
Regret Bounds for Robust Adaptive Control of the
Linear Quadratic Regulator

Sarah Dean Horia Mania Nikolai Matni Benjamin Recht Stephen Tu

University of California, Berkeley

Abstract

We consider adaptive control of the Linear Quadratic Regulator (LQR), where
an unknown linear system is controlled subject to quadratic costs. Leveraging
recent developments in the estimation of linear systems and in robust controller
synthesis, we present the first provably polynomial time algorithm that provides
high probability guarantees of sub-linear regret on this problem. We further study
the interplay between regret minimization and parameter estimation by proving a
lower bound on the expected regret in terms of the exploration schedule used by any
algorithm. Finally, we conduct a numerical study comparing our robust adaptive
algorithm to other methods from the adaptive LQR literature, and demonstrate the
flexibility of our proposed method by extending it to a demand forecasting problem
subject to state constraints.

1 Introduction

The problem of adaptively controlling an unknown dynamical system has a rich history, with classical
asymptotic results of convergence and stability dating back decades [12, 13]. Of late, there has
been a renewed interest in the study of a particular instance of such problems, namely the adaptive
Linear Quadratic Regulator (LQR), with an emphasis on non-asymptotic guarantees of stability and
performance. Initiated by Abbasi-Yadkori and Szepesvári [1], there have since been several works
analyzing the regret suffered by various adaptive algorithms on LQR– here the regret incurred by
an algorithm is thought of as a measure of deviations in performance from optimality over time.
These results can be broadly divided into two categories: those providing high-probability guarantees
for a single execution of the algorithm [1, 4, 8, 11], and those providing bounds on the expected
Bayesian regret incurred over a family of possible systems [2, 16]. As we discuss in more detail,
these methods all suffer from one or several of the following limitations: restrictive and unverifiable
assumptions, limited applicability, and computationally intractable subroutines. In this paper, we
provide, to the best of our knowledge, the first polynomial-time algorithm for the adaptive LQR
problem that provides high probability guarantees of sub-linear regret, and that does not require
unverifiable or unrealistic assumptions.

Related Work. There is a rich body of work on the estimation of linear systems as well as on the
robust and adaptive control of unknown systems. We target our discussion to works on non-asymptotic
guarantees for the LQR control of an unknown system, broadly divided into three categories.

Offline estimation and control synthesis: In a non-adaptive setting, i.e., when system identification
can be done offline prior to controller synthesis and implementation, the first work to provide end-
to-end guarantees for the LQR optimal control problem is that of Fiechter [10], who shows that the
discounted LQR problem is PAC-learnable. Dean et al. [6] improve on this result, and provide the
first end-to-end sample complexity guarantees for the infinite horizon average cost LQR problem.
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Optimism in the Face of Uncertainty (OFU): Abbasi-Yadkori and Szepesvári [1], Faradonbeh et al.
[8], and Ibrahimi et al. [11] employ the Optimism in the Face of Uncertainty (OFU) principle [5],
which optimistically selects model parameters from a confidence set by choosing those that lead to
the best closed-loop (infinite horizon) control performance, and then plays the corresponding optimal
controller, repeating this process online as the confidence set shrinks. While OFU in the LQR setting
has been shown to achieve optimal regret Õ(

√
T ), its implementation requires solving a non-convex

optimization problem to precision Õ(T−1/2), for which no provably efficient implementation exists.

Thompson Sampling (TS): To circumvent the computational roadblock of OFU, recent works replace
the intractable OFU subroutine with a random draw from the model uncertainty set, resulting in
Thompson Sampling (TS) based policies [2, 4, 16]. Abeille and Lazaric [4] show that such a
method achieves Õ(T 2/3) regret with high-probability for scalar systems. However, their proof
does not extend to the non-scalar setting. Abbasi-Yadkori and Szepesvári [2] and Ouyang et al. [16]
consider expected regret in a Bayesian setting, and provide TS methods which achieve Õ(

√
T ) regret.

Although not directly comparable to our result, we remark on the computational challenges of these
algorithms. Whereas the proof of Abbasi-Yadkori and Szepesvári [2] was shown to be incorrect [15],
Ouyang et al. [16] make the restrictive assumption that there exists a (known) initial compact set Θ
describing the uncertainty in the system parameters, such that for any system θ1 ∈ Θ, the optimal
controller K(θ1) is stabilizing when applied to any other system θ2 ∈ Θ. No means of constructing
such a set are provided, and there is no known tractable algorithm to verify if a given set satisfies this
property. Also, it is implicitly assumed that projecting onto this set can be done efficiently.

Contributions. To develop the first polynomial-time algorithm that provides high probability
guarantees of sub-linear regret, we leverage recent results from the estimation of linear systems [17],
robust controller synthesis [14, 19], and coarse-ID control [6]. We show that our robust adaptive
control algorithm: (i) guarantees stability and near-optimal performance at all times; (ii) achieves
a regret up to time T bounded by Õ(T 2/3); and (iii) is based on finite-dimensional semidefinite
programs of size logarithmic in T .

Furthermore, our method estimates the system parameters at Õ(T−1/3) rate in operator norm.
Although system parameter identification is not necessary for optimal control performance, an
accurate system model is often desirable in practice. Motivated by this, we study the interplay
between regret minimization and parameter estimation, and identify fundamental limits connecting
the two. We show that the expected regret of our algorithm is lower bounded by Ω(T 2/3), proving
that our analysis is sharp up to logarithmic factors. Moreover, our lower bound suggests that the
estimation rate achievable by any algorithm with O(Tα) regret is Ω(T−α/2).

Finally, we conduct a numerical study of the adaptive LQR problem, in which we implement our
algorithm, and compare its performance to heuristic implementations of OFU and TS based methods.
We show on several examples that the regret incurred by our algorithm is comparable to that of the
OFU and TS based methods. Furthermore, the infinite horizon cost achieved by our algorithm at
any given time on the true system is consistently lower than that attained by OFU and TS based
algorithms. Finally, we use a demand forecasting example to show how our algorithm naturally
generalizes to incorporate environmental uncertainty and safety constraints. The full version of this
paper is [7].

2 Problem Statement and Preliminaries

In this work we consider adaptive control of the following discrete-time linear system

xk+1 = A?xk +B?uk + wk , wk
i.i.d.∼ N (0, σ2

wI) , (2.1)

where xk ∈ Rn is the state, uk ∈ Rp is the control input, and wk ∈ Rn is the process noise. We
assume that the state variables are observed exactly and, for simplicity, that x0 = 0. We consider the
Linear Quadratic Regulator optimal control problem, given by cost matrices Q � 0 and R � 0,

J? = min
u

lim
T→∞

1

T
E

[
T∑
k=1

x>k Qxk + u>k Ruk

]
s.t. dynamics (2.1) , (2.2)
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where the minimum is taken over measurable functions u = {uk(·)}k≥1, with each uk adapted to
the history xk, xk−1, . . . , x1, and possibe additional randomness independent of future states. Given
knowledge of (A?, B?), the optimal policy is a static state-feedback law uk = K?xk, where K? is
derived from the solution to a discrete algebraic Riccati equation.

We are interested in algorithms which operate without knowledge of the true system transition
matrices (A?, B?). We measure the performance of such algorithms via their regret, defined as

Regret(T ) :=

T∑
k=1

(x>k Qxk + u>k Ruk − J?) . (2.3)

The regret of any algorithm is lower-bounded by Ω(
√
T ), a bound matched by OFU up to logarithmic

factors [8]. However, after each epoch, OFU requires optimizing a non-convex objective toO(T−1/2)
precision. Instead, our method uses a subroutine based on quasi-convex optimization and robust
control.

2.1 Preliminaries: System Level Synthesis

We briefly describe the necessary background on robust control and System Level Synthesis [19]
(SLS). These tools were recently used by Dean et al. [6] to provide non-asymptotic bounds for LQR
in the offline “estimate-and-then-control” setting. In the appendix of the full version [7] we expand
on these preliminaries.

Consider the dynamics (2.1), and fix a static state-feedback control policy K, i.e., let uk = Kxk.
Then, the closed loop map from the disturbance process {w0, w1, . . . } to the state xk and control
input uk at time k is given by

xk =
∑k
t=1(A? +B?K)k−twt−1 ,

uk =
∑k
t=1K(A? +B?K)k−twt−1 .

(2.4)

Letting Φx(k) := (A? +B?K)k−1 and Φu(k) := K(A? +B?K)k−1, we can rewrite Eq. (2.4) as[
xk
uk

]
=

k∑
t=1

[
Φx(k − t+ 1)
Φu(k − t+ 1)

]
wt−1 , (2.5)

where {Φx(k),Φu(k)} are called the closed loop system response elements induced by the controller
K. The SLS framework shows that for any elements {Φx(k),Φu(k)} constrained to obey

Φx(k + 1) = A?Φx(k) +B?Φu(k) , Φx(1) = I , ∀k ≥ 1 , (2.6)

there exists some controller that achieves the desired system responses (2.5). The state-feedback
parameterization result in Theorem 1 of Wang et al. [19] formalizes this observation: the SLS
framework therefore allows for any optimal control problem over linear systems to be cast as an
optimization problem over elements {Φx(k),Φu(k)}, constrained to satisfy the affine equations (2.6).
Comparing equations (2.4) and (2.5), we see that the former is non-convex in the controller K,
whereas the latter is affine in the elements {Φx(k),Φu(k)}, enabling solutions to previously difficult
optimal control problems.

As we work with infinite horizon problems, it is notationally more convenient to work with transfer
function representations of the above objects, which can be obtained by taking a z-transform of
their time-domain representations. The frequency domain variable z can be informally thought
of as the time-shift operator, i.e., z{xk, xk+1, . . . } = {xk+1, xk+2, . . . }, allowing for a compact
representation of LTI dynamics. We use boldface letters to denote such transfer functions, e.g.,
Φx(z) =

∑∞
k=1 Φx(k)z−k. Then, the constraints (2.6) can be rewritten as

[zI −A? −B?]
[
Φx

Φu

]
= I , (2.7)

and the corresponding (not necessarily static) control law u = Kx is given by K = ΦuΦ
−1
x .

Although other approaches to optimal controller design exists, we argue now that the SLS parameteri-
zation has some appealing properties when applied to the control of uncertain systems. In particular,
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suppose that rather than having access to the true system transition matrices (A?, B?), we instead
only have access to estimates (Â, B̂). The SLS framework allows us to characterize the system
responses achieved by a controller, computed using only the estimates (Â, B̂), on the true system
(A?, B?). Specifically, if we denote ∆̂ := (Â−A?)Φx + (B̂ −B?)Φu, simple algebra shows that[

zI − Â −B̂
] [Φx

Φu

]
= I if and only if [zI −A? −B?]

[
Φx

Φu

]
= I + ∆̂ .

The robust stability result in Theorem 2 of Matni et al. [14] shows that if (I + ∆̂)−1 exists, then the
controller K = ΦuΦ

−1
x , computed using only the estimates (Â, B̂), achieves the following response

on the true system (A?, B?): [
x
u

]
=

[
Φx

Φu

]
(I + ∆̂)−1w .

Further, if K stabilizes the system (Â, B̂), and (I + ∆̂)−1 is stable (simple sufficient conditions can
be derived to ensure this, see [6]), then K is also stabilizing for the true system. It is this transparency
between system uncertainty and controller performance that we exploit in our algorithm.

We end this discussion with the definition of a function space that we use extensively throughout:

S(C, ρ) :=

{
M =

∞∑
k=1

M(k)z−k | ‖M(k)‖ ≤ Cρk , k = 1, 2, ...

}
. (2.8)

The space S(C, ρ) consists of (strictly proper) stable transfer functions that satisfy a certain decay
rate in the spectral norm of their impulse response elements. We denote the restriction of S(C, ρ)
to the space of F -length finite impulse response (FIR) filters by SF (C, ρ), i.e., M ∈ SF (C, ρ) if
M ∈ S(C, ρ), and M(k) = 0 for all k > F .

We equip S(C, ρ) with the H∞ and H2 norms, which are infinite horizon analogs of the spectral
and Frobenius norms of a matrix, respectively: ‖M‖H∞ = sup‖w‖2=1 ‖Mw‖2 and ‖M‖H2

=√∑∞
k=1‖M(k)‖2F . TheH∞ andH2 norm have distinct interpretations. TheH∞ norm of a system

M is equal to its `2 7→ `2 operator norm, and can be used to measure the robustness of a system to
unmodelled dynamics [20]. TheH2 norm has a direct interpretation as the energy transferred to the
system by a white noise process, and is hence closely related to the LQR optimal control problem.
Unsurprisingly, theH2 norm appears in the objective function of our optimization problem, whereas
theH∞ norm appears in the constraints to ensure robust stability and performance.

3 Algorithm and Guarantees

Our proposed robust adaptive control algorithm for LQR is shown in Algorithm 1. We note that while
Line 8 of Algorithm 1 is written as an infinite-dimensional optimization problem, it can be formulated
in terms of finite-dimensional decision variables {Φx(k),Φu(k)}Fk=1 due to the restriction to FIR
filters. In this formulation, theH2 cost can be written as a Frobenius norm and theH∞ constraint
reduces to a linear matrix inequality. Therefore, the inner optimization can be equivalently written as
a semidefinite program over O(Fi(n

2 + np)) decision variables. We describe this transformation in
detail in appendix Section G of the full version [7]. We also note that the outer optimization over γ
can be performed efficiently by bisection search because the objective is jointly quasi-convex in the
decision variables and is smooth with respect to γ in the feasible domain.

Some remarks on practice are in order. First, in Line 6, only the trajectory data collected during the
i-th epoch is used for the least squares estimate. Second, the epoch lengths we use grow exponentially
in the epoch index. These settings are chosen primarily to simplify the analysis; in practice all the
data collected should be used, and it may be preferable to use a slower growing epoch schedule (such
as Ti = CT (i + 1)). Additionally, for storage considerations, instead of performing a batch least
squares update of the model, a recursive least squares (RLS) estimator rule can be used to update
the parameters in an online manner. Furthermore, many constants in Algorithm 1 depend on the
unknown system to be consistent with our data-independent analysis. In practice, these parameters
can be estimated from collected data.

Finally, we note that the proofs for all results in this section can be found in the full version [7].
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Algorithm 1 Robust Adaptive Control Algorithm

Require: Stabilizing controller K(0), failure probability δ ∈ (0, 1), and constants (C?, ρ?, ‖K?‖).
1: Set Cx ← O(1)C?

(1−ρ?)3 , Cu ← ‖K?‖Cx, and ρ← .999 + .001ρ?.

2: Set CT ← Õ
(

(n+ p)
C4
?(1+‖K?‖)4

(1−ρ?)8

)
.

3: for i = 0, 1, 2, ... do
4: Set Ti ← CT 2i and σ2

η,i ← σ2
w(Ti/CT )−1/3.

5: Set Di = {(x(i)
k , u

(i)
k )}Tik=1 ← evolve system forward Ti steps, where each action u(i)

k is
obtained from the controller K(i) plus an additional noise term for exploration. More precisely,
u(i) = K(i)x(i) + η(i), where each entry of η(i) is drawn i.i.d. from N (0, σ2

η,iIp).

6: Set (Âi, B̂i)← arg minA,B
∑Ti−1
k=1

1
2‖x

(i)
k+1 −Ax

(i)
k −Bu

(i)
k ‖22.

7: Set εi ← Õ
(
σw‖K?‖C?
ση,i(1−ρ?)3

√
n+p
Ti

)
and Fi ← Õ(1)(i+1)

1−ρ? .

8: Set K(i+1) = ΦuΦ
−1
x , where (Φx,Φu) are the solution to

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu,V

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Âi −B̂i

] [Φx

Φu

]
= I +

1

zFi
V ,

√
2εi

1− CxρFi+1

∥∥∥∥[Φx

Φu

]∥∥∥∥
H∞
≤ γ ,

‖V ‖ ≤ CxρFi+1 , Φx ∈ SFi(Cx, ρ) , Φu ∈ SFi(Cu, ρ) .

9: end for

3.1 Regret Upper Bounds

Our guarantees for Algorithm 1 are stated in terms of certain system specific constants, which we
define here. We let K? denote the static feedback solution to the LQR problem for (A?, B?, Q,R).
Next, we define (C?, ρ?) such that the closed loop system A? + B?K? belongs to S(C?, ρ?). Our
main assumption is stated as follows.

Assumption 3.1. We are given a controller K(0) that stabilizes the true system (A?, B?). Further-
more, letting (Φx,Φu) denote the response of K(0) on (A?, B?), we assume that Φx ∈ S(Cx, ρ)
and Φu ∈ S(Cu, ρ), where the constants Cx, Cu, ρ are defined in Algorithm 1.

The requirement of an initial stabilizing controller K(0) is not restrictive; Dean et al. [6] provide an
offline strategy for finding such a controller. Furthermore, in practice Algorithm 1 can be initialized
with no controller, with random inputs applied instead to the system in the first epoch to estimate
(A?, B?) within an initial confidence set for which the synthesis problem becomes feasible.

Our first guarantee is on the rate of estimation of (A?, B?) as the algorithm progresses through
time. This result builds on recent progress [17] for estimation along trajectories of a lin-
ear dynamical system. For what follows, the notation Õ(·) hides absolute constants and
polylog

(
T, 1

δ , C?,
1

1−ρ? , n, p, ‖B?‖, ‖K?‖
)

factors.

Theorem 3.2. Fix a δ ∈ (0, 1) and suppose that Assumption 3.1 holds. With probability at least
1 − δ the following statement holds. Suppose that T is at an epoch boundary. Let (Â(T ), B̂(T ))
denote the current estimate of (A?, B?) computed by Algorithm 1 at the end of time T . Then, this
estimate satisfies the guarantee

max{‖Â(T )−A?‖, ‖B̂(T )−B?‖} ≤ Õ
(
C?‖K?‖
(1− ρ?)3

√
n+ p

T 1/3

)
.

Theorem 3.2 shows that Algorithm 1 achieves a consistent estimate of the true dynamics (A?, B?),
and learns at a rate of Õ(T−1/3). We note that consistency of parameter estimates is not a guarantee
provided by OFU or TS based approaches.
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Next, we state an upper bound on the regret incurred by Algorithm 1.
Theorem 3.3. Fix a δ ∈ (0, 1) and suppose that Assumption 3.1 holds. With probability at least
1− δ the following statement holds. For all T ≥ 0 we have that Algorithm 1 satisfies

Regret(T ) ≤ Õ
(

(n+ p)
C4
?(1 + ‖K?‖)4(1 + ‖B?‖)2J?

(1− ρ?)16
T 2/3

)
.

Here, the notation Õ(·) also hides o(T 2/3) terms.

Our proof strategy works as follows. We first decompose regret by epochs as follows:

Regret(T ) =

O(log2 T )∑
i=0

Ti∑
k=1

((x
(i)
k )>Qx

(i)
k + (u

(i)
k )>Ru

(i)
k − J?) ,

where x(i)
k denotes the state at the k-th timestep in the i-th epoch (and similarly for u(i)

k ). By
standard concentration of measure arguments, we can upper bound w.h.p. the per-epoch regret∑Ti
k=1((x

(i)
k )>Qx

(i)
k +(u

(i)
k )>Ru

(i)
k −J?) by its expected value plus a deviation term that involves the

norm of x(i)
0 . Because we constrain the impulse response coefficients of the SLS response {Φx,Φu}

in Algorithm 1, this allows to easily bound ‖x(i)
0 ‖2 w.h.p. again by using standard concentration

arguments. We then use the SLS machinery to quantify the difference between the expected cost
over the horizon Ti minus J?, which yields that the regret incurred during epoch i is bounded by
Õ(Ti(σ

2
η,i/σ

2
w + εi−1)J?), where εi−1 is the estimation error, and the O(σ2

η,i/σ
2
w) contribution is

the additional cost incurred from injecting exploration noise. We then bound our estimation error by
εi = Õ((σw/ση,i)T

−1/2
i ) using Theorem 3.2. Setting σ2

η,i = σ2
wT
−α
i , we have the per-epoch regret

is bounded by Õ(T 1−α
i + T

1−(1−α)/2
i ). Choosing α = 1/3 to balance these competing powers of Ti

and summing over logarithmic number of epochs, we obtain a final regret of Õ(T 2/3).

The main difficulty in the proof is ensuring that the transient behavior of the resulting controllers is
uniformly bounded when applied to the true system. Prior works sidestep this issue by assuming that
the true dynamics lie within a (known) compact set for which the Heine-Borel theorem asserts the
existence of finite constants that capture this behavior. We go a step further and work through the
perturbation analysis which allows us to give a regret bound that depends only on simple quantities
of the true system (A?, B?). The full proof is given in the appendix.

Finally, we remark that the dependence on 1/(1− ρ?) in our results is an artifact of our perturbation
analysis, and we leave sharpening this dependence to future work.

3.2 Regret Lower Bounds and Parameter Estimation Rates

We saw that Algorithm 1 achieves Õ(T 2/3) regret with high probability. Now we provide a matching
algorithmic lower bound on the expected regret, showing that the analysis presented in Section 3.1 is
sharp as a function of T . Moreover, our lower bound characterizes how much regret must be accrued
in order to achieve a specified estimation rate for the system parameters (A?, B?).
Theorem 3.4. Let the initial state x0 be distributed according to the steady state distribution
N (0, P∞) of the optimal closed loop system, and let {ut}t≥0 be any sequence of inputs as in
Section 2. Furthermore, let f : R→ R be any function such that with probability 1− δ we have

λmin

(
T−1∑
k=0

[
xk
uk

] [
x>k u>k

])
≥ f(T ) . (3.1)

Then, there exist positive values T0 and C0 such that for all T ≥ T0 we have

T∑
k=0

E
[
x>k Qxk + u>k Ruk − J?

]
≥ 1

2
(1− δ)λmin(R)(1 + σmin(K?)

2)f(T − T0)− C0 ,

where T0 and C0 are functions of A?, B?, Q, R, σ2
w, and n. We note the specific form of T0 and C0

are given in the proof.
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The proof of the estimation error Theorem 3.2 shows that Algorithm 1 satisfies Eq. (3.1) with
f(T ) = Õ(Tσ2

η,Θ(log2(T ))). Since the exploration variance σ2
η,i used by Algorithm 1 during the i-th

epoch is given by σ2
η,i = O(σ2

wT
−i/3), we obtain the following corollary which demonstrates the

sharpness of our regret analysis with respect to the scaling of T .
Corollary 3.5. For T > C1(n, δ, σ2

w, A?, B?, Q,R) the expected regret of Algorithm 1 satisfies

T∑
k=1

E
[
x>k Qxk + u>k Ruk − J?

]
≥ Ω̃(λmin(R)(1 + σmin(K?)

2)T 2/3) .

A natural question to ask is how much regret does any algorithm accrue in order to achieve estimation
error ‖Â− A?‖ ≤ ε and ‖B̂ − B?‖ ≤ ε. From Theorem 3.2 we know that Algorithm 1 estimates
(A?, B?) at rate Õ(T−1/3). Therefore, in order to achieve ε estimation error, T must be Ω̃(ε−3).
Hence, Theorem 3.3 implies that the regret of Algorithm 1 to achieve ε estimation error is Õ(ε−2).

Interestingly, let us consider any other Algorithm achieving O(Tα) regret for some 0 < α < 1.
Then, Theorem 3.4 suggests that the best rate achievable by such an algorithm is O(T−α/2), since
the minimum eigenvalue condition Eq. (3.1) governs the signal-to-noise ratio. In the case of linear-
regression with independent data it is known that the minimax estimation rate is lower bounded by
square root of the inverse of the minimum eigenvalue (3.1). We conjecture that the same results
holds in our case. Therefore, to achieve ε estimation error, any Algorithm would likely require
Ω(ε−2) regret, showing that Algorithm 1 is optimal up to logarithmic factors in this sense. Finally,
we note that while Algorithm 1 estimates (A?, B?) at a rate Õ(T−1/3), Theorem 3.4 suggests that
any algorithm achieving the O(

√
T ) regret would estimate (A?, B?) at a rate Ω(T−1/4).

4 Experiments

Regret Comparison. We illustrate the performance of several adaptive schemes empirically. We
compare the proposed robust adaptive method with non-Bayesian Thompson sampling (TS) as
in Abeille and Lazaric [4] and a heuristic projected gradient descent (PGD) implementation of OFU.
As a simple baseline, we use the nominal control method, which synthesizes the optimal infinite-
horizon LQR controller for the estimated system and injects noise with the same schedule as the
robust approach. Computational burden varies across adaptive methods due to differences in both
cost and frequency of controller synthesis; implementation details and computational considerations
for all methods are in Section G of the full version [7].

The comparison experiments are carried out on the following LQR problem:

A? =

[
1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

]
, B? = I, Q = 10I, R = I, σw = 1 . (4.1)

This system corresponds to a marginally unstable Laplacian system where adjacent nodes are weakly
connected; these dynamics were also studied by [3, 6, 18]. The cost is such that input size is penalized
relatively less than state. This problem setting is amenable to robust methods due to both the cost
ratio and the marginal instability, which are factors that may hurt optimistic methods. In Section H of
the full version [7], we show similar results for an unstable system with large transients.

To standardize the initialization of the various adaptive methods, we use a rollout of length T0 = 100
where the input is a stabilizing controller plus Gaussian noise with fixed variance σu = 1. This
trajectory is not counted towards the regret, but the recorded states and inputs are used to initialize
parameter estimates. In each experiment, the system starts from x0 = 0 to reduce variance over runs.
For all methods, the actual errors Ât −A? and B̂t −B? are used rather than bounds or bootstrapped
estimates. The effect of this choice on regret is small, as examined empirically in Section H of [7].

The performance of the various adaptive methods over time is compared in Figure 1. The median
and 90th percentile cumulative regret over 500 instances is displayed in Figure 1a, which gives an
idea of both typical and worst-case behavior. The regret of the optimal LQR controller for the true
system is displayed as a baseline. Overall, the methods have very similar performance. One benefit
of robustness is the guaranteed stability and bounded infinite-horizon cost at every point during
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Figure 1: A comparison of different adaptive methods on 500 experiments of the marginally unstable Laplacian
example in 4.1. In (a), the median and 90th percentile cumulative regret is plotted over time. In (b), the median
and 90th percentile infinite-horizon LQR cost of the epoch’s controller.
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Figure 2: The addition of constraints in the robust synthesis problem can guarantee the safe execution of
adaptive systems. We consider an example inspired by demand forecasting, as illustrated in (a), where the left
hand side of the diagram represents unknown dynamics. The median and maximum values of ‖xt‖∞ over 500
trials are plotted for both the unconstrained and constrained synthesis problems in (b).

operation. In Figure 1b, this infinite-horizon LQR cost is plotted for the controllers played during
each epoch. This value measures the cost of using each epoch’s controller indefinitely, rather than
continuing to update its parameters. The robust adaptive method performs relatively better than other
adaptive algorithms, indicating that it is more amenable to early stopping, i.e., to turning off the
adaptive component of the algorithm and playing the current controller indefinitely.

Extension to Uncertain Environment with State Constraints. The proposed robust adaptive
method naturally generalizes beyond the standard LQR problem. We consider a disturbance fore-
casting example which incorporates environmental uncertainty and safety constraints. Consider a
system with known dynamics driven by stochastic disturbances that are now correlated in time. We
model the disturbance process as the output of an unknown autonomous LTI system, as illustrated in
Figure 2a. This setting can be interpreted as a demand forecasting problem, where, for example, the
system is a server farm and the disturbances represent changes in the amount of incoming jobs. If
the dynamics of the correlated disturbance process are known, this knowledge can be used for more
cost-effective temperature control.

We let the system (A?, B?) with known dynamics be described by the graph Laplacian dynamics as
in Eq. (4.1). The disturbance dynamics are unknown and are governed by a stable system transition
matrix Ad, resulting in the following dynamics for the full system:[

xt+1

dt+1

]
=

[
A? I
0 Ad

] [
zt
dt

]
+

[
B?
0

]
ut +

[
0
I

]
wt , Ad =

[
0.5 0.1 0
0 0.5 0.1
0 0 0.5

]
.

The costs are set to model expensive inputs, with Q = I and R = 1× 103I . The controller synthesis
problem in Line 8 of Algorithm 1 is modified to reflect the problem structure, and crucially, we add a
constraint on the system response Φx. Further details of the formulation are explained in Section H
of [7]. Figure 2b illustrates the effect. While the unconstrained synthesis results in trajectories with
large state values, the constrained synthesis results in much more moderate behavior.
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5 Conclusions and Future Work

We presented a polynomial-time algorithm for the adaptive LQR problem that provides high probabil-
ity guarantees of sub-linear regret. In contrast to other approaches to this problem, our robust adaptive
method guarantees stability, robust performance, and parameter estimation. We also explored the
interplay between regret minimization and parameter estimation, identifying fundamental limits
connecting the two.

Several questions remain to be answered. It is an open question whether a polynomial-time algorithm
can achieve a regret of Õ(

√
T ). In our implementation of OFU, we observed that PGD performed

quite effectively. Interesting future work is to see if the techniques of Fazel et al. [9] for policy
gradient optimization on LQR can be applied to prove convergence of PGD on the OFU subroutine,
which would provide an optimal polynomial-time algorithm. Moreover, we observed that OFU
and TS methods in practice gave estimates of system parameters that were comparable with our
method which explicitly adds excitation noise. It seems that the switching of control policies at epoch
boundaries provides more excitation for system identification than is currently understood by the
theory. Furthermore, practical issues that remain to be addressed include satisfying safety constraints
and dealing with nonlinear dynamics; in both settings, finite-sample parameter estimation/system
identification and adaptive control remain an open problem.
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A Background on System Level Synthesis

We begin by defining two function spaces which we use extensively throughout:

RH∞ = {M : C −→ Cn×p |M(z) is rational , M(z) is analytic on Dc} , (A.1)

RH∞(C, ρ) = {M ∈ RH∞ | ‖M[k]‖ ≤ Cρk , k = 1, 2, ...} . (A.2)

Note that we use S(C, ρ) to denoteRH∞(C, ρ) in the main body of the text.

Recall that our main object of interest is the system

xk+1 = Axk +Buk + wk ,

and our goal is to design a LTI feedback control policy u = Kx such that the resulting closed loop
system is stable. For a given K, we refer to the closed loop transfer functions from w 7→ x and
w 7→ u as the system response. Symbolically, we denote these maps as Φx and Φu. Simple algebra
shows that given K, these maps take on the form

Φx = (zI −A−BK)−1 , Φu = K(zI −A−BK)−1 . (A.3)

We then have the following theorem parameterizing the set of such stable closed-loop transfer
functions that are achievable by a stabilizing controller K.

Theorem A.1 (State-Feedback Parameterization [19]). The following are true:

• The affine subspace defined by

[zI −A −B]

[
Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ (A.4)

parameterizes all system responses (??) from w to (x,u), achievable by an internally
stabilizing state-feedback controller K.

• For any transfer matrices {Φx,Φu} satisfying (??), the controller K = ΦuΦ
−1
x is inter-

nally stabilizing and achieves the desired system response (??).

If K stabilizes (A,B), then the LQR cost of K on (A,B) can be written by Parseval’s identity as

J(A,B,K;σ2
wI) := lim

T→∞

1

T
E

[
T∑
k=1

x>k Qxk + u>k Ruk

]
= σ2

w

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φx

Φu

]∥∥∥∥2

H2

.

(A.5)

More generally, we will define J(A,B,K; Σ) to be the LQR cost when the process noise is driven by
w

i.i.d.∼ N (0,Σ). When we omit the last argument, we mean σ2
w = 1, i.e. J(A,B,K) = J(A,B,K; I).

In [6], the authors use SLS to study how uncertainty in the true parameters (A?, B?) affect the LQR
objective cost. Our analysis relies on these tools, which we briefly describe below.

The starting point for the theory is a characterization of all robustly stabilizing controllers.

Theorem A.2 ([14]). Suppose that the transfer matrices {Φx,Φu} ∈ 1
zRH∞ satisfy

[zI −A −B]

[
Φx

Φu

]
= I + ∆. (A.6)

Then the controller K = ΦuΦ
−1
x stabilizes the system described by (A,B) if and only if (I+∆)−1 ∈

RH∞. Furthermore, the resulting system response is given by[
x
u

]
=

[
Φx

Φu

]
(I + ∆)−1w. (A.7)

This robustness result is used to derive a cost perturbation result for LQR.
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Lemma A.3 ([6]). Let the controller K stabilize (Â, B̂) and (Φx,Φu) be its corresponding system
response on system (Â, B̂). Then if K stabilizes (A,B), it achieves the following LQR cost√

J(A,B,K) =

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

] [
Φx

Φu

](
I + [∆A ∆B ]

[
Φx

Φu

])−1
∥∥∥∥∥
H2

. (A.8)

Furthermore, letting

∆̂ := [∆A ∆B ]

[
Φx

Φu

]
. (A.9)

a sufficient condition for K to stabilize (A,B) is that ‖∆̂‖H∞ < 1. An upper bound on ‖∆̂‖H∞ is
given by, for any α ∈ (0, 1),

‖∆̂‖H∞ ≤
∥∥∥∥[ εA√

α
Φx

εB√
1−αΦu

]∥∥∥∥
H∞

, (A.10)

where we assume that ‖A− Â‖2 ≤ εA and ‖B − B̂‖2 ≤ εB .

B Synthesis Results

We first study the following infinite-dimensional synthesis problem.

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I,

∥∥∥∥[Φx

Φu

]∥∥∥∥
H∞
≤ γ√

2ε

Φx ∈
1

z
RH∞(Cx, ρ), Φu ∈

1

z
RH∞(Cu, ρ).

(B.1)

We will conduct our analysis assuming that this infinite-dimensional problem is solvable. Later on,
we will show how to relax this problem to a finite-dimension one via FIR truncation, and show the
minor modifications needed to the analysis for the guarantees to hold.

We now prove a sub-optimality guarantee on the solution to (??) which holds for certain choices
of ε and the coefficients (Cx, ρx) and (Cu, ρu). This result also establishes an important technical
consideration, which is when the problemmmm (??) is feasible.
Theorem B.1. Let J? denote the minimal LQR cost achievable by any controller for the dynamical
system with transition matrices (A?, B?), and let K? denote its optimal static feedback contoller.
Suppose that RA?+B?K? ∈ RH∞(C?, ρ?) and that (wlog) ρ? ≥ 1/e. Suppose furthermore that ε is
small enough to satisfy the following conditions:

ε(1 + ‖K?‖)‖RA?+B?K?‖H∞ ≤ 1/5 ,

ε(1 + ‖K?‖)C? ≤ 1− ρ? .

Let (Â, B̂) be any estimates of the transition matrices such that max{‖∆A‖, ‖∆B‖} ≤ ε. Then, if
(Cx, ρ) and (Cu, ρ) are set as,

Cx =
O(1)C?
1− ρ?

,

Cu =
O(1)‖K?‖C?

1− ρ?
,

ρ = (1/4)ρ? + 3/4 ,

we have that (a) the program (??) is feasible, (b) letting K denote an optimal solution to (??), the
relative error in the LQR cost is

J(A?, B?,K) ≤ (1 + 5ε(1 + ‖K?‖)‖RA?+B?K?‖H∞)2J? , (B.2)
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and (c) if furthermore ε(Cx + Cu) ≤ 2(1 − ρ?), the response {Φ̂x, Φ̂u} of K on the true system
(A?, B?) satisfies

Φ̂x ∈ RH∞
( O(1)C?

(1− ρ?)2
, 7/8 + (1/8)ρ?

)
,

Φ̂u ∈ RH∞
(O(1)‖K?‖C?

(1− ρ?)2
, 7/8 + (1/8)ρ?

)
.

Proof. The proof of (a) and (b) is nearly identical to that given in [6], which works by showing
that Φx = RÂ+B̂K?

and Φu = K?RÂ+B̂K?
is a feasible response which gives the desired sub-

optimality guarantee. The only modification is that we need to find constants Cx, Cu, ρ for which
RÂ+B̂K?

∈ 1
zRH∞(Cx, ρ) and K?RÂ+B̂K?

∈ 1
zRH∞(Cu, ρ). We do this by writing

RÂ+B̂K?
= RA?+B?K?(I −∆)−1 , ∆ = (∆A + ∆BK?)RA?+B?K? .

By the definition of ∆ and our assumptions, we have that
∆ ∈ RH∞(ε(1 + ‖K?‖)C?, ρ?) , ‖∆‖H∞ < 1 .

This places us in a position to apply Lemma ??, from which we conclude that
(I −∆)−1 ∈ RH∞ (O(1),Avg(ρ?, 1)) .

Now applying Lemma ?? to RA?+B?K?(I −∆)−1, we conclude that

RÂ+B̂K?
∈ RH∞

(O(1)C?
1− ρ?

, (1/4)ρ? + 3/4

)
.

The claims of (a) and (b) now follows.

Now for the proof of (c). Let {Φx,Φu} be the solution to (??). We have that[
Φ̂x

Φ̂u

]
=

[
Φx

Φu

]
(I + ∆̂)−1 , ∆̂ = [∆A ∆B ]

[
Φx

Φu

]
.

We know that ‖∆̂‖H∞ < 1 by the constraints of the optimization problem (??) and furthermore,

∆̂ ∈ RH∞(ε(Cx + Cu), ρ) .

By assumption we have ε(Cx + Cu) ≤ 2, from which we conclude using Lemma ?? that

(I + ∆̂)−1 ∈ RH∞ (O(1),Avg(ρ, 1)) .

Furthermore, from Lemma ??, we conclude that

Φx(I + ∆̂)−1 ∈ RH∞
(

Cx
1− ρ , 3/4 + (1/4)ρ

)
,

Φu(I + ∆̂)−1 ∈ RH∞
(

Cu
1− ρ , 3/4 + (1/4)ρ

)
.

The claim now follows by plugging in the values of Cx, Cu, and ρ.

B.1 Suboptimality bounds for FIR truncated SLS

Optimization problem (??) is convex but infinite dimensional, and as far as we are aware does
not admit an efficient solution. In Algorithm 1, we instead propose solving the following FIR
approximation to problem (??):

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu,V

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I +

1

zF
V ,

√
2ε

1− CxρF+1

∥∥∥∥[Φx

Φu

]∥∥∥∥
H∞
≤ γ (B.3)

‖V ‖2 ≤ CxρF+1 , Φx ∈
1

z
RHF∞(Cx, ρ),Φu ∈

1

z
RHF∞(Cu, ρ) .

where here F denotes the FIR truncation length used. This optimization problem can be posed as a
finite dimensional semidefinite program (see Section ??). Let K(F ) denote the resulting controller.
We begin with a lemma identifying conditions under which optimization problem (??) is feasible. to
ease notation going forward, we let ζ := ε(1 + ‖K?‖2)‖RA?+B?K?‖H∞ .
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Lemma B.2. Let the assumptions of Theorem ?? hold, and further assume that

F0 ≥
log(2Cx)

log(1/ρ)
− 1 .

Then optimization problem (??) is feasible for any F ≥ F0.

Proof. We construct a feasible solution as follows. Let Φx = RÂ+B̂K?
(1 : F ), Φu =

K?RÂ+B̂K?
(1 : F ), V = RÂ+B̂K?

(F + 1), and γ = 2
√

2ζ
1−ζ . First, the proposed (Φx,Φu) are FIR

of length F , and hence, using the same arguments as in the proof of Theorem ??, Φx ∈ RHF∞(Cx, ρ)

and Φu ∈ RHF∞(Cu, ρ). It then also follows immediately that ‖V ‖2 = ‖RÂ+B̂K?
(F + 1)‖2 ≤

Cxρ
F+1.

Note that the affine constraint [
zI − Â −B̂

] [Φx

Φu

]
= I +

1

zF
V (B.4)

is equivalent to
Φx(t+ 1) = ÂΦx(t) + B̂Φu(t), Φx(1) = I,

for 1 ≤ t < F . We have by construction that the proposed Φx and Φu satisfy this constraint. Further,
the combination of the FIR constraints and the affine constraint (??) impose that

Φx(F + 1) = ÂΦx(F ) + B̂Φu(F )− V = 0.

Now notice that for the proposed (Φx,Φu), we have that ÂΦx(F ) + B̂Φu(F ) = (Â +

B̂K?)RÂ+B̂K?
(F ) = RÂ+B̂K?

(F + 1), where the last equality follows from the fact that

RÂ+B̂K?
(t+ 1) = (Â+ B̂K?)

t. It follows that Φx(F + 1) = 0, as desired.

It remains to prove that √
2ε

1− CxρF+1

∥∥∥∥[Φx

Φu

]∥∥∥∥
H∞
≤ 2
√

2ζ

1− ζ < 1.

The final inequality follows immediately from the assumption that ζ ≤ 1/5. Further, note that
√

2ε

1− CxρF+1

∥∥∥∥[Φx

Φu

]∥∥∥∥
H∞
≤ 2
√

2ε

∥∥∥∥[ RÂ+B̂K?
K?RÂ+B̂K?

]∥∥∥∥
H∞
≤ 2
√

2ζ

1− ζ ,

where the first inequality follows from the assumption on on F0 and that the proposed Φx is a
truncation of RÂ+B̂K?

and that the proposed Φu is a truncation of K?RÂ+B̂K?
, and final inequality

follows by applying the triangle inequality and the definition of ζ. This proves the result.

Next, we use this to bound the suboptimality gap of the performance achieved by the controller
implemented using the solutions of optimization problem (??).
Lemma B.3. Let the assumptions of Lemma ?? hold. Fix any CJ > 0, and further let

F ≥ log((1 + C−1
J )Cx)

log(1/ρ)
− 1 .

Denote by (Φx(F ),Φu(F ), V (F ), γ(F )) the optimal solution to optimization problem (??), and let
K(F ) = Φu(F )Φ−1

x (F ). Then

J(A?, B?,K(F )) ≤ (1 + CJ)2(1 +O(1)ε(1 + ‖K?‖2)‖RA?+B?K?‖H∞)2J?. (B.5)

Proof. Let

∆̂ := [∆A ∆B ]

[
Φx(F )
Φu(F )

](
I +

1

zF
V (F )

)−1

.

Further note that using a similar argument to that in the proof of Lemma 4.2 of [6], one can verify that

‖∆̂‖H∞ ≤
√

2ε

1− CxρF+1

∥∥∥∥[Φx(F )
Φu(F )

]∥∥∥∥
H∞
≤ γ(F ),

14



where we have exploited that (Φx(F ),Φu(F ), V (F ), γ(F )) form a feasible solution to optimization
problem (??).

Then, repeated application of Theorem ?? tells us that the performance achieved by K(F ) on the
true system is given by

√
J(A?, B?,K(F )) =

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

] [
Φx(F )
Φu(F )

](
I +

1

zF
V (F )

)−1

(I + ∆̂)−1

∥∥∥∥∥
H2

≤ 1

1− CxρF+1

1

1− γ(F )

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φx(F )
Φu(F )

]∥∥∥∥
H2

,

where the inequality follows from ‖∆̂‖H∞ ≤ γ(F ) < 1, and ‖V (F )‖2 ≤ 1/2 (by the assumption
of F ≥ F0.

Denote by (Φx,Φu, V, γ0) the feasible solution constructed in the proof of Lemma ??. Then,

1

1− CxρF+1

1

1− γ(F )

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φx(F )
Φu(F )

]∥∥∥∥
H2

≤ 1

1− CxρF+1

1

1− γ0

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

=
1

1− CxρF+1

1

1− γ0

√
JF (Â, B̂,K?)

≤ 1

1− CxρF+1

1

1− γ0

√
J(Â, B̂,K?)

≤ 1

1− CxρF+1

1

1− γ0

1

1− ζ
√
J?,

where the first inequality follows from the optimality of (Φx(F ),Φu(F ), V (F ), γ(F )), the equality
and second inequality from the fact that (Φx,Φu) are truncations of the response of K? on (Â, B̂) to
the first F time steps, and the final inequality by following similar arguments to the proof of Theorem
4.1 in [6] in applying Theorem ?? and noting that∥∥∥∥[∆A ∆B ]

[
RÂ+B̂K?

K?RÂ+B̂K?

]∥∥∥∥
H∞
≤ ζ < 1.

We therefore have that√
J(A?, B?,K(F )) ≤ 1

1− CxρF+1

1

1− γ0

1

1− ζ
√
J? ≤ (1 + CJ)

1

1− γ0

1

1− ζ
√
J?,

where the last inequality follows from the assumptions on F stated in the Lemma. Finally, by
assumption ζ ≤ 1/5 < .8(1 + 2

√
2)−1, from which it follows that (1− γ0)−1(1− ζ)−1 ≤ 1 + 20ζ ,

leading to the bound √
J(A?, B?,K(F )) ≤ (1 + CJ)(1 + 20ζ)

√
J?.

Squaring both sides proves the result.

The following Theorem is then immediate.

Theorem B.4. Let J? denote the minimal LQR cost achievable by any controller for (A?, B?). Let
K? denote the optimal controller and suppose that RA?+B?K? ∈ RH∞(C?, ρ?). Fix a CJ > 0, and
suppose that F0 and ε satisfy the assumptions of Lemmas ?? and ??. Let (Â, B̂) be any estimates of
the transition matrices such that max{‖∆A‖, ‖∆B‖} ≤ ε. Then, if (Cx, ρ) and (Cu, ρ) are set as
in Lemma ??, we have that (a) the program (??) is feasible for any truncation length F ≥ F0, (b)
letting K(F ) denote an optimal solution to (??) for truncation length F , the relative error in the
LQR cost is

J(A?, B?,K(F )) ≤ (1 + CJ)2(1 +O(1)ε(1 + ‖K?‖2)‖RA?+B?K?‖H∞)2J? , (B.6)
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and (c) if furthermore ε(Cx+Cu) ≤ O(1)(1−ρ?)2, the response {Φ̂x, Φ̂u} of K on the true system
(A?, B?) satisfies

Φ̂x ∈ RH∞
( O(1)C?

(1− ρ?)3
, .999 + .001ρ?

)
,

Φ̂u ∈ RH∞
(O(1)‖K?‖2C?

(1− ρ?)3
, .999 + .001ρ?

)
.

Proof. Claims (a) and (b) follow immediately from Lemmas ?? and ??.

Now for the proof of (c). Let {Φx(F ),Φu(F )} be the solution to (??). Then as argued in the proof
of Lemma ??, the response achieved on the true system (A?, B?) is given by[

Φx(F )
Φu(F )

](
I +

1

zF
V (F )

)−1

(I + ∆̂)−1,

where ∆̂ is defined as in the proof of Lemma ??.

We start by noting that Φx(F ) ∈ RH∞(Cx, ρ), and by the assumption on F ≥ F0, it
holds that z−FV (F ) ∈ RH∞(2, ρ1/2). This allows us to apply Lemma ?? to conclude that
(I + z−FV (F ))−1 ∈ RH∞

(
O(1)(1− ρ1/2)−1,Avg(ρ1/2, 1)

)
. Thus, applying Lemma ?? we

conclude that

Φx(F )

(
I +

1

zF
V (F )

)−1

∈ RH∞
(O(1)Cx

1− ρ1/2
,Avg(Avg(ρ1/2, 1), 1)

)
.

A similar argument yields

Φu(F )

(
I +

1

zF
V (F )

)−1

∈ RH∞
(O(1)Cu

1− ρ1/2
,Avg(Avg(ρ1/2, 1), 1)

)
.

Now note that
∆̂ = (∆AΦx(F ) + ∆BΦu(F ))(I + z−FV (F ))−1.

From the previous argument, we have that

∆AΦx(F )(I + z−FV (F ))−1 ∈ RH∞
(
ε
O(1)Cx
1− ρ1/2

,Avg(Avg(ρ1/2, 1), 1)

)
,

∆BΦu(F )(I + z−FV (F ))−1 ∈ RH∞
(
ε
O(1)Cu
1− ρ1/2

,Avg(Avg(ρ1/2, 1), 1)

)
,

from which it follows that

∆̂ ∈ RH∞
(
ε
O(1)(Cx + Cu)

1− ρ1/2
,Avg(Avg(ρ1/2, 1), 1)

)
.

By the assumptions of the Theorem, we have that εO(1)(Cx+Cu)
1−ρ1/2 ≤ 2, allowing us to apply Lemma ??

to conclude that
(I + ∆̂)−1 ∈ RH∞

(
O(1),Avg(Avg(Avg(ρ1/2, 1), 1), 1)

)
.

Applying Lemma ??, we see that

Φx(F )(I + z−FV (F ))−1(I + ∆̂)−1 ∈ RH∞
(O(1)Cx

1− ρ1/2
,Avg(Avg(Avg(Avg(ρ1/2, 1), 1), 1)1)

)
Φu(F )(I + z−FV (F ))−1(I + ∆̂)−1 ∈ RH∞

(O(1)Cu
1− ρ1/2

,Avg(Avg(Avg(Avg(ρ1/2, 1), 1), 1)1)

)
Finally, to simplify these bounds to those in the Theorem statement, notice first that for ρ ≥ .4, we
have that (1− ρ1/2) > (1− ρ)2. Then, we also have that

Avg(Avg(Avg(Avg(ρ1/2, 1), 1), 1)1) =
31

32
+

1

32
ρ1/2 =

31

32
+

1

32
(
1

4
ρ? +

3

4
)1/2.

Finally, one can check that for ρ? ≥ .4, we have that ( 1
4ρ? + 3

4 )1/2 ≤ .95 + .05ρ?, leading to the
bound

31

32
+

1

32
(
1

4
ρ? +

3

4
)1/2 ≤ 31.95

32
+
.05

32
ρ? ≤ .999 + .001ρ?.

We note that these constants are by no means optimized.
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C Estimation

Recall that Algorithm 1 proceeds in epochs and that we denote by x(i)
t and u(i)

t the state and input
at time t during epoch i, respectively. The i-th epoch has length Ti. Note that x(i)

Ti
, the last state of

epoch i, is equal to x(i+1)
0 , the first state of epoch i+ 1.

At the end of each epoch our method estimates the parameters (A?, B?) from the trajectory observed
during that epoch, i.e.

(Â, B̂) ∈ arg min
A,B

Ti−1∑
t=0

1

2
‖x(i)

t+1 −Ax
(i)
t −Bu(i)

t ‖22. (C.1)

The goal of this section is to offer high probability confidence bounds on the estimation error of
(??). For the rest of the section we suppress the dependence on the epoch index i because we prove a
statistical rate for a fixed epoch.

Algorithm 1 generates the inputs ut using a feedback controller K which stabilizes the true system
(A?, B?). Let {Φx,Φu} denote the response of K on the true system (A?, B?), and suppose that
Φx ∈ 1

zRH∞(Cx, ρ) and Φu ∈ 1
zRH∞(Cu, ρ). More precisely, if wt

i.i.d.∼ N (0, σ2
wIp) is the process

noise at time t and ηt
i.i.d.∼ N (0, σ2

ηIp) is the input noise added at time t, then we can write

xt = Φx(t+ 1)x0 +

t−1∑
k=0

Φx(t− k)(B?ηk + wk) (C.2)

ut = ηt + Φu(t+ 1)x0 +

t−1∑
k=0

Φu(t− k)(B?ηk + wk). (C.3)

For the statistical analysis it is useful to consider the stochastic process zt = [x>t , u
>
t ]>. Also,

we denote the filtration Ft = σ(x0, η0, w0 . . . , ηt−1, wt−1, ηt). It is clear that the process {zt}t≥0

is {Ft}t≥0-adapted. Throughout this section we assume that Cu, Cx ≥ 1 and denote C2
K :=

nC2
x + pC2

u.

C.1 Estimation after one epoch

Throughout this section we assume that ση ≤ σw. This condition is not needed for achieving the
necessary statistical rate of estimation of (A,B), but it aids in simplifying several algebraic quantities.
Proposition C.1. Let x0 ∈ Rn be any initial state, let ση ≤ σw, and assume that a trajectory
{(xt, ut)}T−1

t=0 is observed. Furthermore, suppose the inputs ut ∈ Rp are generated by a feedback con-
troller K which stabilizes and achieves a response {Φx,Φu} on (A?, B?) with Φx ∈ 1

zRH∞(Cx, ρ)

and Φu ∈ 1
zRH∞(Cu, ρ). Then, the error of the OLS estimator (Â, B̂) from Eq. ?? satisfies with

probability 1− δ the guarantee

max
{
‖Â−A?‖,
‖B̂−B?‖

}
.
σwCu
ση

√
(n+ p)

T
log

(
1 +

pCu
δ

+
σw
ση

ρCuCK
δ(1− ρ2)

(
1 + ‖B?‖+

‖x0‖2
σw
√
T

))
,

as long as

T & (n+ p) log

(
1 +

pC2
u

δ
+
σ2
w

σ2
η

ρ2C2
uC

2
K

δ(1− ρ2)

(
1 + ‖B?‖2 +

‖x0‖22
σ2
wT

))
. (C.4)

The proof of this result follows from a result by Simchowitz et al. [17] on the estimation of linear
response time-series. We present that result in the context of our problem. Let M? = [A?, B?], and
recall that zt = [x>t , y

>
t ]>. Then, the OLS estimator (??) can be written in the form

M̂ ∈ arg min
M

T−1∑
t=0

1

2
‖xt+1 −Mzt‖22. (C.5)
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The process {zt}t≥0 is said to satisfy the (k, ν, β)-block martingale small-ball (BMSB) condition if
for any j ≥ 0 and v ∈ Rn+p, one has that

1

k

k∑
i=1

P (|〈v, zj+i〉| ≥ ν) ≥ β almost surely.

This condition is used for characterizing the size of the minimum eigenvalue of the covariance matrix∑T−1
t=0 ztz

>
t . A larger ν guarantees a larger lower bound of the minimum eigenvalue. In the context

of our problem the result by Simchowitz et al. [17] translates as follows.
Theorem C.2 (Simchowitz et al. [17]). Fix ε, δ ∈ (0, 1). For every T , k, ν, and β such that {zt}t≥0

satisfies the (k, ν, β)-BMSB and⌊
T

k

⌋
&
n+ p

β2
log

(
1 +

∑T−1
t=0 Tr(Eztz>t )

kbT/kcβ2ν2δ

)
,

the estimate M̂ defined in Eq. ?? satisfies the following statistical rate

P

‖M̂ −M‖2 > O(1)σw
βν

√√√√ n+ p

kbT/kc log

(
1 +

∑T−1
t=0 Tr(Eztz>t )

kbT/kcβ2ν2δ

) ≤ δ.
Therefore, in order to apply this result we need to find k, ν, and β such that {zt}t≥0 satisfies the
(k, ν, β)-BMSB condition, and we also have to upper bound the trace of the covariance of zt. The
next two lemmas address these two issues.
Lemma C.3. Let x0 be any initial state in Rn and let {ut}t≥0 be the sequence of inputs generated
according to (??), and assume ση ≤ σw. Then, the process zt = [x>t , u

>
t ]> satisfies the

(
1,

ση
2Cu

,
3

20

)
BMSB condition.

Proof. For all t ≥ 1, denote
ξt = ut − ηt − Φu(1)wt−1

= Φu(t+ 1)x0 +

t−2∑
k=0

Φu(t− k)(B?ηk + wk) + Φu(1)B?ηt−1.

Therefore, we have [
xt+1

ut+1

]
=

[
A?xt +B?ut

ξt+1

]
+

[
In 0

Φu(1) Ip

] [
wt
ηt+1

]
,

and hence[
xt+1

ut+1

]
|Ft ∼ N

([
A?xt +B?ut

ξt+1

]
,

[
σ2
wIn σ2

wΦu(1)>

σ2
wΦu(1) σ2

wΦu(1)Φu(1)> + σ2
ηIp

])
.

Denote by µz,t and Σz the mean and covariance of this multivariate normal distribution. Recall that
we denote zt = [x>t , u

>
t ]>. Let v ∈ Rn+p and then 〈v, zt〉 ∼ N (〈v, µz,t〉, v>Σzv). Therefore,

P
(
|〈v, zt〉| ≥

√
λmin(Σz)

)
≥ P

(
|〈v, zt〉| ≥

√
v>Σzv

)
≥ P

(
|〈v, zt − µz,t〉| ≥

√
v>Σzv

)
≥ 3/10,

where the last two inequalities follow because for any µ, σ2 ∈ R and ω ∼ N (0, σ2) we have
P(|µ+ ω| ≥ σ) ≥ P(|ω| ≥ σ) ≥ 3/10.

Since Φu ∈ 1
zRH∞(Cu, ρ) we have ‖Φu(1)‖ ≤ Cu. Then, by a simple argument based on a Schur

complement (detailed in Lemma ??) it follows that

λmin(Σz) ≥ σ2
η min

(
1

2
,

σ2
w

2σ2
wC

2
u + σ2

η

)
.

The conclusion follows since Cu ≥ 1.
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Lemma C.4. Let ση ≤ σw. Then, the process zt = [x>t , u
>
t ]> satisfies

T−1∑
t=0

Tr
(
Eztz>t

)
≤ σ2

ηpT + σ2
w

ρ2C2
KT

(1− ρ2)

(
1 + ‖B?‖2 +

‖x0‖22
σ2
wT

)
.

Proof. Now, note that

Eztz>t =

[
Φx(t+ 1)
Φu(t+ 1)

]
x0x
>
0

[
Φx(t+ 1)
Φu(t+ 1)

]>
+

[
0 0
0 σ2

ηIp

]
+

t−1∑
k=0

[
Φx(t− k)
Φu(t− k)

]
(σ2
ηB?B

>
? + σ2

wIn)

[
Φx(t− k)
Φu(t− k)

]
.

Since for all j ≥ 1 we have ‖Φx(j)‖ ≤ Cxρj and ‖Φu(j)‖ ≤ Cuρj , we obtain

TrEztz>t ≤ pσ2
η + (nC2

x + pC2
u)

(
ρ2t+2‖x0‖22 + (σ2

w + σ2
η‖B?‖2)

t∑
k=1

ρ2k

)

Therefore, we get that
T−1∑
t=0

TrEztz>t ≤ pσ2
ηT +

ρ2T

1− ρ2
(nC2

x + pC2
u)(σ2

w + σ2
η‖B?‖2) +

ρ2

1− ρ2
(nC2

x + pC2
u)‖x0‖22,

and the conclusion follows by simple algebra.

Proposition ?? follows from Theorem ??, Lemma ??, Lemma ??, and simple algebra.

C.2 Stitching the epochs together

We start by bounding with high probability the size of the initial states of the epochs. Recall that
epoch i has length Ti and that we denote by x(i)

Ti
the last state of the epoch i, which is equal to the

first state x(i+1)
0 of the epoch i+ 1. For simplicity we assume that x(0)

0 = 0, an assumption that is
not restrictive in any way.
Lemma C.5. Fix δ ∈ (0, 1), r > 0, and an epoch i. Assume that for all k ≤ i the epoch length Tk is
large enough so that CxρTk ≤ ρr. Then, for any t ≥ 0 we have

P
(
‖x(i+1)

0 ‖2 ≥ σw(
√
n+ t)

Cxρ(1 + ‖B?‖)
(1− ρr)(1− ρ2)

)
≤ exp

(
− t

2

2

)
.

Proof. From Eq. (??) we have that

x
(i+1)
0 = Φ(i)

x (Ti + 1)x
(i)
0 +

Ti−1∑
j=0

Φ(i)
x (Ti − 1− j)(B?η(i)

j + w
(i)
j )︸ ︷︷ ︸

ξi

,

where we denoted the sum over disturbances during the epoch i by ξi. Therefore,

‖x(i+1)
0 ‖2 ≤ CxρTi‖x(i)

0 ‖2 + ‖ξi‖2
≤ ρr‖x(i)

0 ‖2 + ‖ξi‖2

≤
i∑

k=0

ρr(i−k)‖ξk‖2.

By definition ξk is a zero-mean multivariate Gaussian random vector with covariance

Σx,k :=

Tk−1∑
j=0

Φ(k)
x (Tk − 1− j)(σ2

w + σ2
η,kB?B

>
? )Φ(k)

x (Tk − 1− j)>,

19



whose top eigenvalue is upper bounded by

Tk−2∑
j=0

C2
x(σ2

w + σ2
η,k‖B?‖2)ρ2(Tk−1−j) ≤ (σ2

w + σ2
η,k‖B?‖2)

C2
xρ

2

1− ρ2

≤ σ2
w(1 + ‖B?‖2)

C2
xρ

2

1− ρ2
, (C.6)

where the last inequality follows because ση,k ≤ σw.

Then, we can write ‖ξk‖2 as ‖Σ1/2
x,kωk‖2, where ωk is a standard Gaussian random vector distributed

according to N (0, In), and hence ‖ξi‖2 is a Lipschitz function of ωi with Lipschitz constant equal
to squared root of (??). Hence, ‖x(i)

0 ‖2 is a Lipschitz function of standard normal random variables
with the Lipschitz constant √

σ2
w

(1 + ‖B?‖2)

1− ρr
C2
xρ

2

1− ρ2
.

By the concentration of Lipschitz functions of isotropic Gaussians, for ν ≥ 0, we have that

P
(
‖x(i+1)

0 ‖2 ≥ E‖x(i+1)
0 ‖2 + ν

)
≤ exp

(
− ν2(1− ρ2)(1− ρr)

2σ2
wρ

2(1 + ‖B?‖2)Cx

)
.

By Jensen’s inequality we have that

E‖x(i+1)
0 ‖2 ≤

√
E‖x(i+1)

0 ‖22 ≤

√√√√ i∑
k=0

ρr(i−k) Tr
(
Eξkξ>k

)
≤
√
nσ2

w

(1 + ‖B?‖2)

1− ρr
C2
xρ

2

1− ρ2
.

The conclusion follows.

We are now ready to prove that the statistical rate holds across epochs. In order to achieve this, we
need the statistical rate after the first epoch to be small enough to satisfy the feasibility constraints on
ε given in Theorem ?? for the IIR case and given in Theorem ?? for the FIR truncated case. Once
this occurs, we immediately have feasibility at the next epoch (w.h.p.), and iterating the argument
gives us recursive feasibility (w.h.p.).

Theorem C.6. Fix a δ ∈ (0, 1). For the IIR case, let Cx, Cu, ρ be defined as

Cx =
O(1)C?

(1− ρ?)2
,

Cu =
O(1)‖K?‖C?

(1− ρ?)2
,

ρ = (1/8)ρ? + (7/8) ,

and for the FIR case, let Cx, Cu, ρ be defined as

Cx =
O(1)C?

(1− ρ?)3
,

Cu =
O(1)‖K?‖C?

(1− ρ?)3
,

ρ = 0.001ρ? + .999 ,

where (C?, ρ?) are as defined in Theorem ?? (resp. Theorem ??), and suppose (wlog) that Cx ≥ 1
and Cu ≥ 1. Let the length of epoch i ∈ {0, 1, 2, ...} be Ti = CT 2i time steps and let the injected
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noise variance at epoch i be σ2
η,i = σ2

w2−i/3. Suppose the constant CT is large enough to satisfy the
following inequalities,

CT ≥
log(2Cx)

log(1/ρ)
, (C.7)

CT &
1

2i

(
n+ log

(
i+ 1

δ

))
for all i = 0, 1, 2, ... , (C.8)

CT &
(n+ p)

2i
log

(
1 + (i+ 1)2 pC

2
u

δ
+ (i+ 1)22i/3

ρ2C2
uC

2
K

δ(1− ρ2)

(
C2
x(1 + ‖B?‖)2

(1− ρ)2

))
(C.9)

for all i = 0, 1, 2, ... ,

CT &
(n+ p)

22i/3

C2
u(Cx + Cu)2

(1− ρ?)α
(C.10)

× log

(
1 + (i+ 1)

pCu
δ

+ (i+ 1)2i/6
ρCuCK
δ(1− ρ2)

(
Cx(1 + ‖B?‖)

1− ρ

))
for all i = 0, 1, 2, ... ,

where above α = 2 for the IIR case and α = 4 for the FIR case. Then, with probability 1− δ, the
following two statements hold. First, for all epochs i, the norm of the first state at the beginning of
each epoch satisfies

‖x(i)
0 ‖2 . σw

(
√
n+

√
log

(
i+ 1

δ

))
Cxρ(1 + ‖B?‖)

1− ρ2
. (C.11)

Second, for all epochs i, the OLS estimate (Â(i), B̂(i)) satisfies the statistical rate

max
{
‖Â(i)−A‖,
‖B̂(i)−B‖

}
.
σwCu
ση,i

√
(n+ p)

Ti
log

(
1 + (i+ 1)

pCu
δ

+ (i+ 1)
σw
ση,i

ρCuCK
δ(1− ρ2)

(
Cx(1 + ‖B?‖)

1− ρ

))
.

(C.12)

Proof. For this proof, we set r = log(2)/ log(1/ρ).

By Theorem ?? for the IIR case and Theorem ?? for the FIR case, we know that the true responses
{Φx,Φu} of the synthesized controllers Ki on (A?, B?) at every epoch satisfy Φx ∈ RH∞(Cx, ρ)
and Φu ∈ RH∞(Cu, ρ).

Because of the assumption (??) on CT we have CxρTi ≤ ρr. Therefore, we can apply Lemma ??
with t2 = log(O(1)(i+ 1)2/δ) to obtain that with probability at least 1− δ/2 the norm of x(i)

0 for
all epochs i satisfies

‖x(i)
0 ‖2 . σw

(
√
n+

√
log

(
i+ 1

δ

))
Cxρ(1 + ‖B?‖)
(1− ρr)(1− ρ2)

.

Furthermore, by the assumption (??) on CT we have that with probability at least 1− δ/2,

‖x(i)
0 ‖22
σ2
wTi

≤ C2
x(1 + ‖B?‖)2

(1− ρ)2
.

Our assumption (??) means that condition (??) is satisfied for each epoch i and therefore under
the assumption the SLS program is feasible at every iteration, we can invoke Proposition ?? with
δ = O(1)δ/(i+ 1)2 and reach the desired conclusions.

To show feasibility of the SLS at every epoch, Theorem ?? for the IIR case requires that

ε(i) ≤ O(1)
1− ρ?
Cx + Cu

,
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and Theorem ?? for the FIR case requires that

ε(i) ≤ O(1)
(1− ρ?)2

Cx + Cu
,

where ε(i) is our statistical upper bound on the errors max
{
‖Â(i)−A‖,
‖B̂(i)−B‖

}
. This condition is ensured

by our assumption (??) on CT .

We now remark on the satisfiability of the constraints on CT given by (??), (??), and (??). For (??)
and (??) (resp. (??)), the RHS grows like poly(i)/2i (resp. poly(i)/22i/3) and hence the supremum
of the RHS (as a function of i) is achieved for some finite i. Therefore, we have that CT satisfies in
the IIR case

CT = Õ
(

max

{
1

1− ρ?
, n, (n+ p)

C4
?(1 + ‖K?‖)4

(1− ρ?)8

})
= Õ

(
(n+ p)

C4
?(1 + ‖K?‖)4

(1− ρ?)8

)
, (C.13)

and that CT satisfies in the FIR case

CT = Õ
(

max

{
1

1− ρ?
, n, (n+ p)

C4
?(1 + ‖K?‖)4

(1− ρ?)10

})
= Õ

(
(n+ p)

C4
?(1 + ‖K?‖)4

(1− ρ?)16

)
. (C.14)

D Regret Decomposition and Analysis

We use the following regret decomposition, and for simplicity we assume that T is such that
T0 + T1 + ...+ TE−1 = T for some E. Note that E = O(log2 T ).

Regret(T ) =

T∑
k=1

(x>k Qxk + u>k Ruk − J?) =

E−1∑
i=0

Ti∑
j=1

(x>i,jQxi,j + u>i,jRui,j − J?) . (D.1)

Here, we let xi,j denote the j-th state at the i-th epoch (and similarly for ui,j). Our definition of
regret is defined for a given realization, as opposed to in expectation. However, in our analysis so far
we have considered sub-optimality guarantees in expectation. Hence, our first concern is going from
a realization to expectation.

Denote by JT (A,B,K; Σ) the expected cost incurred by a (stabilizing) feedback policy K over a
finite horizon T on system (A,B) being driven by process noise w i.i.d.∼ N (0,Σ) and starting from an
initial condition of x0 = 0, i.e.,

JT (A,B,K; Σ) :=

T∑
k=1

E
[
x>k Qxk + u>k Ruk

]
. (D.2)

Recall also that J(A,B,K; Σ) is the infinite-horizon LQR cost of K in feedback with (A,B). We
now state some basic properties of JT and J . We omit the proofs of these properties as they are
standard.

Lemma D.1. The following are true

(i) JT (A,B,K; Σ) ≤ TJ(A,B,K; Σ),

(ii) J(A,B,K; Σ1 + Σ2) = J(A,B,K; Σ1) + J(A,B,K; Σ2),

(iii) J(A,B,K;αΣ) = αJ(A,B,K; Σ) for α > 0,

(iv) J(A,B,K; Σ1) ≤ J(A,B,K; Σ2) if Σ1 � Σ2.
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From these properties, we immediately conclude that

JT (A,B,K;σ2
wI + σ2

ηBB
>) ≤ T

(
1 +

σ2
η‖B‖2
σ2
w

)
J(A,B,K;σ2

wI) , (D.3)

a fact we will make use of later on.

The following lemma relates the finite horizon cost to its expectation.

Lemma D.2. Let K be a feedback policy that stabilizes (A,B) and that induces system responses
Φx ∈ RH∞(Cx, ρ) and Φu ∈ RH∞(Cu, ρ). Suppose that the system (A,B) is started at x0 = x

and is driven by process noise w i.i.d.∼ N (0,Σ) with Σ � 0 and ‖Σ‖ ≤ σ2. Then with probability at
least 1− 1

δ over the randomness of the process noise,

T∑
k=1

x>k Qxk + u>k Ruk ≤ JT (A,B,K; Σ) + Cc · O
(
‖x‖22 + σ2(

√
nT log

(
2
δ

)
+ log

(
2
δ

)
)

)
,

(D.4)

for Cc := (1− ρ)−2(‖Q‖C2
x + ‖R‖C2

u).

Proof. Writing Φx as Φx =
∑∞
k=1 Φx(k)z−k, we define the following finite-horizon truncations of

its block-Toeplitz representation:

Φx,T :=

Φx(1)
...

. . .
Φx(T ) . . . Φx(1)

 Φx,+ :=


Φx(2)
Φx(3)

...
Φx(T + 1)

 .
We let Φu,T and Φu,T,+ define similar matrices for Φu. Using these definitions, we can write

T∑
k=1

x>k Qxk + u>k Ruk =

[
x
ω

]> [
M11 M12

M>12 M22

] [
x
ω

]
,

for

ω> =
[
w>0 w>1 . . . w>T−1

]
M11 =

[
Φx,+

Φu,+

]> [Q
R
] [

Φx,+

Φu,+

]
M12 =

[
Φx,+

Φu,+

]> [Q
R
] [

Φx,T

Φu,T

]
M22 =

[
Φx,T

Φu,T

]> [Q
R
] [

Φx,T

Φu,T

]
,

whereQ := blkdiag(Q) andR := blkdiag(R) are block-diagonal matrices of compatible dimension.
With these definitions, one can then check that TrM22blkdiag(Σ) = JT (A,B,K; Σ).

Finally, given that Φx,+,Φx,T are sub-matrices of the block-Toeplitz representation of Φx, it follows
that max{‖Φx,+‖, ‖Φx,T ‖} ≤ ‖Φx‖H∞ ≤ Cx

1−ρ , where the last inequality follows from Lemma ??.
Similarly, we have that max{‖Φu,+‖, ‖Φu,T ‖} ≤ ‖Φu‖H∞ ≤ Cu

1−ρ . The result then follows by
using these bounds, noting that ω ∼ N (0,blkdiag(Σ)), and applying Lemma ?? with the inequality
‖M‖F ≤

√
rank(M)‖M‖ ≤

√
max(n1, n2)‖M‖ for an n1 × n2 matrix M .

We now proceed to prove our main regret upper bounds, for both the IIR and FIR case.

Let Eest,i denote the event that the conclusions of Theorem ?? hold up to and including epoch i. Let
{Φ̂i,x}i≥0 and {Φ̂i,u}i≥0 denote the closed loop SLS responses on the true system (A?, B?). When
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Eest,i holds, Theorem ?? in the IIR case and Theorem ?? in the FIR case state that uniformly for all
epochs i we have

Φ̂i,x ∈ RH∞(Ĉ, ρ̂) , Φ̂i,u ∈ RH∞(‖K?‖Ĉ, ρ̂) ,

for

Ĉ =
O(1)C?

(1− ρ?)2
,

ρ̂ = 7/8 + (1/8)ρ? ,

in the IIR case and

Ĉ =
O(1)C?

(1− ρ?)3
,

ρ̂ = 0.999 + 0.001ρ? ,

in the FIR case. For ease of notation, define Ĉ2
c := (‖Q‖+‖R‖‖K?‖)Ĉ2

(1−ρ̂)2 .

Now fix an epoch i ≥ 1 (the epoch i = 0 will be dealt with separately) and let Ki denote the
controller that is active during epoch i. We invoke Lemma ?? conditioned on Eest,i and xi,0 with
δ ← O(1)δ/(i+ 1)2, Σ← σ2

wI+σ2
η,iB?B

>
? , Cx ← Ĉ, Cu ← ‖K?‖Ĉ, and ρ← ρ̂. The conclusion

is that with (conditional) probability at least 1−O(1)δ/(i+ 1)2,

Ti∑
k=1

x>i,kQxi,k + u>i,kRui,k

≤ JT (A?, B?,Ki;σ
2
wI + σ2

η,iB?B
>
? )

+ Ĉ2
cO
(
‖xi,0‖22 + (σ2

w + σ2
η,i‖B?‖2)(

√
nTi log((i+ 1)/δ) + log((i+ 1)/δ))

)
≤ Ti

(
1 +

σ2
η,i‖B?‖2
σ2
w

)
J(A?, B?,Ki;σ

2
wI)

+ Ĉ2
cO
(
σ2
w(n+ log((i+ 1)/δ))

Ĉ2ρ̂2(1 + ‖B?‖)2

(1− ρ̂)2

+ (σ2
w + σ2

η,i‖B?‖2)(
√
nTi log((i+ 1)/δ) + log((i+ 1)/δ))

)
.

For the second inequality, we used the bound (??) and the bound on ‖xi,0‖2 from (??).

Furthermore, (??) and Theorem ?? in the IIR case (Theorem ?? in the FIR case) tell us that on Eest,i,
we have the sub-optimality bound

J(A?, B?,Ki;σ
2
wI) ≤ (1 + CJi−1

)2(1 +O(1)εi−1(1 + ‖K?‖)‖RA?+B?K?‖H∞)2J? ,

εi = Õ
(
σw‖K?‖Ĉ

ση,i

√
n+ p

Ti

)
.

Above, in the IIR case, we set CJi = 0 for all i, and in the FIR case we choose CJi = 1/2i+1. Since
CJi ≤ 1, we have that (1 +CJi)

2 ≤ 1 + 3Cji . Recalling that ση,i/σw = 2−i/6 and that Ti = CT 2i,

we simplify εi = Õ
(
‖K?‖Ĉ

√
n+p
CT

2−i/3
)

:= Õ( D1√
CT

2−i/3) which gives us

(1 +O(1)εi−1(1 + ‖K?‖)‖RA?+B?K?‖H∞)2

= 1 + Õ
(

D1√
CT

(1 + ‖K?‖)‖RA?+B?K?‖H∞2−i/3 +
D2

1

CT
(1 + ‖K?‖)2‖RA?+B?K?‖2H∞2−2i/3

)
:= 1 + Õ

(
D2√
CT

2−i/3 +
D2

2

CT
2−2i/3

)
.
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This means that

Ti

(
1 +

σ2
η,i‖B?‖2
σ2
w

)
J(A?, B?,Ki;σ

2
wI)

≤ Ti
(

1 + 2−i/3‖B?‖2
)

(1 + 3CJi−1
)

(
1 + Õ

(
D2√
CT

2−i/3 +
D2

2

CT
2−2i/3

))
J?

≤ Ti
(

1 + Õ
((

D2√
CT

+ ‖B?‖2
)

2−i/3 +

(
D2

2

CT
+
D2‖B?‖2√

CT

)
2−2i/3 +

D2
2‖B?‖2
CT

2−i
))

J?

+ Õ((1 + ‖B?‖2)(CT +D2

√
CT +D2

2)J?)

= TiJ? + Õ(
√
CTD2 + CT ‖B?‖2)J?2

2i/3 + Õ(D2
2 +

√
CTD2‖B?‖2)J?2

i/3

+ Õ((1 + ‖B?‖2)(CT +D2

√
CT +D2

2)J?) .

Hence,
Ti∑
k=1

(x>i,kQxi,k + u>i,kRui,k − J?)

≤ Õ(
√
CTD2 + CT ‖B?‖2)J?2

2i/3 + Õ(D2
2 +

√
CTD2‖B?‖2)J?2

i/3

+ Õ
(
Ĉ2
cσ

2
wnĈ

2(1 + ‖B?‖)2

(1− ρ̂)2

)
+ Õ(Ĉ2

cσ
2
w

√
nCT 2i/2) + Õ(Ĉ2

cσ
2
w‖B?‖2

√
nCT 2i/6)

+O(CT 2i/2(1 + ‖B?‖2)) + Õ((1 + ‖B?‖2)(CT +D2

√
CT +D2

2)J?) .

On the other hand, when epoch i = 0, we have that
T∑
k=1

x>0,kQx0,k + u>0,kRu0,k ≤ JT (A?, B?,K0, σ
2
wI + σ2

η,0B?B
>
? ) + Õ(Ĉ2

cσ
2
w(1 + ‖B?‖2)

√
nCT )

≤ CT (1 + ‖B?‖2)J(A?, B?,K0, σ
2
wI) + Õ(Ĉ2

cσ
2
w(1 + ‖B?‖2)

√
nCT ) .

Summing over all the epochs,

Regret(T ) =

O(log2 T )∑
i=0

Ti∑
k=1

(x>i,kQxi,k + u>i,kRui,k − J?)

≤ Õ((
√
CTD2 + CT ‖B?‖2)J?T

2/3) + Õ(Ĉ2
cσ

2
w

√
nCTT

1/2)

+ Õ(D2
2 +

√
CTD2‖B?‖2J?T 1/3) + Õ(Ĉ2

cσ
2
w‖B?‖2

√
nCTT

1/6)

+ Õ
(
Ĉ2
cσ

2
wnĈ

2(1 + ‖B?‖)2

(1− ρ̂)2
+ CT (1 + ‖B?‖2)J(A?, B?,K0, σ

2
wI)

)
+ Õ((1 + ‖B?‖2)(CT +D2

√
CT +D2

2)J?)

+ Õ(Ĉ2
cσ

2
w(1 + ‖B?‖2)

√
nCT ) +O(CT (1 + ‖B?‖2)

√
T ) .

Using the bound on CT from (??), recalling that

D2 =
√
n+ p‖K?‖Ĉ(1 + ‖K?‖)‖RA?+B?K?‖H∞ ,

and ignoring the o(T 2/3) terms in the regret bound, we have that the regret is bounded by in the IIR
case

Õ
(

(n+ p)‖RA?+B?K?‖H∞
C3
?(1 + ‖K?‖)4

(1− ρ?)6
J?T

2/3 + (n+ p)
C4
?(1 + ‖K?‖)4‖B?‖2

(1− ρ?)8
J?T

2/3

)
.

By using Lemma ??, we have that ‖RA?+B?K?‖H∞ ≤ C?
1−ρ? , and hence the bound in the IIR case

simplifies to

Õ
(

(n+ p)
C4
?(1 + ‖K?‖)4(1 + ‖B?‖)2J?

(1− ρ?)8
T 2/3

)
.
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Now for the FIR case, we use the bound (??) and ignoring the o(T 2/3) terms, the regret is bounded
by

Õ
(

(n+ p)‖RA?+B?K?‖H∞
C3
?(1 + ‖K?‖)4

(1− ρ?)11
J?T

2/3 + (n+ p)
C4
?(1 + ‖K?‖)4‖B?‖2

(1− ρ?)16
J?T

2/3

)
.

Using the same bound on ‖RA?+B?K?‖H∞ as before, we obtain the FIR regret bound

Õ
(

(n+ p)
C4
?(1 + ‖K?‖)4(1 + ‖B?‖)2

(1− ρ?)16
J?T

2/3

)
.

E Lower bound

This section is dedicated to proving Theorem 3.4. Throughout this section we assume the following
setup and notation. We consider the LQR problem defined by

min
u0,u1,...,uT−1

E

[
x>T PxT +

T−1∑
t=0

u>t Rut + x>t Qxt

]
,

s.t. xt+1 = A?xt +B?ut + wt.

where ut is allowed to be any random variable taking values in Rp that is independent of the sigma
algebra σ(wt, wt+1, . . .). In particular, ut can be a measurable function of x0, w0, w1, . . . , wt−1,
and possibly other exogenous randomness.

We assume that Q and R are both positive definite matrices. Throughout this section we denote by P
the solution to the discrete algebraic Riccati equation:

P? = A>P?A−A>P?B(R+B>P?B)−1B>P?A+Q.

Moreover, we denote by K? the optimal controller for the infinite horizon LQR problem, namely
K? = −(R + B>P?B)−1B>P?A. Hence, the optimal closed loop matrix is given by M =
A? +B?K?. Throughout this section we assume that the system (A,B) is controllable and hence
ρ(M) < 1. Therefore, there exist C > 0 and ρ ∈ (0, 1) such that ‖Mk‖2 ≤ Cρk for all k ≥ 1.

The initial state x0 for the LQR problem defined above is assumed to have distribution N (0, P∞),
where P∞ is the unique solution to the Lyapunov equation

P∞ = (A? +B?K?)P∞(A? +B?K?)
> + σ2

wIn.

The distribution N (0, P∞) corresponds to the stationary distribution of the optimal closed loop
system xt+1 = (A? +B?K?)xt + wt. In particular, if xt ∼ N (0, P∞), then xt+1 ∼ N (0, P∞).

We consider the objective

JT (ν0, ν1, . . . , νT−1) = E

[
x>T P?xT +

T−1∑
t=0

u>t Rut + x>t Qxt

]
, (E.1)

where ut = K?xt + νt for the optimal controller K?. Then, since the terminal cost is given by P?,
we know that the minimum of objective (??) over ν0, ν1, . . . , νT−1 such that νt is independent of
σ(wt, wt+1, . . .) is achieved when all νt are identically zero. The random variables νt should be
thought of as deviations from the optimal inputs K?xt for the infinite horizon LQR. Finally, since
x0 ∼ N (0, P∞) we have that the optimal objective value is J?T = JT (0) = TJ? + Tr(P?P∞),
where J? = σ2

w Tr(P?) is the optimal objective value of the infinite horizon LQR.

The proof of Theorem 3.4 follows an argument inspired from the field of strongly convex optimization.
We show that under the minimum eigenvalue condition of the process zt = [x>t , u

>
t ]>, the process

{νt}t≥0 is bounded away from zero. Moreover, we show that the expected regret at time T is a
strongly convex function of ν0, ν1, . . . , νT−1, leading us to the desired conclusion. We proceed by
proving a sequence of technical result, followed by the proof of Theorem 3.4.
Lemma E.1. . Suppose that

λmin

(
T−1∑
t=0

[
xt
ut

] [
x>t u>t

])
≥ τ, (E.2)
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with ut = K?xt + νt. Then
T−1∑
t=0

‖νt‖22 ≥
(
1 + σmin(K?)

2
)
τ (E.3)

Proof. Consider v = [v>1 , v
>
2 ]> ∈ Rn+p such that ‖v‖2 = 1 and v1 + K>v2 = 0 (such v exists

because [I,K>] is an n × (n + p) matrix and hence has a non-trivial null space). Moreover,
‖v2‖22 ≤ (1 + σmin(K?)

2)−1. Then, by assumption we have

τ ≤
T−1∑
t=0

(〈xt, v1〉+ 〈ut, v2〉)2 =

T−1∑
t=0

(〈xt, v1〉+ 〈Kxt + νt, v2〉)2 =

T−1∑
t=0

〈νt, v2〉2

≤ ‖v2‖22
T−1∑
t=0

‖νt‖22 ≤
1

1 + σmin(K)2

T−1∑
t=0

‖νt‖22.

Lemma E.2. Denote by M the optimal closed loop matrix A? +B?K?. Then

JT (ν0, ν1, . . . , νT−1)− J?T = E

T−1∑
j=0

ν>j (B>? P?B? +R)νj


+ 2E

 ∑
0≤i<j≤T−1

ν>i B
>
? (M>)j−iP?B?νj

 .
Proof. We know that

J∗T = E

[
T−1∑
t=0

x>?,t(Q+K>? RK?)x?,t

]
+ E

[
x>?,TP?x?,T

]
,

where x?,t =
∑t−1
j=−1M

t−1−jwj . Here, w−1 = x0 for convenience, and wt
i.i.d.∼ N (0, σ2

wIn) for
convenience. Also,

JT (ν0, ν1, . . . , νT−1) = E

[
T−1∑
t=0

x>t Qxt + (K?xt + νt)
>R(K?xt + νt)

]
+ E

[
x>T P?xT

]
,

where xt =
∑t−1
j=−1M

t−1−jwj +M t−1−jBνj and ν−1 = 0. Recall that νt is independent of any
wi with i ≥ t. Hence, for any matrix N we have that E

[
w>i Nνt

]
= 0 if i ≥ t. Therefore

JT − J?T = E

T−1∑
t=0

∑
0≤i<j≤t−1

2w>i (M>)t−1−i(Q+K>? RK?)M
t−1−jB?νj


+ E

T−1∑
t=0

t−1∑
i,j=0

ν>i B
>
? (M>)t−1−i(Q+K>? RK?)M

t−1−jB?νj

+ E

[
T−1∑
t=0

ν>t Rνt

]

+ E

[
T−1∑
t=0

t−1∑
i=0

2w>i (M>)t−1−iK>? Rνt

]

+ E

 ∑
0≤i<j≤T−1

2w>i (M>)T−1−iP?M
T−1−jB?νj


+ E

 T−1∑
i,j=0

ν>i B
>
? (M>)T−1−iP?M

T−1−jB?νj

 .
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Now, we note that the sum of the terms that depend linearly on νt is equal to zero, otherwise the
optimum of JT would not be achieved at νt = 0 for all t. Indeed, this can be checked through
direct computation by remarking that the optimal controller K? satisfies K>? R = −M>P?B?, and
recalling that P? satisfies the Lyapunov equation

P? = M>P?M +Q+K>? RK?. (E.4)

Hence, we have

JT − J?T = E

T−2∑
j=0

ν>j B
>
?

 T−1∑
t=j+1

(M>)t−1−j(Q+K>RK)M t−1−j

B?νj


+ 2E

 ∑
0≤i<j≤T−2

ν>i B
>
? (M>)j−i

 T−1∑
t=j+1

(M>)t−1−j(Q+K>? RK?)M
t−1−j

B?νj


+ E

[
T−1∑
t=0

ν>t Rνt

]
+ E

T−1∑
j=0

ν>j B
>
? (M>)T−1−jP?M

T−1−jB?νj


+ 2E

 ∑
0≤i<j≤T−1

ν>i B
>
? (M>)T−1−iP?M

T−1−jB?νj

 .

The conclusion follows by using the Lyapunov equation (??) and simple algebra.

Lemma E.3. Let M and N be any matrices in Rn×n, with N positive definite, and let T be any
positive integer. Also, consider the (nT )× (nT ) block matrix D(T ) with blocks D(T )i,j equal to

Di,j =


(M>)j−i

(∑T−j
k=0 (M>)kNMk

)
if i < j,∑T−j

k=0 (M>)kNMk if i = j,(∑T−i
k=0(M>)kNMk

)
M i−j if i < j,

where 1 ≤ i, j ≤ T . The matrix D is positive definite.

Proof. We proceed by induction. Let T = 2. Then the matrix of interest is

D(2) =

[
N +M>NM M>N

NM N

]
.

Since N � 0, we see that D(T ) is positive definite because its Schur complement is

N +M>NM −M>NN−1NM = N � 0.

For T > 2 we proceed similarly. We consider the matrix D(T ) and take its Schur complement with
respect to bottom right corner, i.e. D(T )1,1 . . . D(T )1,T−1

...
. . .

...
D(T )T−1,1 . . . D(T )T−1,T−1

−
 D(T )1,T

...
D(T )T−1,T

D(T )−1
T,T [DT,1 . . . DT,T−1]

Let i ≤ j < T . Then, the (i, j) block of the Schur complement of D(T ) is

D(T )i,j −D(T )i,TD(T )−1D(T )T,j = (M>)j−i

(
T−j∑
k=0

(M>)kNMk

)
− (M>)T−iNN−1NMT−j

= (M>)j−i

(
T−1−j∑
k=0

(M>)kNMk

)
= D(T − 1)i,j .

Similarly, if j ≤ i < T we have that D(T )i,j −D(T )i,TD(T )−1D(T )T,j = D(T − 1)i,j . Hence,
we have shown that the Schur complement of D(T ) with respect to the entry D(T )T,T is D(T − 1).
By induction this matrix is positive definite and the conclusion follows.
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Lemma E.4. As before, P? is the solution to the algebraic Riccati equation and M = A? +B?K?

is the optimal closed loop matrix. For any vectors v0, v1, . . . , vT−1 in Rp we have
T−1∑
j=0

v>j (B>? P?B? +R)vj + 2
∑

0≤i<j≤T−1

v>i B
>(M>)j−iP?B?vj ≥ λmin(R)

T−1∑
j=0

‖vj‖22.

Proof. It suffices to prove that the following matrix is positive semi-definite:
P? M>P? (M>)2P? . . . (M>)T−1P?
P?M P? M>P? . . . (M>)T−2P?
P?M

2 P?M P? . . . (M>)T−2P?
...

...
...

. . .
...

P?M
T−1 P?M

T−2 P?M
T−3 . . . P?

 .
The Schur complement of this matrix around the bottom right corner P? has the form D(T − 1) with
N = Q+K>? RK?, where D(T − 1) is defined as in Lemma ??. To see this recall that P? satisfies
the Lyapunov equation (??). The conclusion follows.

Lemma E.5. Fix a horizon T0 > 0, and suppose the inputs are of the form ut = K?xt + νt. Recall
that there exists constants C > 0 and ρ ∈ (0, 1) such that ‖Mk‖2 ≤ Cρk for all k ≥ 1. Then

E‖xT0
‖22 ≤ 3C2ρ2T0E‖x0‖22 + 3

nσ2
wC

2

1− ρ2
+ 3

C2

1− ρ2
E

[
T0∑
t=0

‖νt‖22

]
.

Proof. Recall that we denote by M the closed loop matrix A? +B?K?. We have that

xT0
= MT0x0 +

T0−1∑
t=0

MT0−1−t(B?νt + wt).

Then

‖xT0
‖22 ≤ 3‖MT0x0‖22 + 3‖

T0−1∑
t=0

MT0−1−twt‖22 + 3‖
T0−1∑
t=0

MT0−1−tBνt‖22.

Recall that ‖M t‖2 ≤ Cρt. Then

E‖xT0‖22 ≤ 3C2ρ2T0E‖x0‖22 + 3
nσ2

wC
2

1− ρ2
+ 3

C2

1− ρ2
E

[
T0∑
t=0

‖νt‖22

]
.

Lemma E.6. Let Q and R be positive definite matrices, and P0 = 0. Consider the Riccati recursion

Pt+1 = A>PtA−A>PtB(R+B>PtB)−1B>PtA+Q.

Then, if P? is the unique solution of the Riccati equation, we have

‖Pt − P?‖2 ≤
(

1 +
1

ν

)−t
, where ν = 2‖P?‖2 max

{ ‖A?‖22
λmin(Q)

,
‖B?‖22
λmin(R)

}
.

Moreover, we have that
∞∑
t=0

Tr(Pt)−Tr(P?) ≥ −n (1 + ν) .

Proof. The first part follows from Proposition 1 of ? ] on value iteration. The second part follows by
bounding

Tr(Pt)−Tr(P?) ≥ −n‖Pt − P?‖2 ≥ −n
(

1 +
1

ν

)−t
,

and summing up these inequalities.
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Lemma E.7. Fix a horizon T0 > 0 and denote x̂t = xt+T0 and ût = ût+T0 . Then

E
[
x̂>0 Px̂0

]
≤ min
û0,û1,...

E

[
T−1∑
t=0

x̂>t Qx̂t + û>t Rût

]
− TJ? + nσ2

w(1 + ν) +

(
1 +

1

ν

)−T
E‖x̂0‖22 ,

where

ν = 2‖P?‖2 max

{ ‖A?‖22
λmin(Q)

,
‖B?‖22
λmin(R)

}
.

Proof. Let us consider the Ricatti recursion

Pt+1 = A>PtA−A>PtB(R+B>PtB)−1B>PtA+Q,

where P0 = 0. Then

min
û0,û1,...

E

[
T∑
t=0

x̂>t Qx̂t + û>t Rût

]
= Ex̂>0 PT x̂0 + σ2

w

T−1∑
t=0

Tr (Pt) .

From the first part of Lemma ?? we know that

‖PT − P?‖2 ≤
(

1 +
1

ν

)−T
,

while from the second part of that Lemma we know that

T−1∑
t=0

[Tr (Pt)−Tr (P?)] ≥ −n(1 + ν).

The conclusion follows once we recall that J? = σ2
w Tr(P?).

Proof of Theorem 3.4. Let T0 > 0 to be chosen later and let T ≥ T0. We decompose the regret as
the sum of the regret from 0 to T − T0 − 1 and the regret from T − T0 to T − 1, and we write the
first component in terms terms of the expected cost JT−T0

defined in Eq. (??). We have

T−1∑
t=0

E
[
x>t Qxt + u>t Rut − J?

]
= E

[
x>T−T0

P?xT−T0
+

T−T0−1∑
t=0

x>t Qxt + u>t Rut

]
− J?T−T0

+

T−1∑
t=T−T0

E
[
x>t Qxt + u>t Rut − J?

]
− T0J?

+ Tr(P?P∞)− Ex>T−T0
P?xT−T0

,

where we used J?T−T0
= (T −T0)J? + Tr(P?P∞). The term Tr(P?P∞) we an simply lower bound

by zero since P∞ and P? are positive semi-definite matrices. From Lemmas ?? and ?? we have

E

[
x>T−T0

P?xT−T0 +

T−T0−1∑
t=0

x>t Qxt + u>t Rut

]
− J?T−T0

≥ λmin(R)

T−T0−1∑
t=0

‖νt‖22.

By Lemma ?? we have that

T−1∑
t=T−T0

E
[
x>t Qxt + u>t Rut − J?

]
− T0J? − Ex>T−T0

P?xT−T0

≥ −nσ2
w(1 + ν)−

(
1 +

1

ν

)−T0

E‖xT−T0
‖22 .
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Then, from Lemma ?? we get

T−1∑
t=0

E
[
x>t Qxt + u>t Rut − J?

]
≥1

2
λmin(R)

T−T0∑
t=0

‖νt‖22

−
(

3Cρ2T0 Tr(P∞) + nσ2
w

λmin(R)

2

)
︸ ︷︷ ︸

C0

,

by choosing

T0 ≥
log
(

2C2

(1−ρ2)λmin(R)

)
log(1 + ν−1)

.

The conclusion follows by Lemma ??.

F Miscellaneous Results

First we state some results for the function classRH∞(C, ρ).

Lemma F.1. Let Gi ∈ RH∞(Ci, ρi) for i = 1, 2 and Then H = G1G2 ∈ RH∞(C, ρ) for any

ρ ∈ (max(ρ1, ρ2), 1) and C = max

{
1, 1

e log
( ρ

max(ρ1,ρ2)

) ρ
max(ρ1,ρ2)

}
C1C2. Note for simplicity if

we assume ρ ≥ 1/4 we can take C = 6C1C2

1−ρ and ρ = Avg(max(ρ1, ρ2), 1).

Proof. Assume wlog that ρ1 ≥ ρ2. Note that H(k) =
∑k
t=0G1(t)G2(k − t), and therefore for all

k ≥ 0 we have that

‖H(k)‖ =

∥∥∥∥∥
k∑
t=0

G1(t)G2(k − t)
∥∥∥∥∥ ≤ C1C2

k∑
t=0

ρt1ρ
k−t
2

≤ C1C2

k∑
t=0

ρk1 = C1C2(k + 1)ρk1 ,

Fix a ρ ∈ (ρ1, 1). Define g(k) = (k + 1)(ρ1/ρ)k and h(k) = log g(k). We see that h′(k) = 0 only
for k = k∗ = 1

log(ρ/ρ1) − 1. Furthermore, h(k∗) = log(1/ log(ρ/ρ1)) − 1 + log(ρ/ρ1). Hence,
g(k∗) = 1

e log(ρ/ρ1) (ρ/ρ1).

The claim now follows since for any k ≥ 0,

(k + 1)ρk1 = (k + 1)(ρ1/ρ)kρk ≤
[

sup
k=0,1,...

(k + 1)(ρ1/ρ)k

]
ρk ≤ max{1, g(k∗)}ρk .

We also use the inequality log(1 + x) ≥ x/2 for x ∈ [0, 2.5].

Lemma F.2. Let Gi ∈ RH∞(Ci, ρi) for i = 1, 2. Then G1 +G2 ∈ RH∞(C1 +C2,max{ρ1, ρ2}).

Proof. Straightforward from triangle inequality and the definitions.

Lemma F.3. Suppose that ∆ ∈ RH∞(C, ρ) with C ≤ 2 and ρ ≥ 1/e, and furthermore ‖∆‖H∞ <
1. Then we have

(I ±∆)−1 ∈ RH∞
(

1 +
O(1)C

1− ρ ,Avg(ρ, 1)

)
.
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Proof. The function f(x) = x
e log(x) is monotonically decreasing on the interval (1, 1/ρ). Hence

for any x ∈ (1, 1/ρ), we have f(x) ≥ f(1/ρ) ≥ f(e) = 1. Applying the composition lemma
(Lemma ??) to the system ∆ ◦∆, we have that for c1 ∈ (1, 1/ρ),

∆2 ∈ RH∞
(

c1
e log(c1)

C2, c1ρ

)
.

Now if we recursively set ck ∈ (ck−1, 1/ρ) for k = 2, 3, ..., repeated applications of the composition
lemma yield that

∆n ∈ RH∞
(
Cn

n−1∏
i=1

ci
e log(ci)

, cn−1ρ

)
.

Let c∞ = limk→∞ ck, which exists and is finite because the sequence ck is monotonically increasing
and bounded above. Furthermore, we have that for any n ≥ 2,

Cn
n−1∏
i=1

ci
e log(ci)

≤
(
Cc∞
e

)n−1
C

log(
∑n−1
i=1 ci)

≤
(
Cc∞
e

)n−1
C

log(c1)
.

Now choose any strictly increasing sequence such that c∞ = Avg(1, 1/ρ) = (1/2)(1/ρ + 1) and
c1 = Avg(1, c∞) = (1/4)(3 + 1/ρ). By the addition lemma (Lemma ??), the assumption on C, and
a simple limiting argument,

∞∑
n=0

∆n ∈ RH∞ (C ′, c∞ρ) ,

where C ′ is given as

C ′ ≤ 1 + C +
C

log(c1)

1

1− Cc∞/e
≤ 1 + C +

2C

log(c1)
.

The claim now follows by using the inequality log(1 + x) ≥ x/2 for x ∈ [0, 2.5] and the assumed
bound C ≤ 2.

Lemma F.4. Suppose that G ∈ RH∞(C, ρ). Then ‖G‖H∞ ≤ C
1−ρ .

Proof. We have that

‖G‖H∞ = sup
z∈T
‖G(z)‖ = sup

z∈T

∥∥∥∥∥
∞∑
k=0

G(k)z−k

∥∥∥∥∥ ≤ C
∞∑
k=0

ρk =
C

1− ρ .

Next, a probabilistic lemma which we use to control the LQR cost on a finite horizon.

Lemma F.5. Let x and M be fixed, and w ∼ N (0,Σ), with Σ � 0 and ‖Σ‖ = σ2. Then there exists
a universal constant c > 0 such that with probability at least 1− δ[

x
w

]>
M

[
x
w

]
≤ x>M11x+ 2

√
2σ‖x‖‖M12‖

√
log
(

2
δ

)
+ TrM22Σ + cσ2‖M22‖F

√
log
(

2
δ

)
+ cσ2‖M22‖ log

(
2
δ

)
. (F.1)

Proof. Expanding the quadratic we have[
x
w

]>
M

[
x
w

]
= x>M11x+ 2x>M12w + w>M22w.
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Noting that x>M12w ∼ N (0, x>M12ΣM>12x), by standard Gaussian concentration we have with
probability at least 1− δ

2 that

x>M12w ≤
√

2x>M12ΣM>12x log
(

2
δ

)
≤
√

2‖x‖‖M12‖‖Σ‖
1
2

√
log
(

2
δ

)
=
√

2‖x‖σ‖M12‖
√

log
(

2
δ

)
.

On the other hand, by the Hanson-Wright inequality [? ], we have that with probability at least 1− δ
2

that

w>M22w ≤ TrM22Σ + c
√
‖Σ 1

2M22Σ
1
2 ‖2F log

(
2
δ

)
+ c‖Σ 1

2M22Σ
1
2 ‖2 log

(
2
δ

)
≤ TrM22Σ + cσ2‖M22‖F

√
log
(

2
δ

)
+ cσ2‖M22‖ log

(
2
δ

)
.

Lemma F.6. Let Σ be a n× n positive-definite matrix and let K be a real p× n matrix. Then, for
any σu ∈ R we have that

λmin

([
Σ ΣK>

KΣ KΣK> + σ2
uI

])
≥ σ2

u min

(
1

2
,

λmin(Σ)

2‖KΣK>‖2 + σ2
u

)
.

Proof. We find 0 < γ1 < 1 and γ2 > 0 such that the following condition holds[
Σ ΣK>

KΣ KΣK> + σ2
uI

]
�
[
γ1Σ 0

0 γ2I

]
.

By Schur complements, this condition is equivalent to

0 � KΣK> + (σ2
u − γ2)I −KΣ((1− γ1)Σ)−1ΣK>

= − γ1

1− γ1
KΣK> + (σ2

u − γ2)I .

Now set γ2 = σ2
u/2 and γ1 =

σ2
u

2‖KΣK>‖2+σ2
u

.

G Implementation of Adaptive Methods

We consider several adaptive methods for numerical comparison. This section described the relevant
implementation details.

G.1 Optimism in the Face of Uncertainty

At the start of each epoch, the OFU method computes a confidence set around the dynamics and then
finds the (A,B) that would achieve the smallest LQR cost. The method then plays the associated
optimal controller.

The confidence sets at epoch i are of the form

Ci(ε) = {Θ ∈ Rn×(n+p) : Tr((Θ− Θ̂i)ZTi(Θ− Θ̂i)
>) ≤ ε} ,

ZTi = λI +

Ti∑
i=1

[
xt
ut

] [
xt
ut

]>
.

(G.1)

Here, Θ̂i denotes the (regularized) least squares estimate of the true parameters Θ∗ = (A?, B?).
For our experiments, we set λ = 10−5 and ε = Tr((Θ̂i −Θ∗)ZTi(Θ̂i −Θ∗)

>) using the true and
estimation values of (A,B).
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Then controller is selected by finding the “best” dynamics. To be precise, let J(A,B) =
Tr(P (A,B)), where P (A,B) is the solution to the discrete algebraic Riccati solution

P = A>PA−A>PB(B>PB +R)−1B>PA+Q .

Then for every epoch of OFU, it is necessary to solve to the non-convex optimization problem

[Ã, B̃] = arg min
[A,B]∈Ci(ε)

J(A,B) . (G.2)

up to an absolute error of at most O(1/
√
Ti).

As in Section 5.4 of [? ], we heuristically solve this optimization problem using projected gradient
descent (PGD). An expression for the gradient of Θ 7→ J(A,B) is derived in [? ] (see also [4]) by
use of the implicit function theorem. Specifically,∇Θ Tr(P (A,B)) evaluated at a point Θ = (A,B)
is an n× (n+ p) matrix D. The i, j-th entry is given by Tr(Eij), where Eij is the solution to the
Lyapunov equation

Eij = A>c EijAc + 2Sym

(
A>c P (A,B)eie

>
j

[
I
K

])
,

with K as the optimal LQR controller for (A,B), Ac = A + BK, and Sym(A) = 1
2 (A + A>).

Finally, the projection of Θ onto the set Ci(ε) can be solved by a eigendecomposition of ZTi followed
by a scalar root-finding search. The details of this are also found in Section 5.4 of [? ].

We determine the end of an epoch using a switching rule based on a slight modification of the
determinant condition of [1]. We switch an epoch when both (a) T − Ti ≥ 10 and (b) det(ZT ) >
2 det(ZTi) hold. The first condition is to ensure that the switches are not too frequent in the beginning
of the algorithm.

G.2 Thompson Sampling

The Thompson sampling algorithm is nearly identical to the OFU algorithm, except the optimization
problem (??) is replaced by sampling. While the description of Thompson sampling in the Bayesian
setting of [2] and [16] requires sampling from the posterior distribution, we follow the more frequentist
setting of [4] and sample a point Θ̃ uniformly at random from the confidence set Ci(ε) as in (??).

We implement this uniform samping by first drawing a U ∼ Unif([0, 1]) and a η ∈ Rn×(n+p) with
each ηij ∼ N (0, 1), and setting

Θ̃ = Θ̂ +
√
ε

(
U1/(n(n+p))

‖η‖F
η

)
Z
−1/2
Ti

.

For the epoch switching rule, we follow the suggestion of [4] to force exploration after τ iterations,
where we set τ = 500. Specifically, we switch an epoch when the following predicate holds:

(T − Ti ≥ τ) or ((T − Ti ≥ 10) and (det(ZT ) > 2 det(ZTi))) .

G.3 Robust Adaptive Control with FIR truncation

We now describe how to turn the infinite-dimensional optimization problem in Algorithm 1 into a
finite-dimensional problem. First, recall the problem we want to solve,

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu,V

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I +

1

zF
V ,

√
2ε

1− CxρF+1

∥∥∥∥[Φx

Φu

]∥∥∥∥
H∞
≤ γ , (G.3)

‖V ‖ ≤ CxρF+1 , Φx ∈
1

z
RHF∞(Cx, ρ) , Φu ∈

1

z
RHF∞(Cu, ρ) .

Ignoring the outer minimization over γ (which can be solved with bisection), the inner minimization
is convex. Truncating the system responses to be FIR of length F means that

Φx =

F∑
k=1

Φx(k)z−k , Φu =

F∑
k=1

Φu(k)z−k .
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All pieces of the infinite dimensional problem can be written in terms of these variables. First,
consider the H2 cost in the objective. By Parseval’s identity, we can simply add the second order
cone constraint ∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Q1/2Φx(1)
...

Q1/2Φx(F )
R1/2Φu(1)

...
R1/2Φu(F )



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

≤ t , (G.4)

and minimize t. Next, we consider the constraints of the original optimization. The function space
constraints reduce to the requirement that

‖Φx(k)‖ ≤ Cxρk , ‖Φu(k)‖ ≤ Cuρk , k = 1, ..., F . (G.5)

Next, to rewrite the subspace constraint, we first consider that

zΦx =

F−1∑
k=0

Φx(k + 1)z−k ,

then the subspace constraint yields the following equality constraints,

Φx(1) = I ,

Φx(k + 1) = ÂΦx(k) + B̂Φu(k) , k = 1, ..., F − 1 ,

V = ÂΦx(F ) + B̂Φu(F ) .

(G.6)

The only constraint that remains is theH∞ constraint, for which we use the following result.
Theorem G.1 (Theorem 5.8, [? ]). Consider the T -length FIR filter

H(z) =

T∑
k=0

Hkz
−k , Hk ∈ Rp×m .

Define the matrix

H =

H0

...
HT

 ∈ Rp(T+1)×m .

We have that ‖H(z)‖H∞ ≤ γ iff there exists Q = Q> � 0 with Q ∈ Rp(T+1)×p(T+1) satisfying

Q =


Q00 Q01 ... Q0T

∗ Q11 ... Q1T

∗ ∗ . . .
...

∗ ∗ ∗ QTT

 , Qij ∈ Rp×p ,

T∑
t=0

Qtt = γ2Ip ,

T−k∑
t=0

Qt(t+k) = 0p×p , k = 1, ..., T ,

[
Q H

H
>

Im

]
� 0 .

For the SLS problem, theH∞ constraint on is the filter

H(z) =

F∑
k=1

[
Φx(k)
Φu(k)

]
z−k .

The constraint can be rewritten using the LMI in Theorem ??. To avoid a decision variable of size
(n+ p)(F + 1)× (n+ p)(F + 1), we instead consider the transpose system H> which has the same
H∞ norm and coefficients of size n× (n+ p).
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Figure 3: A comparison of different adaptive methods on 500 experiments of the large-transient system
example (??). In (a), the median and 90th percentile cumulative regret is plotted over time. In (b), the median
and 90th percentile infinite-horizon LQR cost of the epoch’s controller.

Putting this together, we arrive at the following SDP, which can be solved using an off the shelf
solver,

min
Φx[k]∈Rn×n, Φu[k]∈Rp×n, V ∈Rn×n

P∈Rn(F+1)×n(F+1), t∈R

t

s.t. (??) , (??) , (??) ,
F∑
t=0

Ptt = γ2I ,

F−k∑
t=0

Pt(t+k) = 0 , k = 1, ..., F ,

H =

√
2ε

1− CxρF+1


0n×n 0n×p

Φx(1)> Φu(1)>

...
...

Φx(F )> Φu(F )>

 ,

[
P H

H
>

Im

]
� 0 ,

‖V ‖ ≤ CxρF+1 .

For our experiments, we used the SCS solver [? ] via CVXPY [? ].

Finally, once the FIR responses {Φx(k)}Fk=1 and {Φu(k)}Fk=1 are found, we need a way to implement
the system responses as a controller. We represent the dynamic controller K = ΦuΦ

−1
x by finding

an equivalent state-space realization (AK , BK , CK , DK) via Theorem 2 of [? ].

As a final note, the adaptive method as described in Algorithm 1 requires several constants to be
specified. For the numerical experiments, we set ση,i = CησwT

−1/3
i where we vary Cη for different

experiments, fix γ = 0.98, and use a fixed FIR trunction length of F = 12. For the experiments in
Section 4, we set Cη = 0.1.

H Additional Experiments

H.1 Large-Transient Dynamics

We present the regret comparison results using another system

A? =

[
2 0 0
4 2 0
0 4 2

]
, B? = I, Q = 10I, R = I . (H.1)

The system is both unstable and has large transients. Each state receives direct input, and the cost is
such that input size is penalized relatively less than state. This problem setting is amenable to robust
methods due to both the cost ratio and the large transients, which are factors that may hurt optimistic
methods. For this experiment, we ran all adaptive methods as described in Appendix ??, and used an
initialization with a horizon of length T0 = 250 and Cη = 2.

The performance of the various adaptive methods is compared in Figure ??. The median and 90th
percentile regret over 500 instances is displayed in Figure ??a, which gives an idea of both “average”
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(a) OFU

0 200 400 600 800 1000
Iteration

0
250
500
750

1000
1250
1500
1750

R
eg

re
t

mult=1
mult=2
mult=3
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(c) Robust
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Figure 4: A comparison of cumulative regret when enlarged error bounds are used for synthesis, rather than
the true errors. Both the median over 500 trials and the 90th percentile regret are plotted. In (a) is OFU, in (b) is
TS, in (c) is robust. The plots show modest if any degradation in performance.

and worst-case behavior. Overall, the methods have very similar performance. One benefit of
robustness is the guaranteed stability and therefore bounded infinite-horizon cost at every point during
operation. In Figure ??b, this infinite-horizon cost of the controller in each epoch is plotted. This
measures the cost of using each epoch’s controller indefinitely, rather than continuing to update its
parameters. Especially for small numbers of iterations, the robust method performs relatively better
than other adaptive algorithms, indicating that it is more amenable to early stopping.

H.2 Error Scaling

In our experiments, we use the actual estimation errors for controller synthesis. To examine the effect
of this choice, we artificially inflate the estimation errors by various multipliers, and plot the regret
for various methods in Figure ??. These experiments were run on the the graph Laplacian example
in (4.1) with an initialization with a horizon of length T0 = 300 and Cη = 1.

The adaptive methods were run as described in Appendix ??. The error term ε for OFU and TS
appears in the computation of the uncertainty set as in (??). The errors εA and εB for the robust
adaptive method appear in (??). The plot shows a modest degradation in regret as these terms are
increased.

H.3 Learning the Disturbance Process

We consider the problem of regulating a known system which is subject to disturbances correlated in
time. These disturbances are modeled as the output of a LTI filter driven by white noise. In other
words,

xk+1 = A?xk +B?uk + dk , dk+1 = Addk + wk,

where xk is the state to drive to zero, and dk are the disturbances. We will take (A?, B?) to be known
and Ad unknown. This setting models many phenomenon related to demand forecasting, in which
the dynamics of e.g. a server farm is known, and the changes in demand are stochastic but correlated
in time, and can thus be approximated by the output of an LTI filter.

The plant inputs uk are designed for regulation. The controller design problem can be formulated as
an optimization problem by defining the augmented system as[

xk+1

dk+1

]
=

[
A? I
0 Ad

] [
xk
dk

]
+

[
B?
0

]
uk +

[
0
I

]
wk . (H.2)

We will denote the augmented state zk = [xk; dk]. Then the control actions can be designed using
an adaptive LQR strategy. In many situations, inputs are relatively more costly, corresponding for
example to energy usage. Defining an LQR cost directly related to the economics of the system
can be unwise, due to the resulting tendency for states to become large, which may correspond
to unsafe execution. While tuning the quadratic cost to represent a mixture of economic and
safety considerations can often achieve good behavior in practice, the method is heuristic and lacks
guarantees. Instead, consider the explicit addition of a constraint on the state, ‖xk‖∞ ≤ a for
0 ≤ k ≤ H for some horizon (which may be infinite).
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To state the necessary modification to the controller synthesis problem, we define the norm

‖M‖L1 = sup
‖w‖∞=1

‖Mw‖∞ ,

for both system responses and state matrices. This norm corresponds to the `∞ 7→ `∞ operator norm.
Proposition H.1. For the system described in (??), let Φz denote a closed-loop state response. Then
consider constraints

‖(Φz)22‖L1
≤ γ/ε̃A ,

‖(Φz)12‖L1
≤ a

b
· (1− γ) := c

(H.3)

where (Φz)ij denotes the blocks defined by the partition of zt into xt and dt, and ‖Âd−Ad‖L1 ≤ ε̃A.
The addition of these constraints to the synthesis problem in (??) ensures that the resulting closed
loop system has ‖xk‖∞ ≤ a for 0 ≤ k ≤ H as long as ‖wk‖∞ ≤ b for 0 ≤ k ≤ H .

Proof. In transfer function notation, the state of the plant can be described by

x = [I 0] z = [I 0] Φz(I + ∆̂)−1

[
0
I

]
w .

Furthermore, due to the known structure of the dynamics,

(I + ∆̂)−1 =

(
I +

[
0 0
0 ∆A

]
Φz

)−1

=

[
I 0
X (I + ∆A(Φz)22)−1

]
,

where X = (I + ∆A(Φz)22)−1∆A(Φz)21. Then we have, letting ∆̂22 = ∆A(Φz)22,

x = [I 0] Φz

[
0

(I + ∆̂22)−1

]
w = (Φz)12(I + ∆̂22)−1w .

Finally, to bound the size of the state,

‖x‖∞ ≤ ‖(Φz)12(I + ∆̂22)−1‖L1
‖w‖∞ ≤

1

1− ‖∆̂22‖L1

‖(Φz)12‖L1
‖w‖∞ .

Then we have that ‖∆̂22‖L1 ≤ ε̃A‖(Φz)22‖L1 , so the result follows from the constraints and the
assumption on wk.

Therefore, with either a bounded noise assumption on wk or a high-probability bound over a finite
time horizon, we can apply the previous result to synthesize safe controllers. In the example displayed
in Figure 2, the constraint as in (??) is added to the controller synthesis procedure with c = 0.1 and
γ = 0.98.
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