15.2	14.8 11.2	26.6 21.9	27.0 21.9	20.4 19.7	26.3 24.8	22.5 22.9
NY.Like C./Winter	ERM Ours	16.1 18.1	17.3 18.2	11.9 15.2	16.5 17.8	16.0 17.3	21.3 21.0	23.8 21.0	19.4 19.9	24.1 25.5	23.2 25.6

Table 2. Results (*mIoUs*) associated with the experiments on SYNTHIA dataset. The *first* column indicate the training set. The *second* column indicate the method used: Empirical Risk Minimization (*ERM*) and our method (*Ours*) with K = 1 and $\gamma = 1.0$. Remaining columns indicate the test set.