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Binary Rating Estimation with Graph Side
Information: Supplementary Material

I. PROOF OF OPTIMAL SAMPLE COMPLEXITY (THEOREM 1)

We first introduce a few more notations that will be used throughout the proof. Let C(γ) be the collection of rating matrices
R such that ‖uR − vR‖0 = γm. Let

R(γ) :=

[
+1n/2,(1−γ)m +1n/2,γm
+1n/2,(1−γ)m −1n/2,γm

]
∈ C(γ) (1)

(i.e., AR(γ) = [n2 ], BR(γ) = [n]\ [n2 ], uR(γ) = +11,m and vR(γ) = [+11,(1−γ)m | −11,γm]). Lastly, let Ir := p(
√

1− θ−
√
θ)2.

Using the notations of Ir and Is, one can succinctly write the conditions in Theorem 1:
• The sufficient condition ⇔ 1

2nIs + γmIr ≥ (1 + ε) log n and 1
2nIr ≥ (1 + ε) logm;

• The necessary condition ⇔ 1
2nIs + γmIr ≤ (1− ε) log n or 1

2nIr ≤ (1− ε) logm.

Since the probability of error decreases as p, it suffices to prove for the boundary case p = O
(

logn
m + logm

n

)
. Similarly, we

consider Is = O
(

logn
n

)
, i.e., α, β = O

(
logn
n

)
.

A. MLE Achievability

We will show that the maximum likelihood estimator ψML satisfies P (γ)
e (ψML)→ 0 if 1

2nIs + γmIr ≥ (1 + ε) log n and
1
2nIr ≥ (1 + ε) logm. As the event “ψML(NΩ, G) 6= R | R = X” is statistically identical for all X ∈ C(γ), we have

P (γ)
e (ψML) = max

R∈C(γ)
Pr
(
ψML(NΩ, G) 6= R

)
= Pr

(
ψML(NΩ, G) 6= R | R = R(γ)

)
.

The event “ψML(NΩ, G) 6= R | R = R(γ)” happens only if there exists some rating matrix X such that the likelihood of X is
greater than or equal to that of R(γ).

Lemma 1. The negative log-likelihood of X is equal to L(X) + c for L(X) := cse(AX , BX)− crΠ(X) and some constant c
independent of the choice of X . Here, Π(X) is the number of observed ratings which coincide with the corresponding ratings
of X; cs := log

(
(1−β)α
(1−α)β

)
and cr := log

(
1−θ
θ

)
are positive constants. In particular, the likelihood of X is greater than or

equal to that of R(γ) if and only if L(X) ≤ L(R).

Proof: See Appendix A-A.
By Lemma 1 together with the union bound,

Pr
(
ψML(NΩ, G) 6= R | R = R(γ)

)
≤

∑
X 6=R(γ)

Pr
(
L(X) ≤ L(R(γ))

)
. (2)

To enumerate all rating matrices different from R(γ), we define X (k, a1, a2, b1, b2) to be the class of rating matrices X’s
such that (i) |AX \AR(γ) | = |BX \BR(γ) | =: k; (ii) uX differs from uR(γ) at a1 many coordinates among the first (1− γ)m
coordinates and at a2 many coordinates among the next γm coordinates; and (iii) vX differs from vR(γ) at b1 many coordinates
among the first (1− γ)m coordinates and at b2 many coordinates among the next γm coordinates. Note that if X1 and X2

belong to the same class, then Pr (L(X1) ≤ L(M)) = Pr (L(X2) ≤ L(M)) as the two events are statistically identical. Let I be
the range of index, i.e., collection of tuples (k, a1, a2, b1, b2) 6= (0, 0, 0, 0, 0) such that 0 ≤ k ≤ n/4 and 0 ≤ a1, b1 ≤ (1−γ)m
and 0 ≤ a2, b2 ≤ γm. Note that k ≤ n/4 is sufficient as one can switch the role of uX and vX .

With these notations, RHS of (2) is equal to∑
z∈I

∑
X∈X (z)

Pr
(
L(X) ≤ L(R(γ))

)
=
∑
z∈I
|X (z)|Pr

(
L(Xz) ≤ L(R(γ))

)
, (3)

where Xz is an arbitrary rating matrix that belongs to X (z).

Lemma 2. For z = (k, a1, a2, b1, b2) ∈ I,

Pr
(
L(Xz) ≤ L(R(γ))

)
= Pr

cs 2(n/2−k)k∑
i=1

(Bi −Ai) + cr

Dz∑
i=1

Pi(2Θi − 1) ≥ 0

 ,
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where Dz := k · {a1 + (γm− a2) + b1 + (γm− b2)} +
(
n
2 − k

)
· (a1 + a2 + b1 + b2), Ai

i.i.d.∼ Bern(α), Bi
i.i.d.∼ Bern(β),

{Pi}
i.i.d.∼ Bern(p), and {Θi}

i.i.d.∼ Bern(θ).

Proof: See Appendix A-B.
Due to Lemma 2, Pr

(
L(Xz) ≤ L(R(γ))

)
is equal to a tail probability of a sum of random variables of form cs

∑
i (Bi −Ai)+

cr
∑
i Pi(2Θi − 1). The following lemma provides a sharp bound on this tail probability.

Lemma 3. For integers K,L > 0, let {Ai}Ki=1
i.i.d.∼ Bern(α), {Bi}Ki=1

i.i.d.∼ Bern(β), {Pi}Li=1
i.i.d.∼ Bern(p) and {Θi}Li=1

i.i.d.∼
Bern(θ). Assume that α, β, p = o(1). Then, for any ` > 0

Pr

(
log

(
(1− β)α

(1− α)β

) K∑
i=1

(Bi −Ai) + log

(
1− θ
θ

) L∑
i=1

Pi(2Θi − 1) ≥ −`

)
≤ e 1

2 `−(1+o(1))KIs−(1+o(1))LIr . (4)

Proof. See Appendix A-C.

By Lemma 31 with ` = 0, K = 2(n2 − k)k, and L = Dz ,2

Pr(L(Xz) ≤ L(R(γ))) ≤ e−2k(n/2−k)Is−DzIr . (5)

Hence, one can bound the RHS of (3) by ∑
z∈I
|X (z)|e−2(n2−k)kIs−DzIr . (6)

For the rest of the proof, we will show that (6) converges to 0. Due to the condition 1
2nIs + γmIr ≥ (1 + ε) log n, either

mnIr = Ω(n log n) or n2Is = Ω(n log n) holds. We only consider the former case and note that the other case can be proved
similarly.

For a small constant δ ∈ (0,min{γ, 1− γ}), let

J := {(k, a1, a2, b1, b2) ∈ I : a1, a2, b1, b2 < δm} and K := {(k, a1, a2, b1, b2) ∈ I : k < δn}

Then, we divide (6) into three partial sums according to subsets I \ J , J \ K, and J ∩ K. Below, we show that each partial
sum converges to zero.

1) I \ J : Among a1, a2, b1, b2, at least one is greater than equal to δm. Without loss of generality, assume a1 ≥ δm. From
the definition of Dz , one can see that Dz ≥ (n2 − k)a1 ≥ δ

4nm when z ∈ I \ J , which implies Dz = Ω(nm). Hence,
the summation for this case is upper bounded by∑

z∈I\J

|X (z)|e−DzIr ≤ e−Ω(nm)Ir
∑

z∈I\J

|X (z)| ≤ e−Ω(nm)Ir2n22m,

where the last inequality follows from the fact that the total number of rating matrices is bounded by 2n22m. As
nmIr = Ω(n log n+m logm), the last term converges to zero.

2) J \ K: As Dz ≥ k · (γm− a2) ≥ δn(γ − δ)m = Ω(nm) for z ∈ J \ K, a similar proof follows.
3) J ∩K: Due to the facts that k(n2 − k) ≥ k( 1

2 − δ)n and Dz ≥ k(γm− a2 + γm− b2) + (n2 − k)(a1 + a2 + b1 + b2) ≥
2k(γ − δ)m+ ( 1

2 − δ)n(a1 + a2 + b1 + b2),

e−2(n2−k)kIs−DzIr ≤ e−2k·{( 1
2−δ)nIs+(γ−δ)mIr}︸ ︷︷ ︸

(a)

e( 1
2−δ)n(a1+a2+b1+b2)Ir︸ ︷︷ ︸

(b)

.

We estimate (a) and (b) separately. As for (a), by taking δ sufficiently small (depending on ε), the condition 1
2nIs+γmIr ≥

(1 + ε) log n guarantees that ( 1
2 − δ)nIs + (γ − δ)mIr ≥ (1 + ε

2 ) log n. This implies (a) ≤ n−2(1+ ε
2 )k.

As for (b), by taking δ sufficiently small (depending on ε), the condition 1
2nIr ≥ (1 + ε) logm ensures that ( 1

2 − δ)nIr ≥
(1 + ε

2 ) logm. Hence, we get (b) ≤ m−(1+ ε
2 )(a1+a2+b1+b2).

Now, we turn to |X (z)|. When z = (k, a1, a2, b1, b2), one can easily check that |X (z)| is equal to
(n

2
k

)2((1−γ)m
a1

)(
(1−γ)m
b1

)(
γm
a2

)(
γm
b2

)
,

which can be easily upper bounded by n2kma1+a2+b1+b2 .
Combining above estimations, (6) is upper bounded by

∑
z∈I n

−εkm−
ε
2 (a1+a2+b1+b2), which converges to zero as n→∞

(m→∞ follows since m = o(log n)).

1Note that α, β, p = o(1) due to the following reasons: (i) α, β = o(1) as we focus on the case α, β = O
(

logn
n

)
; (ii) since we focus on the case

p = O
(

logn
m

+ logm
n

)
, the conditions m = ω(logn) and logm = o(n) ensure p = o(1).

2Indeed, the upper bound due to Lemma 3 should read e−(1+o(1))2k(n/2−k)Is−(1+o(1))DzIr instead of (5). On the other hand, we will drop the
(1 + o(1))’s for simplicity.



3

B. MLE Converse

Consider the (constrained) maximum likelihood estimator (ψML|C(γ)) whose output is constrained in C(γ). We will first
prove that infψ P

(γ)
e (ψ) ≥ Pr(ψML|C(γ) (NΩ, G) 6= R | R = R(γ)). Suppose that R′ is a random matrix chosen uniformly

random from C(γ). Then, we have

inf
ψ
P (γ)
e (ψ) = inf

ψ
max
X∈C(γ)

Pr(ψ(NΩ, G) 6= R | R = X)

(a)

≥ inf
ψ

Pr(ψ(NΩ, G) 6= R | R = R′)

(b)
= inf

ψ : ψ(NΩ,G)∈C(γ)
Pr(ψ(NΩ, G) 6= R | R = R′)

(c)
= Pr(ψML|C(γ) (NΩ, G) 6= R | R = R′)

(d)
= Pr(ψML|C(γ) (NΩ, G) 6= R | R = R(γ)) ,

where (a) holds since “max≥mean”; (b) follows since the ψ(NΩ, G) ∈ C(γ) should be true for the optimal estimator; (c) is
due to the fact that ML is the optimal estimator under uniform prior; (d) holds since Pr(ψML|C(γ) (NΩ, G) 6= R | R = X)
is the same quantity for any X ∈ C(γ). Thus, we will show Pr(ψML|C(γ) (NΩ, G) 6= R | R = R(γ)) 6→ 0 if either
1
2nIs + γmIr ≤ (1− ε) log n or 1

2nIr ≤ (1− ε) logm.
Let S be the success event:

S :=
⋂

X 6=R(γ), X∈C(γ)

[
L(X) > L(R(γ))

]
.

Under the occurrence of Sc (i.e., failure), there is X ∈ C(γ) such that X 6= R(γ) and L(X) ≤ L(R(γ)), and hence
Pr(ψML|C(γ) (NΩ, G) 6= R | R = R(γ)) ≥ 1

2 . This implies Pr(ψ(NΩ, G) 6= R | R = R(γ)) ≥ 1
2 Pr(Sc). Hence, it is enough

to prove Pr(S)→ 0.
Owing to notation from the achievability proof, we have X (0, 0, 0, 1, 1) ⊂ C(γ) and X (1, 0, 0, 0, 0) ⊂ C(γ). Hence, the

following two inequalities hold:

Pr (S) ≤ Pr

 ⋂
X∈X (0,0,0,1,1)

[
L(X) > L(R(γ))

] (7)

and

Pr (S) ≤ Pr

 ⋂
X∈X (1,0,0,0,0)

[
L(X) > L(R(γ))

] . (8)

We finish the proof by showing (i) the RHS of (7) converges to 0 if 1
2nIr ≤ (1− ε) logm; and (ii) the RHS of (8) converges

0 if 1
2nIs + γmIr ≤ (1− ε) log n.

1) RHS(7) → 0 if 1
2nIr ≤ (1 − ε) logm: Suppose there exist X1 ∈ X (0, 0, 0, 1, 0) and X2 ∈ X (0, 0, 0, 0, 1) such that

L(X1) ≤ L(R(γ)) and L(X2) ≤ L(R(γ)). Assume that vX1
differs from vR(γ) at i1-th coordinate and vX2

differs from vR(γ)

at i2-th coordinate. Then, L(X3) ≤ L(R(γ)) for X3 ∈ X (0, 0, 0, 1, 1) whose vX3
differs from vR(γ) at i1 and i2-th coordinates.

Thus, if L(X) > L(R(γ)) for any X ∈ X (0, 0, 0, 1, 1), then either one of the following holds: (i) L(X1) > L(R(γ)) for any
X1 ∈ X (0, 0, 0, 1, 0); or (ii) L(X2) > L(R(γ)) for any X2 ∈ X (0, 0, 0, 0, 1).

Hence, the union bound yields that the right hand side of (7) is upper bounded by

Pr

 ⋂
X1∈X (0,0,0,1,0)

[
L(X1) > L(R(γ))

]+ Pr

 ⋂
X2∈X (0,0,0,0,1)

[
L(X2) > L(R(γ))

]
Below, we only show that the first term of the RHS converges to zero; the proof for the second term is identical. By Lemma 2,
when X ∈ X (0, 0, 0, 1, 0), Pr (L(X) > L(R)) = 1− Pr (L(X) ≤ L(R)) is equal to

1− Pr

cr n
2∑
i=1

Pi(2Θi − 1) ≥ 0

 .

The following lemma, which shows the tightness of the bound presented in Lemma 3, provides the upper bound of the last
term.
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Lemma 4. For integers K,L > 0, let {Ai}Ki=1
i.i.d.∼ Bern(α), {Bi}Ki=1

i.i.d.∼ Bern(β), {Pi}Li=1
i.i.d.∼ Bern(p) and {Θi}Li=1

i.i.d.∼
Bern(θ). Assume that α, β, p = o(1) and max

{√
αβK, pL

}
= ω(1). Then, the following holds for sufficiently large K if√

αβK > pL; sufficiently large L otherwise:

Pr

(
log

(
(1− β)α

(1− α)β

) K∑
i=1

(Bi −Ai) + log

(
1− θ
θ

) L∑
i=1

Pi(2Θi − 1) ≥ 0

)
≥ 1

4
e−(1+o(1))KIr−(1+o(1))LIs . (9)

Proof. See Appendix A-D.

By Lemma 4 with K = 0 and L = n
2 , the last term is bounded by 1− 1

4e
−n2 Ir ≤ e−

1
4 e

−n
2
Ir

. Note that the collection of
events {[L(X) > L(R)]}X∈X (0,0,0,1,0) is mutually independent as different events are tied to different column vectors of NΩ.
Therefore, for a binary rating matrix matrix X0 ∈ X (0, 0, 0, 1, 0), the RHS of (7) is equal to Pr (L(X0) > L(R))

|X (0,0,0,1,0)|,
which is bounded by

exp

{
−1

4
|X (0, 0, 0, 1, 0)|e−(1+o(1))n2 Ir

}
= exp

{
−1

4
γme−(1+o(1))n2 Ir

}
= exp

{
−1

4
γe−(1+o(1))n2 Ir+logm

}
. (10)

The RHS of (10) goes to zero as m→∞ (which is true when n→∞ since m = ω(log n)) due to 1
2nIr ≤ (1− ε) logm.

2) RHS(8)→ 0 if 1
2nIs + γmIr ≤ (1− ε) log n: For this case, we make use of a combinatorial property of random graphs:

Lemma 5. Suppose α = O
(

logn
n

)
, and consider the following procedure:

1) For r = n
log3 n

, let T := {1, 2, · · · , 2r} ∪
{
n
2 + 1, n2 + 2, · · · , n2 + 2r

}
.

2) Within T , we will delete every pair of two nodes which are adjacent.
3) Denote the remaining nodes by U .
With probability approaching 1, the above procedure results in |U | ≥ 3 n

log3 n
.

Proof. See Appendix A-E.

Let ∆ be the event
[
|U | ≥ 3 n

log3 n

]
. We note that ∆ is an event defined over edges within T . Conditioned on ∆, one can

find subsets AP ⊂ AR and AQ ⊂ BR such that (i) |AP | = |AQ| = n
log3 n

and (ii) there is no edge between nodes in AP ∪AQ.
Without loss of generality, assume that 1 ∈ AP .

For a rating matrix X , Let X(i) be the rating matrix obtained from X by replacing ith row with vX if i ∈ AX ; with uX
otherwise. In other words, AX(i) = AX4{i} and BX(i) = BX4{i}. As Pr(∆) = 1− o(1), the RHS of (8) is upper bounded
by

Pr

 ⋂
i∈AP , j∈AQ

[
L

((
R(i)

)(j)
)
> L(R)

] ∣∣∣∣ ∆

 · (1− o(1)) . (11)

Lemma 6. Suppose that L(R(i)) ≤ L(R) and L(R(j)) ≤ L(R) hold for i ∈ AP and j ∈ AQ. Then, conditioned on ∆,
L
((
R(i)

)(j)) ≤ L(R).

Proof. See Appendix A-F.

Due to Lemma 6, if L
((
R(i)

)(j))
> L(R) for any i ∈ AP and j ∈ AQ, then either one of the following holds: (i) L(R(i)) >

L(R) for any i ∈ AP ; or (ii) L(R(j)) > L(R) for any j ∈ AQ. Hence, it can be deduced from the union bound that the RHS of

(11) is upper bounded by Pr

(⋂
i∈AP

[
L
(
R(i)

)
> L(R)

] ∣∣∣∣ ∆

)
·(1−o(1))+Pr

(⋂
j∈AQ

[
L
(
R(j)

)
> L(R)

] ∣∣∣∣ ∆

)
·(1−o(1)).

By symmetry, this upper bound is equal to 2 Pr

(⋂
i∈AP

[
L
(
R(i)

)
> L(R)

] ∣∣∣∣ ∆

)
· (1 − o(1)). Due to the construction in

Lemma 5, there are no edges between the nodes in AP conditioned on ∆, implying that
{[

L
(
R(i)

)
> L(R)

]}
i∈AP

is mutually
independent. Thus, the last upper bound is equal to

2 Pr

(
L
(
R(1)

)
> L(R)

∣∣∣∣ ∆

)|AP |
· (1− o(1)) . (12)
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This leads us to compute Pr
(
L
(
R(1)

)
> L(R) | ∆

)
. As Pr(∆) ≥ 1

2 , Pr
(
L
(
R(1)

)
> L(R) | ∆

)
≤ 2 Pr

(
L
(
R(1)

)
> L(R)

)
.

In light of Lemma 2, one obtains that Pr
(
L
(
R(1)

)
> L(R)

)
is equal to

Pr

cs n/2−1∑
j=1

(Bj −Aj) + csBn/2 + cr

γm∑
j=1

Pj (2Θj − 1) < 0

 . (13)

Hence, by disregarding the term csBn/2, this is bounded by Pr
(
cs
∑n/2−1
j=1 (Bj −Aj) + cr

∑γm
j=1 Pj (2Θj − 1) < 0

)
. By

Lemma 4 with K = n/2− 1 and L = γm, the last term is upper bounded by 2− 2e−(1+o(1))(n/2−1)Is−(1+o(1))γmIr , which
in turn is bounded by

2 exp
{
−e−(1+o(1))(n/2−1)Is−(1+o(1))γmIr

}
.

Hence, (12) is bounded by

4 exp

{
− n

log3 n
e−(1+o(1))(n/2−1)Is−(1+o(1))γmIr

}
· (1− o(1)) , (14)

which converges to zero as n→∞: due to the fact that 1
2nIs + γmIr ≤ (1− ε) log n, it follows that for sufficiently large n,

−(1 + o(1)) (n/2− 1) Is− (1 + o(1))γmIr ≥ −(1− ε/2) log n, showing that (14) is bounded by 4 exp
{
− nε/2

log3 n

}
· (1− o(1)),

which evidently converges to 0.

C. Proof of Corollary 1

We remark how the proof changes for Corollary 1. In the achievability proof, I becomes {(k, 0, 0, 0, 0) : k ≤ n/4}; hence,
the RHS of (6) goes to zero only with the condition 1

2nIs + γmIr ≥ (1 + ε) log n. The converse part is identical to the proof
of RHS(8)→ 0.

II. PROOF OF EFFICIENT ALGORITHM (THEOREM 2)

Since Is = ω( 1
n ), the spectral clustering is shown to output clusters with a vanishing error fraction [5, Theorem 6].

Hence, A(0)
1 , A

(0)
2 —by switching them if necessary—coincides with AR, BR, except vanishing fractions. In the following

subsections, we will show that (i) Stage 2 recovers uR and vR if 1
2nIr ≥ (1 + ε) logm and (ii) Stage 3 recovers AR and BR

if 1
2nIs + γmIr ≥ (1 + ε) log n.

A. Stage 2 yields exact recovery of uR and vR

Under the success of Stage 1, we will show that Pr
(
u(1) 6= uR

)
= o(1); the proof for u(2) is similar. Let R := A

(0)
1 \AR

and η := |R|/n. Due to Stage 1, limn→∞ η = 0 with high probability. For a fixed 1 ≤ j ≤ m, we first estimate the
probability Pr

(
(u(1))j 6= (uR)j

)
. Without loss of generality, assume (uR)j = +1. Since (u(1))j 6= +1⇔

∑
i∈A(0)

1
NΩ
ij ≤ 0,

the probability is equal to Pr
(∑

i∈A(0)
1
NΩ
ij ≤ 0

)
, which is bounded by

Pr

( 1
2−η)n∑
i=1

Pi (2Θi − 1) ≥ −
ηn∑
i=1

P ′i

 , (15)

where {Pi}, {P ′i}
i.i.d.∼ Bern(p) and {Θi}

i.i.d.∼ Bern(θ). Indeed, this bound follows since−
∑
i∈A(0)

1 \R
NΩ
ij ∼

∑( 1
2−η)n
i=1 Pi (2Θi − 1)

and
∑
i∈RN

Ω
ij ≥ −

∑
i∈R

∣∣NΩ
ij

∣∣ ∼ −∑ηn
i=1 P

′
i .

We now estimate (15). We first show that −
∑ηn
i=1 P

′
i in (15) using the following large deviation result.

Lemma 7. Suppose that X ∼ Binom(εn, p) for some 0 < ε < 1 and 0 < p < 1/2. Then for any k ≥ 2e, one has
Pr
(
X ≥ knp

log 1
ε

)
≤ 2 exp

(
−knp2

)
.

Proof. See Appendix A-G.

By Lemma 7, for c > 4e, Pr
(∑ηn

i=1 P
′
i ≥

cnp
log 1

η

)
≤ 2 exp

(
− cnp2

)
. As np = Ω(logm), by taking c sufficiently large, we

obtain Pr
(∑ηn

i=1 P
′
i ≥

cnp
log 1

η

)
= o(m−1). Thus, (15) is bounded by Pr

(∑( 1
2−η)n
i=0 Pi (2Θi − 1) ≥ − cnp

log 1
η

)
+ o(m−1). By

Lemma 3 with K = 0, L =
(

1
2 − η

)
n, and ` = cnp

log 1
η

, this is then upper bounded by

exp

(
1

2
log

(
1− θ
θ

)
c

log 1
η

np− (1 + o(1))

(
1

2
− η
)
nIr

)
+ o(m−1) . (16)
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Since np = Θ(nIr) and limη→0+
1

log 1
η

= 0, the first term in the exponent is negligible compared to the second term in the

exponent as η tends to zero. Moreover, due to 1
2nIr > (1 + ε) logm, for sufficiently small η > 0, the second term in the

exponent is lower bounded by (1 + ε/2) logm. Recalling the fact limn→∞ η = 0 with high probability, we can conclude that
(16) is upper bounded by exp (−(1 + ε/2) logm) + o(m−1), which is o(m−1). Now, the proof is completed after taking union
bound over all j’s.

B. Stage 3 achieves exact recovery of AR and BR

We assume that uR and vR are exactly recovered due to the analysis of Stage 2. For simplicity, we will focus on the case
where α = O

(
logn
n

)
and p = O

(
logn
m + logm

n

)
. The remaining cases can be dealt with similarly.

Note that when we choose c′1 = log
(
α(1−β)
β(1−α)

)
/ log

(
1−θ
θ

)
instead of log

(
α̂(1−β̂)

β̂(1−α̂)

)
/ log

(
1−θ̂
θ̂

)
, the non-agnostic refinement

rule can be written as follows: put user i to A(t)
1 if L(i;A

(t−1)
1 , A

(t−1)
2 ) < 0; A(t)

2 otherwise, where L(i;A,B) is defined as
L(i;A,B) := cs{e({i}, A)− e({i}, B)} − cr {Πi(uR)−Πi(vR)} for clusters A, B. Due to Lemma 1, this is indeed the local
likelihood comparison, which updates each user’s affiliation by the one giving better likelihood.

Next, consider the refinement rule of interest, defined by c′1 = log
(
α̂(1−β̂)

β̂(1−α̂)

)
/ log

(
1−θ̂
θ̂

)
. This refinement rule can be written

with L̂(i;A,B) := ĉs{e({i}, A)− e({i}, B)} − ĉr {Πi(uR)−Πi(vR)} instead of L(i;A,B), where ĉs := log
(
α̂(1−β̂)

β̂(1−α̂)

)
and

ĉr := log
(

1−θ̂
θ̂

)
. It follows from the analyses of the previous stages that the rating matrix R(0) constructed based on the

outputs of Stage 1 and 2 almost coincides with the ground truth, and hence, ĉs and ĉr will provide accurate estimations of cs
and cr, respectively. This implies that L̂(i;A,B) is close to L(i;A,B), meaning the refinement rule of interest is also roughly
equal to the local likelihood comparison.

For δ ∈ [n−1, 1/2), let Zδ := {(A,B) : A ∪B = [n], A ∩B = ∅, |A4AR| = |B4BR| < δn}. We will show that there
exists a constant δ0 > 0 such that if δ < δ0, the following statement holds with probability 1−O(n−ε/2): whenever (A,B)

belongs to Zδ , the result of single step of iteration belongs to Zδ/2. Then, T = log(δ0n)
log 2 many iterations will suffice to guarantee

exact recovery.
Remark 1. One might wonder why we prove that the refinement corrects every almost-correct rating in Zδ rather than just
R(0), the output of Stage 1 and 2. This is because of subtle dependencies, which precludes the error analysis developed in
Sec. I-A. More specifically, the entries of R(0) are no longer independent of each other, and hence, the error event cannot be
expressed as in Lemma 2. This technique, called uniform analysis, is inspired by [3].

We first show that (AR, BR) is a strict local optimum of the likelihood function under the condition 1
2nIs + γmIr ≥

(1 + ε) log n, i.e., the ground truth clusters are unaltered by an iteration of local refinement based on L.

Lemma 8. Suppose 1
2nIs + γmIr ≥ (1 + ε) log n. Then, there exists a small constant τ > 0 such that the following holds

with probability 1−O(n−ε/2): L(i;AR, BR) < −τ log n if i ∈ AR; L(i;AR, BR) > τ log n otherwise.

Proof. See Appendix A-H.

Let (A,B) ∈ Zδ. Due to Lemma 8, to show that the affiliation of node i is the same as that of the ground truth after an
iteration of refinement, it suffices to show: ∣∣∣L̂(i;A,B)− L(i;AR, BR)

∣∣∣ ≤ τ log n . (17)

Indeed, if one can show (17), it follows thatL̂(i;A,B) ≤ L(i;AR, BR) +
∣∣∣L̂(i;A,B)− L(i;AR, BR)

∣∣∣ < 0 for i ∈ AR;

L̂(i;A,B) ≥ L(i;AR, BR)−
∣∣∣L̂(i;A,B)− L(i;AR, BR)

∣∣∣ > 0 otherwise.
(18)

Lemma 9. Suppose nα = Θ (log n). Then, for any constant τ > 0, there exists δ0 < 1/2 such that if δ < δ0, the following
holds with probability 1−O(n−1): for any (A,B) ∈ Zδ , |L(i;A,B)− L(i;AR, BR)| ≤ τ

2 log n, for all except δ
2 many nodes

i’s.

Proof. See Appendix A-I.

Lemma 10. Suppose nα = Θ (log n), p = Θ
(

logn
m + logm

n

)
and m = O(n). Then, for any constant τ > 0, the following

holds with probability approaching 1: for any A,B ⊂ [n], and i ∈ [n],
∣∣∣L̂(i;A,B)− L(i;A,B)

∣∣∣ ≤ τ
2 log n.

Proof. See Appendix A-J.

The above two lemmas together with the triangle inequality conclude that the output of refinement belongs to Zδ/2.
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APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma 1

In this section, we compute the likelihood of a binary rating matrix matrix X given NΩ and G. Direct calculations yield

Pr
(
NΩ | R = X

)
= (1− p)|Ω|pnm−|Ω|θ|Ω|−Π(X)(1− θ)Π(X)

and
Pr (G | R = X) = α|E|−e(AX ,BX)(1− α)2(n/22 )−{|E|−e(AX ,BX)}βe(AX ,BX)(1− β)(n2 )2−e(AX ,BX).

By taking log on the both sides, we obtain log Pr
(
NΩ | R = X

)
= Π(X) log

(
1−θ
θ

)
+ c and log Pr (G | R = X) =

e(AX , BX) log
(

(1−α)β
(1−β)α

)
+ c′, where c := log

{
(1− p)|Ω|pnm−|Ω|θ|Ω|

}
and c′ := log

{
α|E|(1− α)2(n/2

2 )−|E|(1− β)(n2 )2
}

are constants independent of the choice of X . Hence, the negative log-likelihood of X is equal to − log
(

1−θ
θ

)
Π(X) +

log
(

(1−β)α
(1−α)β

)
e(AX , BX) + c+ c′.

B. Proof of Lemma 2

Let z = (k, a1, a2, b1, b2) ∈ I. Due to the definition of L,

Pr
(
L(Xz) ≤ L(R(γ))

)
= Pr

(
cs {e(AR(γ) , BR(γ))− e(AXz , BXz )} − cr

{
Π(R(γ))−Π(Xz)

}
≥ 0
)
.

First, it is straightforward from the facts |AXz \AR(γ) | = |BXz \BR(γ) | = k and |AXz ∩AR(γ) | = |BXz ∩BR(γ) | = n
2 −k that

e(AR(γ) , BR(γ))− e(AXz , BXz ) =
∑2(n/2−k)k
i=1 (Bi −Ai) (e.g. see Sec. 6 in [1]). Next, we compute Π(R(γ))−Π(Xz). Note

that Π(R(γ))−Π(Xz) =
∑

(i,j)∈Ω

[
I
{
NΩ
ij = (R(γ))ij

}
− I
{
NΩ
ij = (Xz)ij

}]
. Since I

{
NΩ
ij = (R(γ))ij

}
= I

{
NΩ
ij = (Xz)ij

}
whenever (R(γ))ij = (Xz)ij , the last term is equal to

∑
(i,j)∈Ω :

(R(γ))ij 6=(Xz)ij

[
I
{
NΩ
ij = (R(γ))ij

}
− I
{
NΩ
ij = (Xz)ij

}]
, which can

be written as

|{(i,j) : (R(γ))ij 6=(Xz)ij}|∑
`=1

[P`(1−Θ`)− P`Θ`]

=

|{(i,j) : (R(γ))ij 6=(Xz)ij}|∑
`=1

[P`(1− 2Θ`)] .

A simple calculation yields
∣∣{(i, j) : (R(γ))ij 6= (Xz)ij}

∣∣ = Dz . Hence, Π(R(γ))−Π(Xz) =
∑Dz
i=1[Pi(1− 2Θi)].

C. Proof of Lemma 3

Let Z := log
(

(1−β)α
(1−α)β

)∑K
i=1(Bi−Ai)+log

(
1−θ
θ

)∑L
i=1 Pi(2Θi−1)+`, M1(t) := M

log( (1−β)α
(1−α)β )(B1−A1)

(t), and M2(t) :=

Mlog( 1−θ
θ )P1(2Θ1−1)(t).

By Chernoff bound [4],

Pr (Z > 0) ≤ inf
t>0

MZ(t) ≤ e 1
2 `MK

1

(
1

2

)
ML

2

(
1

2

)
= e

1
2 `−KJ1−LJ2 ,

where J1 := − logM1(1/2) and J2 := − logM2(1/2).3

3Indeed, one can check that 1
2

= arg mint>0 M
log
(

(1−β)α
(1−α)β

)
(B−A)

(t) = arg mint>0 M
log
(

1−θ
θ

)
P (2Θ−1)

(t), meaning (t = 1/2) is the optimal

choice.
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We show that J1 = (1 + o(1))Is and J2 = (1 + o(1))Ir. A simple calculations yield

M1

(
1

2

)
=
(√

αβ +
√

(1− α)(1− β)
)2

; (19)

M2

(
1

2

)
= 2p

√
(1− θ)θ + 1− p . (20)

Thus,

J1 = −2 log
(√

αβ +
√

(1− α)(1− β)
)

(a)
= −2 log

{√
αβ +

(
1− 1

2
α+O(α2)

)(
1− 1

2
β +O(β2)

)}
= −2 log

(
1 +

√
αβ +−1

2
α− 1

2
β +O(α2 + β2)

)
(b)
= −2

(√
αβ − 1

2
α− 1

2
β +O(α2 + β2)

)
= (
√
α−

√
β)2 +O(α2 + β2)

(c)
= (1 + o(1))Is;

J2 = − log
(

2p
√

(1− θ)θ + 1− p
)

(d)
= p(1−

√
(1− θ)θ) +O(p2) = p(

√
1− θ −

√
θ)2 +O(p2)

(e)
= (1 + o(1))Ir ,

where (a) follows from the fact that
√

1− x = 1− 1
2x+O(x2) as x→ 0; (b) and (d) follow from the fact that log(1 + x) =

x+O(x2) as x→ 0; (c) follows since α, β = o(1); (e) follows as p = o(1).

D. Proof of Lemma 4

We adopt the techniques from [7] and [6]. Let Z := log
(

(1−β)α
(1−α)β

)∑K
i=1(Bi −Ai) + log

(
1−θ
θ

)∑L
i=1 Pi(2Θi − 1), Xi :=

log
(

(1−β)α
(1−α)β

)
(Bi −Ai), for i = 1, . . . ,K, and Yj := log

(
1−θ
θ

)
Pj(2Θj − 1), for i = 1, . . . , L.

Then, for a positive quantity ξ (to be determined later),

Pr (Z > 0) =
∑

(x1,...,xK ,y1,...,yL):∑
i xi+

∑
j yj>0

K∏
i=1

pX1(xi)

L∏
j=1

pY1(yj) ≥
∑

(x1,...,xK ,y1,...,yL):∑
i xi+

∑
j yj∈(0,ξ)

K∏
i=1

pX1(xi)

L∏
j=1

pY1(yj)

(a)

≥ (MX1(1/2))K(MY1(1/2))L

e
1
2 ξ

∑
(x1,...,xK ,y1,...,yL):∑
i xi+

∑
j yj∈(0,ξ)

K∏
i=1

e
1
2xipX1(xi)

MX1
(1/2)

L∏
j=1

e
1
2yipY1(yi)

MY1
(1/2)

(b)
= e−KJ1−LJ2− 1

2 ξ
∑

(x1,...,xK ,y1,...,yL):∑
i xi+

∑
j yj∈(0,ξ)

K∏
i=1

e
1
2xipX1

(xi)

MX1
(1/2)

L∏
j=1

e
1
2yipY1

(yi)

MY1
(1/2)

(c)
= e−KJ1−LJ2− 1

2 ξ Pr

0 <

K∑
i=1

Vi +

L∑
j=1

Wj < ξ


︸ ︷︷ ︸

(R1)

,

where (a) follows from the fact that e
1
2 ξ ≥ e

1
2 (
∑
i xi+

∑
j yj) when

∑
i xi +

∑
j yj < ξ; we define J1 := − logMX1(1/2)

and J2 = − logMY1
(1/2) at (b); at (c), we define V1, . . . , VK to be i.i.d. random variables with distribution function

pV1(w) =
e

1
2
wpX1

(w)

MX1
(1/2) , and W1, . . . ,WL to be i.i.d. random variables with distribution pW1(w) =

e
1
2
wpY1

(w)

MY1
(1/2) . Here, the proof

of Lemma 3 (see Appendix A-C) guarantees that J1 = (1 + o(1))Is and J2 = (1 + o(1))Ir.
Thus, it is enough to choose ξ so that the followings holds for sufficiently large K if

√
αβK > pL; sufficiently large L

otherwise: (i) e−KJ1−LJ2− 1
2 ξ = (1 + o(1))e−KJ1−LJ2 ; (ii) (R1) > 1

4 .
We will focus on the case of pL ≥

√
αβK; the other case follows similarly. Take ξ = (pL)3/4. Then, (i) is true due to the

fact that pL = ω(1). The following lemma verifies (ii):

Lemma 11. As L→∞, we have Pr
(∑K

i=1 Vi +
∑L
j=1Wj ≥ (pL)3/4

)
→ 0.

Proof. See Appendix A-K.

Using the fact that Vi’s and Wj’s are mean zero random variables together with Lemma 11, we obtain

(R1) =
1

2
− Pr

 K∑
i=1

Vi +

L∑
j=1

Wj ≥ (pL)3/4

→ 1

2
.

Hence, for sufficiently large L, we obtain (R1) ≥ 1
4 .
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E. Proof of Lemma 5

The proof is based on the deletion technique (alteration technique) [2]. Let F be the number of nodes that are deleted in the

step 2 of the procedure. Note that F is statistically dominated by D := 2
∑(4r

2 )
i=1 Ai, where Ai

i.i.d.∼ Bern(α).
By definition, E[D] =

(
4r
2

)
2α ≤ (4r)2α. Thus, by Markov’s inequality,

Pr

(
D ≥ r

log n

)
≤ E[D]

r
logn

≤ 16rα log n = O

(
r log2 n

n

)
= O

(
1

log n

)
.

This concludes that D is almost surely of size o(1) · r, which implies |U | is larger than 3r.

F. Proof of Lemma 6

For fixed i ∈ AP and j ∈ AQ, it suffices to show that conditioned on ∆, L
((
R(i)

)(j)) − L(R) =
(
L(R(i))− L(R)

)
+(

L(R(j))− L(R)
)
. By definition, showing the above is equivalent to checking the following two equalities:

Π((R(i))(j))−Π(R) =
(

Π(R(i))−Π(R)
)

+
(

Π(R(j))−Π(R)
)

and (21)

e(A(R(i))(j) , B(R(i))(j))− e(AR, BR) = (e(AR(i) , BR(i))− e(AR, BR)) + (e(AR(j) , BR(j))− e(AR, BR)) . (22)

First, (21) is straightforward from the definition of Π(·). Next, observe that

e(A(R(i))(j)), B(R(i))(j))− e(AR, BR) = e(i, AR) + e(j, BR)− e(i, BR4{j})− e(j, AR4{i}) ,
e(AR(i) , BR(i))− e(AR, BR) = e(i, AR)− e(j, BR4{j})− I{{ij} is an edge}, and
e(AR(j) , BR(j))− e(AR, BR) = e(j, BR)− e(j, AR4{i})− I{{ij} is an edge} .

Since i and j are not adjacent conditioned on ∆, (22) follows.

G. Proof of Lemma 7

By definition, we have

Pr

(
X ≥ knp

log 1
ε

)
=

∑
i≥ np

log 1
ε

Pr(X = i) =
∑

i≥ knp

log 1
ε

(
εn

i

)
pi(1− p)εn−i .

Due to the estimate
(
a
b

)
≤
(
ea
b

)b
, the last term can be bounded as

e−εnp
∑

i≥ knp

log 1
ε

(eεn
i

)i
pi(1− p)−i ≤

∑
i≥ knp

log 1
ε

(
2eεnp

i

)i
≤

∑
i≥ knp

log 1
ε

2eεnp
knp
log 1

ε

i

=
∑

i≥ knp

log 1
ε

(
2eε log 1

ε

k

)i

≤
∑

i≥ knp

log 1
ε

(
2e
√
ε

k

)i
≤ 2

(
2e
√
ε

k

) knp

log 1
ε

= 2 exp

(
− log

(
k

2e
√
ε

)
knp

log 1
ε

)
≤ 2 exp

(
−knp

2

)
,

where the first inequality follows since 1− p ≥ 1
2 ; the second inequality is due to i ≥ knp

log 1
ε

; the third inequality holds since

ε log 1
ε ≤

√
ε is true for any 0 < ε ≤ 1; the fourth inequality is true due to the inequality

∑
i≥b a

i ≤ ab

1−a ≤ 2ab when
a ∈ (0, 1/2); the last inequality holds since k ≥ 2e.

H. Proof of Lemma 8

Let τ > 0 be a constant to be chosen later. Without loss of generality, we assume i ∈ AR. Note that it is enough to show

Pr (L(i;AR, BR) ≥ −τ log n) = O(n−1−ε/2)

since the lemma will follow after taking the union bound.
In light of Lemma 2, L(1;AR, BR) = log

(
(1−β)α
(1−α)β

)∑n/2−1
j=1 (Bj −Aj) +Bn/2 + log

(
1−θ
θ

)∑γm
j=1 Pj (2Θj − 1).

Thus, Pr (L(1;AR, BR) ≥ τ log n) = Pr
(

log
(

(1−β)α
(1−α)β

)∑n/2−1
j=1 (Bj −Aj) +Bn/2 + log

(
1−θ
θ

)∑γm
j=1 Pj (2Θj − 1) ≥ −τ log n

)
≤ Pr

(
log
(

(1−β)α
(1−α)β

)∑n/2−1
j=1 (Bj −Aj) + log

(
1−θ
θ

)∑γm
j=1 Pj (2Θj − 1) ≥ −τ log n− 1

)
(a)

≤ e
1
2 τ logn+ 1

2−(n2−1)J1−γmJ2
(b)

≤ e
1
2 τ logn−(1+ε)(1+o(1)) logn, where (a) is due to Lemma 3; (b) follows from the fact that

nIs + 2γmIr > (1 + ε) log n. Hence, by taking τ sufficiently small, we complete the proof.
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I. Proof of Lemma 9

Let (A,B) ∈ Zδ be fixed. Let us say node i is bad if |L(i;A,B)− L(i;AR, BR)| > τ log n. Note that there are at most(
n
δn

)
· 2δn many partitions in Zδ . As

(
n
δn

)
· 2δn ≤ nδn · 2δn ≤ e2δn logn, it suffices to prove

Pr

(
n∑
i=1

I{i is bad} > δ

2
n

)
≤ O

(
e−3·δn logn

)
.

Note that standard concentration inequalities for indicator variables (e.g. Chernoff bound) cannot be directly applied to show
this since {I{i is bad}}ni=1 are not mutually independent. For instance, the events [1 is bad] and [2 is bad] both depend on the
occurrence of the edge {1, 2}. Inspired by [3], we resolve this issue via decoupling analysis. Observe the following upper
bound

|L(i;A,B)− L(i;AR, BR)| = log

(
(1− β)α

(1− α)β

)
|e(i, A)− e(i, AR)− e(i, B) + e(i, BR)|

= log

(
(1− β)α

(1− α)β

)
|e(i, A \AR)− e(i, AR \A)− e(i, B \BR) + e(i, BR \B)|

≤ log

(
(1− β)α

(1− α)β

)
{e(i, A4AR) + e(i, B4BR)} = 2 log

(
(1− β)α

(1− α)β

)
e(i, A4AR). (23)

The last term can be split into two last term can be split into 2 log
(

(1−β)α
(1−α)β

)
∆

(1)
i + 2 log

(
(1−β)α
(1−α)β

)
∆

(2)
i , where ∆

(1)
i :=

e(i, (A4AR)∩{1, 2, · · · , i}) and ∆
(2)
i := e(i, (A4AR)\{1, 2, · · · , i}). With this splitting, note that the collection of random

variables
{

∆
(x)
i

}n
i=1

is mutually independent for each x = 1, 2. Now, by letting I(x)
i := I

{
∆

(x)
i > τ

4 log( (1−β)α
(1−α)β )

log n

}
for

x = 1, 2, we obtain

Pr

(
n∑
i=1

I{i is bad} > δ

2
n

)
(a)

≤ Pr

([
n∑
i=1

I(1)
i >

δ

4
n

]⋃[
n∑
i=1

I(2)
i >

δ

4
n

])

≤ Pr

(
n∑
i=1

I(1)
i >

δ

4
n

)
+ Pr

(
n∑
i=1

I(2)
i >

δ

4
n

)
,

where (a) is due to the fact that when both
∑n
i=1 I

(1)
i ≤ δ

4n and
∑n
i=1 I

(2)
i ≤ δ

4n are true, there could be at most 2 · δ4n many
bad nodes. Hence, it is sufficient to prove Pr

(∑n
i=1 I

(1)
i > δ

4n
)
≤ O

(
e−3·δn logn

)
.

Lemma 12. For any constant ` > 0, there exists δ0 > 0 such that the following holds: whenever (A,B) ∈ Zδ for δ < δ0,

Pr

(
e(i, A4AR) > τ

4 log( (1−β)α
(1−α)β )

log n

)
≤ 2n−`.

Proof. See Appendix A-L.

Let ` > 0 be a constant to be chosen later. By Lemma 12, for 1 ≤ i ≤ n and δ < δ0,

Pr
(
I(1)
i = 1

)
= Pr

∆
(1)
i >

τ

4 log
(

(1−β)α
(1−α)β

) log n

 ≤ Pr

e(i, A4AR) >
τ

4 log
(

(1−β)α
(1−α)β

) log n

 ≤ 2n−` .

By Chernoff-Hoeffding [4],

Pr

(
n∑
i=1

I(1)
i >

δ

4
n

)
≤ exp

(
−nDKL

(
δ

4

∥∥∥∥ 2n−`
))
≤ exp (−3δn log n) ,

where the last inequality follows by taking ` > 0 sufficiently large as follows:

DKL

(
δ

4

∥∥∥∥ 2n−`
)

=
δ

4
log

(
δ
4

2n−`

)
+

(
1− δ

4

)
log

(
1− δ

4

1− 2n−`

)
(a)

≥ δ

4
log

(
δ
4

2n−`

)
+ log

(
1− δ

4

1− 2n−`

)
≥ δ

4
log

(
δ
4

2n−`

)
+ log

(
1− δ

4

)
(b)
=
δ

4
log

(
δn`

8

)
− δ

4
+O

(
δ2
) (c)

≥ δ

4
· {(`− 1) · log n− (`− 1) · log 8− 1 +O(δ)}
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where (a) follows from the fact that for ` > 1, 2n−` ≤ n−1 ≤ δ
4 , implying log

(
1− δ4

1−2n−`

)
< 0; (b) is due to the fact

log(1− x) = −x+O(x2) as x→ 0; (c) follows from the fact that δ ≥ n−1. The last term can be surely made greater than
3δ log n by taking ` > 0 sufficiently large.

J. Proof of Lemma 10

By definition,
∣∣∣L̂(i;A,B)− L(i;A,B)

∣∣∣ is bounded by

|cs − ĉs| · {e({i}, A) + e({i}, B)}+ |cr − ĉr| · {Πi(uR) + Πi(vR)} . (24)

First, note that for any subset A, e({i}, A) is bounded by deg(i) := e({i}, [n] \ {i}). Moreover, Πi(uR) and Πi(uR) are both
bounded by Ωi := {j : (i, j) ∈ Ω}. Since we are in the regime where nα = Θ(log n), one can use a standard large deviation
inequality to prove that there exist a constant c1 > 0 such that with high probability, deg(i) ≤ c1 log n for any i. More specifically,
deg(i) is statistically dominated by

∑n−1
i=1 Ai, where Ai

i.i.d.∼ Bern(α). Hence, Pr (deg(i) > t) ≤ Pr
(∑n−1

i=1 Ai > t
)

, and by

Bernstein inequality, the last term is bounded by 2 exp
(
− 1

2 t
2

(n−1)α+t

)
. By choosing t = c1 log n for sufficiently large c1 > 0,

one can ensure Pr (deg(i) > c1 log n) = o(n−1), which finish shows the claim after taking the union bound. Similarly,
since p = Θ

(
logn
m + logm

n

)
and m = O(n), mp = Θ(log n), and hence, one can show that there exists c2 > 0 such that

Ωi ≤ c2 log n for any i.
Hence, (24) is bounded by 2c1 log n |cs − ĉs|+ 2c2 log n |cr − ĉr|, meaning it is sufficient to show (i) |cs − ĉs| ≤ τ

4c1
and

(ii) |cr − ĉr| ≤ τ
4c2

. The proof of (ii) is similar to (i), and indeed easier, so we omit the proof. Note that |cs − ĉs| ≤
∣∣log α̂

α

∣∣+∣∣∣log β̂
β

∣∣∣+ ∣∣∣log 1−α̂
1−α

∣∣∣+ ∣∣∣log 1−β̂
1−β

∣∣∣, which is equal to
∣∣log

(
1 + α̂−α

α

)∣∣+ ∣∣∣log
(

1 + β̂−β
β

)∣∣∣+ ∣∣∣log
(

1− α̂−α
1−α

)∣∣∣+ ∣∣∣log
(

1− β̂−β
1−β

)∣∣∣.
Lemma 13. Let η :=

|A(0)
1 \AR|
n . If η is sufficiently small, we have

∣∣ α̂−α
α

∣∣ = O(η) and
∣∣∣ β̂−ββ ∣∣∣ = O(η) with probability 1− o(1).

Proof. See Appendix A-M.

Due to Lemma 13, the last term is O(η), and as the analysis of Stage 1 guarantees that η = o(1), the proof is completed.

K. Proof of Lemma 11

From (19) and (20), it follows that MX1
(1/2) =

(√
αβ +

√
(1− α)(1− β)

)2

and MY1
(1/2) = 2p

√
θ(1− θ) + 1− p.

Simple computations yield the distribution of V1 and W1: For simplicity, let cg := log
(

(1−β)α
(1−α)β

)
and cm := log

(
1−θ
θ

)
. Then,

we have: Pr (V1 = cg) = Pr (V1 = −cg) =

√
(1−α)(1−β)αβ(√

αβ+
√

(1−α)(1−β)
)2 and Pr (V1 = 0) = αβ+(1−α)(1−β)(√

αβ+
√

(1−α)(1−β)
)2 ; Pr (W1 = cm) =

Pr (W1 = −cm) =
p
√
θ(1−θ)

2p
√
θ(1−θ)+1−p

and Pr (W1 = 0) = 1−p
2p
√
θ(1−θ)+1−p

.

We now compute the second moments of V1 and W1: E[V 2
1 ] = c2g

√
(1−α)(1−β)αβ(√

αβ+
√

(1−α)(1−β)
)2 = O(

√
αβ) and E[W 2

1 ] =

c2m
p
√
θ(1−θ)

2p
√
θ(1−θ)+1−p

= O(p). Hence, by Chebyshev’s inequality (note that Vi’s and Wj’s are mean zeros),

Pr

 K∑
i=1

Vi +

L∑
j=1

Wj > (pL)3/4

 ≤ ∑K
i=1 E[V 2

i ] +
∑L
j=1 E[W 2

j ]

(pL)3/2

=
O(
√
αβK) +O(pL)

(pL)3/2

(a)

≤ O(pL)

(pL)3/2

(b)→ 0 ,

where (a) follows from the fact that pL ≥
√
αβK; (b) follows from the fact that pL = ω(1).

L. Proof of Lemma 12

As (A,B) ∈ Zδ, e(i, A4AR) is a sum of at most δn independent random variables each of which has distribution either
Bern(α) or Bern(β). Hence, e(i, A4AR) is statistically dominated by

∑δn
i=1Ai, where Ai

i.i.d.∼ Bern(α). Thus,

Pr

e(i, A4AR) >
τ

4 log
(

(1−β)α
(1−α)β

) log n

 ≤ Pr

 δn∑
i=1

Ai >
τ

4 log
(

(1−β)α
(1−α)β

) log n

 .
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On the other hand, by Lemma 7 with k = max
{

5e, ` · 2 logn
nα

}
4, one obtains

Pr

(
δn∑
i=1

Ai ≥
knα

log 1
δ

)
≤ 2 exp

(
−knα

2

)
≤ 2n−` .

As limδ→0+
1

log 1
δ

= 0, by taking δ0 sufficiently small, one can ensure knα
log 1

δ

≤ τ

4 log( (1−β)α
(1−α)β )

log n whenever δ < δ0, which

completes the proof.

M. Proof of Lemma 13

We will only prove
∣∣ α̂−α
α

∣∣ = O(η); the proof of
∣∣∣ β̂−ββ ∣∣∣ = O(η) follows similarly. Note that e(A(0)

1 , A
(0)
1 ) =

∑((1−η)n
2 )+(ηn2 )

i=1 Ai+∑(n2)−((1−η)n
2 )−(ηn2 )

i=1 Bi, where Ai
i.i.d.∼ Bern(α) and Bi

i.i.d.∼ Bern(β). Let γ :=
(n2)−((1−η)n

2 )−(ηn2 )
(n2)

. Then, it is straightforward

to check that γ = O(η). By triangle inequality,
∣∣∣∣ 12α− e(A

(0)
1 ,A

(0)
1 )

2(n/22 )

∣∣∣∣ ≤ ∣∣∣∣ (1−γ)
2 α− 1

2(n2)

∑(1−γ)(n2)
i=1 Ai

∣∣∣∣+ γ
2α+ 1

2(n2)

∑γ(n2)
i=1 Bi.

Simple applications of Bernstein inequality deduce that with high probability,
∣∣∣∣ (1−γ)

2 α− 1

2(n2)

∑(1−γ)(n2)
i=1 Ai

∣∣∣∣ = O
(

logn
n3/2

)
and 1

γ(n2)

∑γ(n2)
i=1 Bi ≤ 2β = O(α). Taking collectively, we have

∣∣∣∣ 12α− e(A
(0)
1 ,A

(0)
1 )

2(n/2
2 )

∣∣∣∣ ≤ O(γ)α. Similarly, one can show∣∣∣∣ 12α− e(A
(0)
2 ,A

(0)
2 )

2(n/22 )

∣∣∣∣ ≤ O(γ)α, which concludes the proof.

4Note that 2 logn
nα

is a constant as we assumed α = Θ( logn
n

) at the beginning of Sec. II-B.
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