
A Calibration Lemmas

Proof of Lemma 1. We start with the ramp loss. First since s ∈ RK=0, we know that the normalization
term in ⇡ramp(s) is

�

a∈A
��(sa) ≥ 1,

from which the first inequality follows. The second inequality follows from the fact that sa ≤ −�
implies that ⇡ramp(s)a = 0, along with the trivial fact that ⇡ramp(s)a ≤ 1.

The hinge loss claim is also straightforward, since here the normalization is

�

a∈A
 �(sa) = �

a∈A
max{1 + sa��,0} ≥�

a

1 +
sa
�
≥K.

Lemma 10 (Hinge loss realizability). Let ` ∈ RK+ and let a� = argmina∈A `a. Define s ∈ RK=0 via
sa �K�1{a = a�} − �. Then we have

�`, �(s)� =K�`,⇡hinge(s)� =K`a� .

Proof. For this particular s, the normalizing constant in the definition of ⇡hinge is

�

a∈A
max�1 +

K�1{a = a�} − �
�

,0� =K,

and so the first equality follows. The second equality is also straightforward since the score for every
action except a� is clamped to zero.

Proof of Lemma 3.
For the case when S ⊂�(A), this claim is a well-known property of importance weighting:

E�Est∼pt�st, ˆ̀t�
2
� Jt� = �

a∈[K]
Pµ
t (a)

Est∼pt `
2
t (a)s

2
t (a)

(Pµ
t (a))

2
≤ �

a∈[K]
Est∼pts

2
t (a)

Pµ
t (a)

≤ �

a∈[K]
Est∼ptst(a)

Pµ
t (a)

= �

a∈[K]
Pt(a)

(1 −Kµ)Pt(a) + µ
.

Here we use Hölder’s inequality twice, using that �`�∞ ≤ 1 and s ∈�(A). Now, since the function
x� 1�(1 −Kµ + µ�x) is concave in x, it follows that

�

a∈[K]
Pt(a)

(1 −Kµ)Pt(a) + µ
= �

a∈[K]
1

(1 −Kµ) + µ�Pt(a)
≤K

1

(1 −Kµ) +Kµ�∑a∈[K] Pt(a)
=K,

which proves the claim for S ⊂�(A).

We proceed in the same fashion for both the ramp and hinge loss. Recall the definition Pµ
t (a) =

(1 −Kµ)Est∼pt

st(a)∑a′∈[K] st(a′) + µ. We have

E�Est∼pt�st, ˆ̀t�
2
� Jt� = �

a∈[K]
Pµ
t (a)

Est∼pt `
2
t (a)s

2
t (a)

(Pµ
t (a))

2
= �

a∈[K]
Est∼pt `

2
t (a)s

2
t (a)

Pµ
t (a)

≤ �

a∈[K]
Est∼pt s

2
t (a)

Pµ
t (a)

≤ max
a∈[K]max

s∈S s(a) ⋅ �
a∈[K]

Est∼pt st(a)

Pµ
t (a)

= max
a∈[K]max

s∈S s(a) ⋅ �
a∈[K]

Est∼pt st(a)

(1 − µK)Est∼pt

st(a)∑a′∈[K] st(a′) + µ

≤K ⋅ �max
a∈[K]max

s∈S s(a)�
2

⋅ �

a∈[K]
Est∼pt

st(a)∑a′∈[K] st(a′)
(1 −Kµ)Est∼pt

st(a)∑a′∈[K] st(a′) + µ
.
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Here we first apply the definition of ˆ̀t and cancel out one factor of Pµ
t in the denomator. Then we

apply Hölder’s inequality, using that st(a) ≥ 0. Expanding the definition Pµ
t and using the upper

bound ∑a′∈[K] st(a′) ≤Kmaxamaxs st(a), yields the final expression.

Now, let qa � Est∼pt

st(a)∑a′∈[K] st(a′) , and apply the concavity argument above. This yields

K2
⋅ �max

a∈[K]max
s∈S s(a)�

2

.

For the set S induced by the ramp loss we have maxa∈[K]maxs∈S s(a) ≤ 1, and for the set S induced
by the hinge loss we have maxa∈[K]maxs∈S s(a) ≤ (1 + B

� ).

B Comparing Multiclass Loss Functions and Notions of Realizability

While our surrogate loss functions apply to general cost-sensitive classification, when specialized to
the multiclass zero-one feedback, as in bandit multiclass prediction, they are somewhat non-standard.
In this appendix we provide a discussion of the differences, focusing on the hinge loss.

Let us detail the multiclass setting: On each round, the adversary chooses a pair (x, y�) where x ∈ X ,
y� ∈ A and shows x to the learner. The learner then makes a prediction ŷ. The 0/1-loss for the learner
is 1{ŷ ≠ y}. Using a class of regression functions G ⊂ (X → RK

), the standard multiclass hinge loss
for a regressor g ∈ G is:

`�MC-hinge(g, (x, y
�
)) �max{1 − �−1(g(x)y� −max

y≠y� g(x)y),0}.

On the other hand, for our results we assume that the regressor class F ⊂ (X → RK=0), and the
cost-sensitive hinge loss that we use here is:

`�CC-hinge(f, (x, y
�
)) � �

y≠y�
 �(f(x)y) = �

y≠y�
max{1 + �−1f(x)y,0}.

More precisely in Corollary 7, we are measuring the benchmark using `CC-hinge and our bound is

E
T

�
t=1 `t(at) ≤ inf✓∈⇥

1

K

T

�
t=1 `

�
CC-hinge(f(⋅; ✓), (xt, y

�
t )) + Õ�

B

�

√

dT�.

On the other hand, the open problem of Abernethy and Rakhlin [2] asks for a
√
dT bound when the

benchmark is measured using `MC-hinge. As we will see, the two loss functions are somewhat different.

Let us first standardize the function classes. By rebinding fg(x)y � g(x)y −K
−1
∑y′ g(x)y′ we can

easily construct a “sum-to-zero" class from an unconstrained class G ⊂ (X → RK
), and with this

definition, the cost-sensitive hinge loss for any function g ∈ G is:

`�CC-hinge(g, (x, y
�
)) � �

y≠y�
 �(fg(x)y) = �

y≠y�
max{1 − �−1(K−1�

y′
g(x)y′ − g(x)y),0}.

The main proposition in this appendix is that if the cost-sensitive hinge loss is zero, then so is the
multiclass hinge loss, while the converse is not true.
Proposition 11. We have the following implication

`�CC-hinge(g, (x, y
�
)) = 0⇒ `K�MC-hinge(g, (x, y

�
)) = 0.

The converse does not hold: For any �, �̃ > 0 and K ≥ 0 there exists a function g and an (x, y�) pair
such that `�MC-hinge(g, (x, y

�
)) = 0 but `�̃CC-hinge(g, (x, y

�
)) ≥ 1.

Note that `�1MC-hinge ≥ `
�2
MC-hinge whenever �1 ≥ �2, so the first implication also holds when the RHS is

replaced with `�MC-hinge.

The proposition implies that cost-sensitive hinge realizability — that there exists a predictor g�
such that `CC-hinge(g

�, (x, y�)) = 0 for all rounds — is a strictly stronger condition than multiclass
hinge realizability. Under multiclass separability assumptions [26], the bandit multiclass surrogate
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benchmark is zero, while our cost-sensitive benchmark may still be large, and so the cost-sensitive
translation approach cannot be used to obtain a sublinear upper bound on the number of mistakes
made by the learner. In this vein, HINGE-LMC does not completely resolve the open problem
of Abernethy and Rakhlin [2], since the loss function we use can result in a weaker bound than
desired. Note that the cost-sensitive surrogate loss may also prevent us from exploiting small-loss
structure in the multiclass surrogate to obtain fast rates.

On the other hand, our cost-sensitive surrogate losses are applicable in a much wider range of
problems, and cost-sensitive structure is common in contextual bandit settings. As such, we believe
that designing algorithms for this more general setting is valuable.

Proof of Proposition 11. If `�CC-hinge(g, (x, y
�
)) = 0 then we know that for all y ≠ y�, we must have

∀y ≠ y� ∶ 1

K
�

y′
g(x)y′ − g(x)y ≥ �.

Adding these inequalities together for y ≠ y� and subtracting g(x)y� from both sides we get

K − 1

K
�

y′
g(x)y′ − �

y≠y�
g(x)y − g(x)y� ≥ (K − 1)� − g(x)y�

⇒ g(x)y� ≥ (K − 1)� +
1

K
�
y

g(x)y

⇒ g(x)y� ≥K� + g(x)y ∀y ≠ y�.
The last line follows from re-using the original inequality and proves the desired implication.

On the other hand, if `K�MC-hinge(g, (x, y
�
)) = 0 it does not imply that `�CC-hinge(g, (x, y

�
)) = 0. To

see why, suppose K = 3 and assume y� = y1 with y2, y3 as the other labels. Set g(x)y1 = 3�,
g(x)y2 = 0 and g(x)y3 = −3�. With these predictions, we have ∑y g(x)y = 0 and also that
`3�MC-hinge(g, (x, y1)) = 0. On the other hand since g(x)y2 = ∑y g(x)y = 0, we get:

`�̃CC-hinge(g, (x, y)) ≥max{1 − �̃−1(�
y

g(x)y − g(x)y2),0} = 1,

for any �̃. This proves that the converse cannot be true.

C Proofs from Section 2

Let us start with an intermediate result, which will simplify the proof of Theorem 2.
Theorem 12. Assume �`�1 ≤ 1 for all ` ∈ L10 and sups∈S�s�∞ ≤ 1. Further assume that S and L
are compact. Fix any constants ⌘ ∈ (0,1], � > 0, and � > ↵ > 0. Then there exists an algorithm with
the following deterministic regret guarantee:

T�
t=1

Est∼pt�s, `t� − inf
g∈G

T�
t=1
�g(xt), `t� ≤ 2⌘ T�

t=1
Est∼pt�st, `t�2 + 4

⌘
logN∞,∞(��2,G, T ) + 3e2↵ T�

t=1
�`t�1

+ 24e��
4

T�
t=1
�`t�21 + 1

�
�� �

↵

�
logN∞,∞(",G, T )d".

The difference here is that have set R,B = 1. The first part of this section will be devoted to proving
this theorem, and Theorem 2 will follow from this result via Corollary 16.

C.1 Preliminaries

Definition 2 (Cover for a collection of trees). For a collection of RK -valued trees U of length T , we
let N∞,∞(", U), denote the cardinality of the smallest set V of RK valued trees for which

∀u ∈ U ∀✏ ∈ {±1}T ∃v ∈ V s.t. max
t∈[T ]�ut(✏) − vt(✏)�∞ ≤ ".

10Measuring loss in `1 may seem restrictive, but this is natural when working with importance-weighted
losses since these are 1-sparse, and by duality this enables us to cover in `∞ norm on the output space.
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Definition 3 (L∞�`∞ radius). For a function class F , define
rad∞,∞(F , T ) =min{" � logN∞,∞(",F , T ) = 0}.

For a collection U of trees, define rad∞,∞(U) =min{" � logN∞,∞(", U) = 0}.
The following two lemmas are Freedman-type inequalities for Rademacher tree processes that we
will use in the sequel. The first has an explicit dependence on the range, while the second does not.
Lemma 13. For any collection of [−R,+R]-valued trees V of length T , for any ⌘ > 0 and ↵ > 0,

E✏ sup
v∈V �

T

�
t=1 ✏t

�vt(✏) − ⌘v
2
t (✏)� − ↵⌘v

2
t (✏)� ≤ 2 log�V � ⋅ �

1

↵⌘
∨
⌘R2

↵
�.

Proof of Lemma 13. Take V to be finite without loss of generality (otherwise the bound is vacuous).
As a starting point, for any � > 0 we have

E✏ sup
v∈V �

T

�
t=1 ✏t

�vt(✏) − ⌘v
2
t (✏)� − ↵⌘v

2
t (✏)�

≤
1

�
log��

v∈V
E✏ exp�

T

�
t=1 ✏t�

�vt(✏) − ⌘v
2
t (✏)� − �↵⌘v

2
t (✏)��.

Applying the standard Rademacher mgf bound E✏ e�✏ ≤ e
1
2�

2

conditionally at each time starting from
t = T , this is upper bounded by

≤
1

�
log��

v∈V
max
✏

exp�
T

�
t=1

1

2
�2�vt(✏) − ⌘v

2
t (✏)�

2
− �↵⌘v2

t (✏)��.

Since v takes values in [−R,+R], the exponent at time t can be upper bounded as
1

2
�2�vt(✏) − ⌘v

2
t (✏)�

2
− �↵⌘v2

t (✏) ≤ �
2
�1 + ⌘2R2

�v2
t (✏) − �↵⌘v

2
t (✏).

By setting � = 1
2 min�↵⌘,↵�(⌘R2

)�, this is bounded by zero, which leads to a final bound of
log�V ���.

Lemma 14. For any collection of trees V of length T , for any ⌘ > 0,

E✏ sup
v∈V �

T

�
t=1 ✏tvt(✏) − ⌘v

2
t (✏)� ≤

log�V �

2⌘
.

Proof of Lemma 14. Take V to be finite without loss of generality. As in the proof of Lemma 13,
using the standard Rademacher mgf bound and working backward from T , for any � > 0 we have

E✏ sup
v∈V �

n

�
t=1 ✏tvt(✏) − ⌘v

2
t (✏)� ≤

1

�
log��

v∈V
E✏ exp�

n

�
t=1 ✏t�vt(✏) − ⌘�v

2
t (✏)��

≤
1

�
log��

v∈V
max
✏

exp�
n

�
t=1

1

2
�2vt(✏)

2
− ⌘�v2

t (✏)��.

The exponent at time t is
1

2
�2v2

t (✏) − ⌘�v
2
t (✏).

By setting � = 2⌘, this is exactly zero, which leads to a final bound of log�V ���.

Lemma 15. Let Z , W , and G be abstract sets and let functions Ag ∶ W × Z × Z → R and
Bg ∶W ×Z ×Z → R be given for each element g ∈ G. Suppose that for any z, z′ ∈ Z and w ∈W it
holds that A(w, z, z′) = −A(w, z′, z) and B(w, z, z′) = B(w, z′, z). Then

� sup
wt∈W sup

qt∈�(Z)
Ezt,z′t∼qt�

T

t=1
sup
g∈G

T

�
t=1Ag(wt, zt, z

′
t) +Bg(wt, zt, z

′
t) (5)

≤ � sup
wt∈W sup

qt∈�(Z)
E✏t Ezt,z′t∼qt�

T

t=1
sup
g∈G

T

�
t=1 ✏tAg(wt, zt, z

′
t) +Bg(wt, zt, z

′
t), (6)

where ✏ is a sequence of independent Rademacher random variables.
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See Subsection C.2 for a discussion of the ��� notation used in the above lemma statement.

Proof of Lemma 15. See proof of Lemma 3 in [40].

C.2 Proof of Theorem 12

Before proceeding, we note that this proof uses a number of techniques which are now somewhat
standard in minimax analysis of online learning, and the reader may wish to refer to, e.g., [41] for a
comprehensive introduction to this type of analysis.

Let ⌘1,⌘2,⌘3 > 0 be fixed constants to be chosen later in the proof, and define

B(p1∶T , `1∶T ) � ⌘1
T

�
t=1�`t�1 + ⌘2

T

�
t=1�`t�

2
1

��������������������������������������������������������������������������������������������������������������������������������������������B1(`1∶T )

+2⌘3
T

�
t=1Es∼pt�s, `t�

2

���������������������������������������������������������������������������������������������������������������B2(p1∶T ,`1∶T )

.

We consider a game where the goal of the learner is to achieve regret bounded by B, plus some
additive constant that will depend on ⌘1,⌘2,⌘3, and the complexity of the class F . The value of the
game is given by:

V � � sup
xt∈X inf

pt∈�(S) sup`t∈LEs∼pt�

T

t=1
�

T

�
t=1�s, `t� − infg∈G

n

�
t=1�g(xt), `t� −B(p1∶T , `1∶T )�.

Here we are using the notation ���Tt=1 to denote sequential application of the operator � (indexed by
t) from time t = 1, . . . , T , following e.g. [41]. This notation means that first the adversary chooses
x1, then the learner chooses p1, and then the adversary chooses `1 while the learner samples s1
and suffers the loss �s1, `1�. Then we proceed to round 2 and so on, so that the learner is trying to
minimize the (offset) regret after T rounds while the adversary is trying to maximize it. If we show
that V ≤ C for some constant C then we have established existence of a randomized strategy that
achieves an adaptive regret bound of B(⋅) +C. See Foster et al. [20] for a more extensive discussion
of this principle.

C.2.1 Minimax swap

At time t the value to go is given by

sup
xt∈X

inf
pt∈�(S) sup`t∈L

�Es∼pt�s, `t� − 2⌘3 Es∼pt�s, `t�2 − ⌘1�`t�1 − ⌘2�`t�21
+� sup

x⌧ ∈X
inf

p⌧ ∈�(S) sup`⌧ ∈L
�T

⌧=t+1
� T�
⌧=t+1

Es∼p⌧ �s, `⌧ � − inf
g∈G

T�
⌧=1
�g(x⌧), `⌧ � −B(p⌧+1∶T , `⌧+1∶T )��.

Note that the benchmark’s loss is only evaluated at the end, while we are incorporating the adaptive
term into the instantaneous value. Convexifying the `t player by allowing them to select a randomized
strategy qt, this is equal to

sup
xt∈X

inf
pt∈�(S) sup

qt∈�(L)
E`t∼qt�Es∼pt�s, `t� − 2⌘3 Es∼pt�s, `t�2 − ⌘1�`t�1 − ⌘2�`t�21

+� sup
x⌧ ∈X

inf
p⌧ ∈�(S) sup`⌧ ∈L

�T

⌧=t+1
� T�
⌧=t+1

Es∼p⌧ �s, `⌧ � − inf
g∈G

T�
⌧=1
�g(x⌧), `⌧ � −B(p⌧+1∶T , `⌧+1∶T )��.

This quantity is convex in pt and linear in qt so, under the compactness assumption on S and L, the
minimax theorem implies that this is equal to

sup
xt∈X

sup
qt∈�(L)

inf
pt∈�(S)E`t∼qt�Es∼pt�s, `t� − 2⌘3 Es∼pt�s, `t�2 − ⌘1�`t�1 − ⌘2�`t�21

+� sup
x⌧ ∈X

inf
p⌧ ∈�(S) sup`⌧ ∈L

�T

⌧=t+1
� T�
⌧=t+1

Es∼p⌧ �s, `⌧ � − inf
g∈G

T�
⌧=1
�g(x⌧), `⌧ � −B(p⌧+1∶T , `⌧+1∶T )��.

Repeating this analysis at each timestep and expanding the terms from B2, we arrive at the expression

V = � sup
xt∈X

sup
qt∈�(L)

inf
pt∈�(S)E`t∼qt�

T

t=1
� T�
t=1

Es∼pt��s, `t� − 2⌘3�s, `t�2� − inf
g∈G

T�
t=1
�g(xt), `t� −B1(`1∶T )�.
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C.2.2 Upper bound by martingale process

We now use a standard “rearrangement” trick (see [41], Theorem 1) to show that

V = � sup
xt∈X

sup
qt∈�(L)

E`t∼qt�
T

t=1
�sup
g∈G �

T�
t=1

inf
pt∈�(S)Es∼pt E`′t∼qt��s, `′t� − 2⌘3�s, `′t�2� −

T�
t=1
�f(xt), `t�� −B1(`1∶T )�,

where `′1∶T is a sequence of “tangent” samples, where `′t is an independent copy of `t conditioned
on `1∶t−1. This can be seen by working backwards from time T . Indeed, at time T , expanding the
���

T
t=1 operator, we have

V = ���T−1t=1 sup
xT ∈X

sup
qT ∈�(L)

inf
pT ∈�(S)E`T ∼qT � T−1�

t=1
Es∼pt��s, `t� − 2⌘3�s, `t�2� + Es∼pT ��s, `T � − 2⌘3�s, `T �2�

− inf
g∈G

T�
t=1
�g(xt), `t� −B1(`1∶T )�.

Using linearity of expectation:

= ���T−1t=1 sup
xT ∈X

sup
qT ∈�(L)

inf
pT ∈�(S)E`T ∼qT � T−1�

t=1
Es∼pt��s, `t� − 2⌘3�s, `t�2� + E`′

T
∼qT Es∼pT ��s, `′T � − 2⌘3�s, `′T �2�

− inf
g∈G

T�
t=1
�g(xt), `t� −B1(`1∶T )�.

Using that only a single term has functional dependence on pT :

= ���T−1t=1 sup
xT ∈X

sup
qT ∈�(L)

E`T ∼qT � T−1�
t=1

Es∼pt��s, `t� − 2⌘3�s, `t�2� + inf
pT ∈�(S)E`′

T
∼qT Es∼pT ��s, `′T � − 2⌘3�s, `′T �2�

− inf
g∈G

T�
t=1
�g(xt), `t� −B1(`1∶T )�.

Expanding the infimum over g ∈ G:

= ���T−1t=1 sup
xT ∈X

sup
qT ∈�(L)

E`T ∼qT sup
g∈G �

T−1�
t=1

Es∼pt��s, `t� − 2⌘3�s, `t�2� + inf
pT ∈�(S)E`′

T
∼qT Es∼pT ��s, `′T � − 2⌘3�s, `′T �2�

− T�
t=1
�g(xt), `t� −B1(`1∶T )�.

We handle time T − 1 in a similar fashion by first splitting the ���T−1t=1 operator:

= ���T−2t=1 sup
xT−1∈X

sup
qT−1∈�(L)

inf
pT−1∈�(S)E`T−1∼qT−1 sup

xT ∈X
sup

qT ∈�(L)
E`T ∼qT

sup
g∈G �

T−2�
t=1

Es∼pt��s, `t� − 2⌘3�s, `t�2� + Es∼pT−1��s, `T−1� − 2⌘3�s, `T−1�2�
+ inf

pT ∈�(S)E`′
T
∼qT Es∼pT ��s, `′T � − 2⌘3�s, `′T �2� − T�

t=1
�g(xt), `t� −B1(`1∶T )�.

Rearranging the supremums to make dependence on terms from time T − 1 clear:
= ���T−2t=1 sup

xT−1∈X
sup

qT−1∈�(L)
inf

pT−1∈�(S)E`T−1∼qT−1

� T−2�
t=1

Es∼pt��s, `t� − 2⌘3�s, `t�2� + Es∼pT−1��s, `T−1� − 2⌘3�s, `T−1�2�
+ sup

xT ∈X
sup

qT ∈�(L)
E`T ∼qT sup

g∈G � inf
pT ∈�(S)E`′

T
∼qT Es∼pT ��s, `′T � − 2⌘3�s, `′T �2� − T�

t=1
�g(xt), `t� −B1(`1∶T )��.

Using linearity of expectation and moving the infimum over qT−1:
= ���T−2t=1 sup

xT−1∈X
sup

qT−1∈�(L)
E`T−1∼qT−1

� T−2�
t=1

Es∼pt��s, `t� − 2⌘3�s, `t�2� + inf
pT−1∈�(S)E`′

T−1∼qT−1 Es∼pT−1��s, `′T−1� − 2⌘3�s, `′T−1�2�
+ sup

xT ∈X
sup

qT ∈�(L)
E`T ∼qT sup

g∈G � inf
pT ∈�(S)E`′

T
∼qT Es∼pT ��s, `′T � − 2⌘3�s, `′T �2� − T�

t=1
�g(xt), `t� −B1(`1∶T )��.
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The last step is to move the supremums from time t = T and the supremum over g ∈ G outside the
entire expression, similar to what was done at time t = T .

= ���T−2t=1 sup
xT−1∈X

sup
qT−1∈�(L)

E`T−1∼qT−1 sup
xT ∈X

sup
qT ∈�(L)

E`T ∼qT sup
g∈G

� T−2�
t=1

Es∼pt��s, `t� − 2⌘3�s, `t�2� + inf
pT−1∈�(S)E`′

T−1∼qT−1 Es∼pT−1��s, `′T−1� − 2⌘3�s, `′T−1�2�
+ inf

pT ∈�(S)E`′
T
∼qT Es∼pT ��s, `′T � − 2⌘3�s, `′T �2� − T�

t=1
�g(xt), `t� −B1(`1∶T )�.

Repeating this argument down from time t = T − 2 to time t = 1 yields the result.
To conclude this portion of the proof, we move to an upper bound by choosing the infimum over pt at
each timestep t to match g, which is possible because each infimum now occurs inside the expression
for which the supremum over g ∈ G is taken:

V = � sup
xt∈X

sup
qt∈�(L)

E`t∼qt�
T

t=1
�sup
g∈G �

T�
t=1

inf
pt∈�(S)Es∼pt E`′t∼qt��s, `′t� − 2⌘3�s, `′t�2� −

T�
t=1
�f(xt), `t�� −B1(`1∶T )�

≤ � sup
xt∈X

sup
qt∈�(L)

E`t∼qt�
T

t=1
�sup
g∈G �

T�
t=1

E`′t∼qt��g(xt), `′t� − 2⌘3�g(xt), `′t�2� − T�
t=1
�g(xt), `t�� −B1(`1∶T )�

= � sup
xt∈X

sup
qt∈�(L)

E`t∼qt�
T

t=1
�sup
g∈G �

T�
t=1

E`′t∼qt��g(xt), `′t�� − �g(xt), `t� − 2⌘3 T�
t=1

E`′t∼qt��g(xt), `′t�2�� −B1(`1∶T )�.
(7)

C.2.3 Symmetrization

Introduce the notation H(x) = x − ⌘3x
2. We now claim that the quantity appearing in (7) is bounded

by

2 ⋅ sup
x

sup
`

E✏�sup
g∈G �

T

�
t=1 ✏tH(�g(xt(✏)), `t(✏)�) − ⌘3

T

�
t=1�g(xt(✏)), `t(✏)�

2
� −B1(`1∶T (✏))�, (8)

where the supremum ranges over all X -valued trees x and L-valued trees `, both of length T .
The value

� sup
xt∈X

sup
qt∈�(L)

E`t∼qt�
T

t=1
�sup
g∈G �

T�
t=1

E`′t∼qt��g(xt), `′t�� − �g(xt), `t� − 2⌘3 T�
t=1

E`′t∼qt��g(xt), `′t�2�� −B1(`1∶T )�,
by adding and subtracting the same term, is equal to

� sup
xt∈X

sup
qt∈�(L)

E`t∼qt�
T

t=1
�sup
g∈G �

T�
t=1

E`′t∼qt��g(xt), `′t� − ⌘3�g(xt), `′t�2� − ��g(xt), `t� − ⌘3�g(xt), `t�2�
− ⌘3 T�

t=1
�E`t∼qt��g(xt), `t�2� + �g(xt), `t�2�� −B1(`1∶T )�

=� sup
xt∈X

sup
qt∈�(L)

E`t∼qt�
T

t=1
�sup
g∈G �

T�
t=1

E`′t∼qt�H(�g(xt), `′t�)� −H(�g(xt), `t�)
− ⌘3 T�

t=1
�E`t∼qt��g(xt), `t�2� + �g(xt), `t�2�� −B1(`1∶T )�.

Using Jensen’s inequality, this is upper bounded by

� sup
xt∈X sup

qt∈�(L)
E`t,`′t∼qt�

T

t=1
�sup
g∈G �

T

�
t=1H(�g(xt), `

′
t�) −H(�g(xt), `t�)

−⌘3
T

�
t=1��g(xt), `

′
t�

2
+ �g(xt), `t�

2
�� −B1(`1∶n)�, (9)
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where `′1∶T is a tangent sequence. We now claim that this is equal to

� sup
xt∈X sup

qt∈�(L)
E`t,`′t∼qt�

T

t=1
�sup
g∈G �

T

�
t=1H(�g(xt), `

′
t�) −H(�g(xt), `t�)

− ⌘3
T

�
t=1��g(xt), `

′
t�

2
+ �g(xt), `t�

2
�� −

1

2
B1(`1∶T ) − 1

2
B1(`

′
1∶T )�.

This can be seen as follows: Let Q be the joint distribution over `1, . . . , `T obtaining the supremum
above, or if the supremum is not obtained let it be any point in a limit sequence approaching the
supremum. Then the value of the B1 term in (9) is equal to (respectively, "-close to)

EQB1(`1∶T ) = ⌘1
T

�
t=1EQ�`t�1 + ⌘2

T

�
t=1EQ�`t�

2
1

= ⌘1
T

�
t=1E`1∶t−1 E[�`t�1 � `1∶t−1] + ⌘2

T

�
t=1E`1∶t−1 E��`t�

2
1 � `1∶t−1�

= ⌘1
T

�
t=1E`1∶t−1 E[�`

′
t�1 � `1∶t−1] + ⌘2

T

�
t=1E`1∶t−1 E��`

′
t�

2
1 � `1∶t−1�

= E`1∶T E`′1∶T �`1∶T B1(`
′
1∶T ).

Replacing `t with `′t follows from the definition of the tangent sequence, since `′t and `t are identically
distributed, conditioned on `1∶t−1. This shows that we can replace B1(`1∶T ) with B1(`1∶T )�2 +
B1(`

′
1∶T )�2 above, since we are working with the expectation.

We have now established that (9) is equal to

� sup
xt∈X sup

qt∈�(L)
E`t,`′t∼qt�

T

t=1
� sup

g∈G �
T

�
t=1H(�g(xt), `

′
t�)

���������������������������������������������������������������������������
A1

−H(�g(xt), `t�)
���������������������������������������������������������������������������

A2

−⌘3�
T

�
t=1 �g(xt), `

′
t�

2
+ �g(xt), `t�

2

����������������������������������������������������������������������������������������������������������������������������������������������������������
A3

��

−
⌘1
2
�

T

�
t=1 �`t�1 + �`

′
t�1

�����������������������������������������������������������
A4

� −
⌘2
2
�

T

�
t=1 �`t�

2
1 + �`

′
t�

2
1

�����������������������������������������������������������
A5

��.

Fix a time t and suppose the values of `t and `′t are exchanged. In this case the value of A1 −A2 is
switched to A2−A1, while the values of A3, A4, and A5 are left unchanged. Appealing to Lemma 15,
we can therefore introduce Rademacher random variables ✏1, . . . , ✏T with equality as follows:

� sup
xt∈X

sup
qt∈�(L)

E`t,`′t∼qt E✏t�
T

t=1
� sup

g∈G �
T�
t=1
✏t�H(�g(xt), `′t�) −H(�g(xt), `t�)� − ⌘3� T�

t=1
�g(xt), `′t�2 + �g(xt), `t�2��

− ⌘1
2
� T�
t=1
�`t�1 + �`′t�1� − ⌘22 �

T�
t=1
�`t�21 + �`′t�21��.

Splitting the supremum, this is upper bounded by

2 ⋅� sup
xt∈X

sup
qt∈�(L)

E`t∼qt E✏t�
T

t=1
�sup
g∈G �

T�
t=1
✏tH(�g(xt), `t�) − ⌘3 T�

t=1
�g(xt), `t�2� − ⌘1

2

T�
t=1
�`t�1 − ⌘22

T�
t=1
�`t�21�

= 2 ⋅� sup
xt∈X

sup
`t∈L

E✏t�
T

t=1
�sup
g∈G �

T�
t=1
✏tH(�g(xt), `t�) − ⌘3 T�

t=1
�g(xt), `t�2� − ⌘1

2

T�
t=1
�`t�1 − ⌘22

T�
t=1
�`t�21�

= 2 ⋅ sup
x

sup
`

E✏�sup
g∈G �

T�
t=1
✏tH(�g(xt(✏)), `t(✏)�) − ⌘3 T�

t=1
�g(xt(✏)), `t(✏)�2� − ⌘1

2

T�
t=1
�`t(✏)�1 − ⌘22

T�
t=1
�`t(✏)�21�.

The first equality is somewhat subtle, but holds because at time T , the expression is linear in qT so it
is maximized at a point `T , allowing us to work backwards to remove the qt distributions.

C.2.4 Introducing a coarse cover

We now break the process appearing in (8) into multiple terms, each of which will be handled by
covering. Consider any fixed pair of trees x, `. Note that with the trees fixed (7) is at most

2 ⋅E✏ sup
g∈G �

T

�
t=1 ✏tH(�g(xt(✏)), `t(✏)�) − ⌘3

T

�
t=1�g(xt(✏)), `t(✏)�

2
� −E✏B1(`1∶T (✏)).
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We will focus on the supremum for now. We begin by adapting a trick from Rakhlin and Sridharan
[37] to introduce a coarse sequential cover at scale �. Let V ′ be a cover for G on the tree x with
respect to L∞�`∞ at scale ��2. Then the size of V ′ is N∞,∞(��2,G,x), and

max
g∈G max

✏∈{±1}T min
v′∈V ′max

t∈[T ]�g(xt(✏)) − v
′
t(✏)�∞ ≤ ��2.

Recall that since g(x) ∈ RK+ for all g ∈ G, we may take each v′ ∈ V ′ to have non-negative coordinates
without loss of generality. Likewise, it follows that we may take each v′ ∈ V ′ to have �v′t(✏)�∞ ≤
supx∈X supg∈G�g(x)�∞ without loss of generality.

We construct a new �-cover V 1 from V ′ by defining for each tree v′ ∈ V ′ a new tree v as follows:

∀✏ ∈ {±1}T ∀t ∈ [T ] ∀a ∈ [K] ∶ vt(✏)a =max{v′t(✏)a − ��2,0}.
It is easy to verify that for each time t and path ✏ we have �vt(✏) − v

′
t(✏)�∞ ≤ ��2, so V 1 is indeed

a �-cover with respect to L∞�`∞. More importantly, for each g ∈ G and path ✏, there exists a tree
v ∈ V ′ that is �-close in the L∞�`∞ sense and has vt(✏)a ≤ g(xt(✏))a coordinate-wise. We will
let v1

[✏, g] denote this tree, and it is constructed by taking the ��2-close tree v′ promised by the
definition of V ′, then performing the clipping operation above to get the corresponding �-close
element of V 1. The clipping operation and ��2 closeness of v′ imply that for each time t ∈ [T ] and
coordinate a ∈ [K],

v1
t [✏, g]a − g(xt(✏))a =max{v′t(✏)a − ��2,0} − g(xt(✏))a

≤ max{�v′t(✏) − g(xt(✏))�∞ + g(xt(✏))a − ��2,0} − g(xt(✏))a
≤ max{g(xt(✏))a,0} − g(xt(✏))a = 0.

This establishes the desired ordering on coordinates. Returning to the process at hand, we have

E✏ sup
g∈G �

T

�
t=1 ✏tH�g(xt(✏)), `t(✏)�) − ⌘3

T

�
t=1�g(xt(✏)), `t(✏)�

2
�.

Now we add and subtract terms involving the covering element v1
(✏, g):

= E✏ sup
g∈G �

T

�
t=1 ✏tH(

�v1
t [✏, g], `t(✏)�) − ⌘3

T

�
t=1�g(xt(✏)), `t(✏)�

2

+

T

�
t=1 ✏tH(�g(xt(✏)), `t(✏)�) − ✏tH(�v

1
t [✏, g], `t(✏)�)�.

We now invoke the coordinate domination property of v1
[✏, g] described above. Observe that since

g(xt(✏)), v1
t [✏, g], and `t(✏) are all nonnegative coordinate-wise, it holds that �v1

t [✏, g], `t(✏)�
2
≤

�g(xt(✏)), `t(✏)�
2. Consequently, we can replace the offset term (not involving ✏t) with a similar

term involving v1
t [✏, g]

≤ E✏ sup
g∈G �

T

�
t=1 ✏tH(

�v1
t [✏, f], `t(✏)�) − ⌘3

T

�
t=1
�v1

t [✏, g], `t(✏)�
2

+

T

�
t=1 ✏tH(�f(xt(✏)), `t(✏)�) − ✏tH(�v

1
t [✏, f], `t(✏)�)�.

Splitting the supremum and gathering terms, this implies that V is upper bounded by

E✏ sup
v1∈V 1

�

T

�
t=1 ✏tH(

�v1
t (✏), `t(✏)�) − ⌘3

T

�
t=1
�v1

t (✏), `t(✏)�
2
�

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������(�)
+E✏ sup

g∈G �
T

�
t=1 ✏tH(�g(xt(✏)), `t(✏)�) − ✏tH(�v

1
t [✏, g], `t(✏)�)� −E✏B1(`1∶T (✏))

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������(��)

.
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C.2.5 Bounding (�)

We appeal to Lemma 13 with a class of real-valued trees U � �✏� ��v1
t (✏), `t(✏)��t≤T � v1

∈ V 1
�.

The class U has range contained in [−1,+1], since ��v1
t (✏), `t(✏)�� ≤ �v

1
t (✏)�∞�`t(✏)�1 ≤ 1, where

these norm bounds are by assumption on G and L. Recall that H(x) = x − ⌘3x
2. We therefore

conclude that

(�) = E✏ sup
v1∈V 1

�

T

�
t=1 ✏tH(

�v1
t (✏), `t(✏)�) − ⌘3

T

�
t=1
�v1

t (✏), `t(✏)�
2
�

≤ 2
1 + ⌘23
⌘3

log�V 1
� = 2

1 + ⌘23
⌘3

logN∞,∞(��2,G,x).

C.2.6 Bounding (��)

Fix ↵ > 0 and let N = �log(��↵)� − 1. For each i ≥ 1 define "i = �e−(i−1), and for each i > 1 let
V i be a sequential cover of G on x at scale "i with respect to L∞�`∞ (keeping in mind that V 1 is
defined as in the preceding section). For a given path ✏ ∈ {±1}T and g ∈ G, let vi

[✏, g] denote the
"i-close element of V i. Below, we will only evaluate H(x) = x − ⌘3x

2 over the domain [−1,+1]; it
is (1 + 2⌘3)-Lipschitz over this domain. Then the leading term of (��) is equal to

E✏ sup
g∈G �

T

�
t=1 ✏t

�H(�g(xt(✏)), `t(✏)�) −H��v
1
t [✏, g], `t(✏)����.

Introducing the covering elements defined above to this expression, we have the equality

=E✏ sup
g∈G �

T

�
t=1 ✏t

�H(�g(xt(✏)), `t(✏)�) −H��v
N
t [✏, g], `t(✏)���

+

N−1
�

i=1
T

�
t=1 ✏t

�H��vi+1
t [✏, g], `t(✏)�� −H��v

i
t[✏, g], `t(✏)����

≤ E✏ sup
g∈G �

T

�
t=1 ✏t

�H(�g(xt(✏)), `t(✏)�) −H��v
N
t [✏, g], `t(✏)����

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������CN

+

N−1
�

i=1
E✏ sup

g∈G �
T

�
t=1 ✏t

�H��vi+1
t [✏, g], `t(✏)�� −H��v

i
t[✏, g], `t(✏)����

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Ci

.

C.2.7 Bounding CN

We first bound CN in terms of one of the terms appearing in B1.

CN =E✏ sup
g∈G �

T

�
t=1 ✏t

�H(�g(xt(✏)), `t(✏)�) −H��v
N
t [✏, g], `t(✏)����

≤ E✏�
T

�
t=1 supg∈G �H(�g(xt(✏)), `t(✏)�) −H��v

N
t [✏, g], `t(✏)����

≤ (1 + 2⌘3)E✏�
T

�
t=1 supg∈G ��g(xt(✏)), `t(✏)� − �v

N
t [✏, g], `t(✏)���

≤ (1 + 2⌘3)E✏�
T

�
t=1�`t(✏)�1 supg∈G �g(xt(✏)) − v

N
t [✏, g]�∞�

≤ (1 + 2⌘3)max
✏

sup
g∈G max

t∈[T ]�g(xt(✏)) − v
N
t [✏, g]�∞ ⋅E✏�

T

�
t=1�`t(✏)�1�

≤ (1 + 2⌘3)e
2↵ ⋅E✏�

T

�
t=1�`t(✏)�1�.
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The first inequality uses that ✏t ∈ {±1}, while the second uses the Lipschitzness of H over [−1,+1].
The third and fourth are both applications of Hölder’s inequality, first to the `1�`∞ dual pairing, and
then to for the distributions over L1�L∞. Finally, the definition of the covering element vN

t —in
particular, that it is an L∞�`∞-cover—implies that the supremum term is bounded by "N ≤ e2 ⋅ ↵,
which yields the final bound.

C.2.8 Bounding Ci

Our goal is to bound

Ci = E✏ sup
g∈G �

T

�
t=1 ✏t

�H��vi+1
t [✏, g], `t(✏)�� −H��v

i
t[✏, g], `t(✏)����.

We define a class W of real-valued trees as follows. Let 1 ≤ a ≤ �V i
� and 1 ≤ b ≤ �V i+1

�, and fix an
arbitrary ordering va

∈ V i and vb
∈ V i+1 of the elements of V i

�V i+1. For each pair (a, b) define a
tree w(a,b) via

w(a,b)t (✏) = �
H��vb

t (✏), `t(✏)�� −H(�v
a
t (✏), `t(✏)�), ∃g ∈ G s.t. va

= v[✏, g]i,vb
= v[✏, g]i+1,

0, otherwise.

Then Ci is bounded by

E✏ sup
w∈W

T

�
t=1 ✏twt(✏).

Then Lemma 14 implies that for any fixed ⌘ > 0,

E✏ sup
w∈W�

T

�
t=1 ✏twt(✏) − ⌘w

2
t (✏)� ≤

log�W �

2⌘
.

Rearranging and applying subadditivity of the supremum, this implies

E✏ sup
w∈W

T

�
t=1 ✏twt(✏) ≤ ⌘ ⋅E✏ sup

w∈W
T

�
t=1w

2
t (✏) +

log�W �

2⌘
.

Optimizing over ⌘ (which is admissible because the statement above is a deterministic inequality)
leads to a further bound of

E✏ sup
w∈W

T

�
t=1 ✏twt(✏) ≤

�

�
��2E✏ sup

w∈W
T

�
t=1w

2
t (✏) ⋅ log�W �.

We proceed to bound each term in the square root. For the logarithmic term, by construction we have
�W � ≤ �V i

��V i+1
� ≤ �V i+1

�
2
=N∞,∞("i+1,G,x)2.

For the variance, let w(a,b) ∈W and the path ✏ be fixed. There are two cases: Either w(✏) = 0, or
there exists g ∈ G, such that va

= v[✏, g]i and vb
= v[✏, g]i+1. The former case is trivial while for the

latter, in a similar way to the bound for CN , we get
T

�
t=1w

(a,b)
t (✏)2 =

T

�
t=1
�H��vi+1

t [✏, g], `t(✏)�� −H��v
i
t[✏, g], `t(✏)���

2

≤ (1 + 2⌘3)
2

T

�
t=1
��vi+1

t [✏, g], `t(✏)� − �v
i
t[✏, g], `t(✏)��

2

≤ (1 + 2⌘3)
2

T

�
t=1�`t(✏)�

2
1�v

i+1
t [✏, g] − v

i
t[✏, g]�

2

∞

≤ (1 + 2⌘3)
2max

✏′ max
t∈[T ]�v

i+1
t [✏

′, g] − vi
t[✏
′, g]�2∞ ⋅

T

�
t=1�`t(✏)�

2
1.

Where we have used Lipschitzness of H in the first inequality and Hölder’s inequality in the second
and third.
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Finally, using the L∞�`∞ cover property of vi
[✏, g] and vi+1

[✏, g] and the triangle inequality, we
have

max
✏

max
t∈[T ]�v

i+1
t [✏, g] − v

i
t[✏, g]�∞

≤max
✏

max
t∈[T ]�v

i+1
t [✏, g] − g(xt(✏))�∞ +max

✏
max
t∈[T ]�g(xt(✏)) − v

i
t[✏, g]�∞

≤ "i + "i+1 ≤ 2"i.
We have just shown that for every sequence ✏ and every w(a,b) ∈ W , ∑T

t=1w(a,b)t (✏)2 ≤ 4(1 +

2⌘3)
2"2i ⋅∑

T
t=1�`t(✏)�21. It follows that

E✏ sup
w∈W

T

�
t=1wt(✏)

2
≤ 4(1 + 2⌘3)

2"2i ⋅E✏
T

�
t=1�`t(✏)�

2
1.

Plugging this bound back into the main inequality, we have shown

E✏ sup
w∈W

T

�
t=1 ✏twt(✏) ≤ 4e(1 + 2⌘3)"i+1

�

�
��E✏

T

�
t=1�`t(✏)�

2
1 ⋅ logN∞,∞("i+1,G,x).

C.2.9 Final bound on (��)

Collecting terms, we have shown that
(��)
≤ (1 + 2⌘3)e2↵ ⋅ E✏� T�

t=1
�`t(✏)�1� + 4e(1 + 2⌘3)

����E✏

T�
t=1
�`t(✏)�21 N−1�

i=1
"i+1
�
logN∞,∞("i+1,G,x) − E✏B1(`1∶T (✏)).

(10)

Following the standard Dudley chaining proof, we have
N−1
�

i=1
"i+1
�

logN∞,∞("i+1,G,x) ≤
N

�

i=1
"i
�

logN∞,∞("i,G,x) ≤ 2
N

�

i=1
("i − "i+1)

�

logN∞,∞("i,G,x)

≤ 2�
�

"N+1

�

logN∞,∞(",G,x)d" ≤ 2�
�

↵

�

logN∞,∞(",G,x)d"

≤ 2�
�

↵

�

logN∞,∞(",G, T )d".
Where we are using the definition of N , which implies that ↵ ≤ "N+1.

Now recall the definition of B1(`1∶T (✏)):

B1(`1∶T (✏)) = ⌘1
T

�
t=1�`t(✏)�1 + ⌘2

T

�
t=1�`t(✏)�

2
1

Taking ⌘1 ≥ (1 + 2⌘3)e2↵, the first term in B1 cancels out the first term in (10), leaving us with

(��) ≤ 8e(1 + 2⌘3)

�

�
��E✏

T

�
t=1�`t(✏)�

2
1 �

�

↵

�

logN∞,∞(",G, T )d" − ⌘2E✏
T

�
t=1�`t(✏)�

2
1

≤ 8e(1 + 2⌘3)�
⌘4
4
E✏

T

�
t=1�`t(✏)�

2
1 +

1

⌘4
��

�

↵

�

logN∞,∞(",G, T )d" − ⌘2E✏
T

�
t=1�`t(✏)�

2
1.

Where the last step applies for any ⌘4 > 0 by the AM-GM inequality. For any ⌘2 ≥ 8e(1 + 2⌘3)⌘4 ⋅

∫
�
↵

�
logN∞,∞(",G, T )d", the first and third terms cancel, leaving us with an upper bound of

(��) ≤
8e(1 + 2⌘3)

⌘4
�

�

↵

�

logN∞,∞(",G, T )d".

This term does not depend on the trees x or `, so we are done with (��).
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C.2.10 Final bound

Under the assumptions on ⌘1,⌘2,⌘3,⌘4,↵, and �, the bounds on (�) and (��) we have established
imply

V ≤ 2
1 + ⌘23
⌘3

logN∞,∞(��2,G, T ) + 8e(1 + 2⌘3)

⌘4
�

�

↵

�

logN∞,∞(",G, T )d".

The definition of V implies that there exists an algorithm with regret bounded by V +B(p1∶T , `1∶T )
on every sequence. The final regret inequality is

T

�
t=1Es∼pt�s, `t� − inf

g∈G
T

�
t=1�g(xt), `t�

≤ 2⌘3
T

�
t=1Es∼pt�s, `t�

2
+ 2

1 + ⌘23
⌘3

logN∞,∞(��2,G, T )

+ 8e(1 + 2⌘3)�
⌘4
4

T

�
t=1�`t�

2
1 +

1

⌘4
��

�

↵

�

logN∞,∞(",G, T )d" + (1 + 2⌘3)e2↵
T

�
t=1�`t�1.

To obtain the bound in the theorem statement, we rebind ⌘ = ⌘3,� = ⌘4 and use the assumption ⌘ ≤ 1.

C.3 Proofs for remaining results

Our bandit results require a generalization of Theorem 12 to the case where losses and the class G
may not be bounded by 1.

Corollary 16. Suppose we are in the setting of Theorem 12, but with the bounds �`�1 ≤ R for all
` ∈ L and �s�∞ ≤ B for all s ∈ S . For any constants ⌘ ∈ (0,1], � > 0, and � > ↵ > 0, there exists an
algorithm making predictions in S that attains a regret guarantee of

T�
t=1

Est∼pt�st, `t� − inf
g∈G

T�
t=1
�g(xt), `t� ≤ 2⌘

RB

T�
t=1

Est∼pt�st, `t�2 + 4RB

⌘
logN∞,∞(��2,G, T ) + 3e2↵ T�

t=1
�`t�1

+ 24e� �
4R

T�
t=1
�`t�21 + R

�
�� �

↵

�
logN∞,∞(",G, T )d".

Furthermore, if upper bounds ∑T
t=1�`t�21 ≤ V and ∑T

t=1Est∼pt�st, `t�
2
≤ Ṽ are known in advance, ⌘

and � can be selected to guarantee regret

T�
t=1

Est∼pt�st, `t� − inf
g∈G

T�
t=1
�g(xt), `t�

≤ 8�Ṽ ⋅ logN∞,∞(��2,T , T ) + 8RB logN∞,∞(��2,G, T )
+ 24e√V � �

↵

�
logN∞,∞(",G, T )d" + 3e↵ T�

t=1
�`t�1.

Proof of Corollary 16. Apply Theorem 12 with losses `t�R and class G�B. The preconditions of
the theorem are satisified, so it implies existence of an algorithm making predictions in S�B with
regret bound

1

R

T�
t=1

Est∼pt�st, `t� − 1

R
inf

g′∈G�B
T�
t=1
�g′(xt), `t� ≤ 2⌘

R2

T�
t=1

Est∼pt�st, `t�2 + 4

⌘
logN∞,∞(��2,G�B,T ) + 3e2↵

R

T�
t=1
�`t�1

+ 24e� �

4R2

T�
t=1
�`t�21 + 1

�
�� �

↵

�
logN∞,∞(",G�B,T )d".
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Rescaling both sides by BR and letting ŝt = st ⋅B (so ŝt ∈ S), this implies
T�
t=1

Eŝt∼pt�ŝt, `t� − inf
g∈G

T�
t=1
�g(xt), `t� ≤ 2⌘

RB

T�
t=1

Eŝt∼pt�ŝt, `t�2 + 4RB

⌘
logN∞,∞(��2,G�B,T ) + 3e2↵B T�

t=1
�`t�1

+ 24e��B
4R

T�
t=1
�`t�21 + RB

�
�� �

↵

�
logN∞,∞(",G�B,T )d".

≤ 2⌘

RB

T�
t=1

Eŝt∼pt�ŝt, `t�2 + 4RB

⌘
logN∞,∞(�B�2,G, T ) + 3e2↵B T�

t=1
�`t�1

+ 24e��B
4R

T�
t=1
�`t�21 + RB

�
�� �

↵

�
logN∞,∞("B,G, T )d".

Using a change of variables in the Dudley integral, we get

≤ 2⌘

RB

T�
t=1

Eŝt∼pt�ŝt, `t�2 + 4RB

⌘
logN∞,∞(�B�2,G, T ) + 3e2↵B T�

t=1
�`t�1

+ 24e� �
4R

T�
t=1
�`t�21 + R

�
�� �B

↵B

�
logN∞,∞(",G, T )d".

The final result follows by rebinding ↵′ = ↵B and �′ = �B.

For the second claim, apply the upper bounds to obtain
2⌘

RB
Ṽ +

4RB

⌘
logN∞,∞(��2,G, T ) + 3e2↵B

T

�
t=1�`t�1

+ 24e�
�

4R
V +

R

�
��

�

↵

�

logN∞,∞(✏,G, T )d✏.
Now set � = 2R�

√
V and ⌘ =

√
2RB

�

logN∞,∞(��2,G, T )�Ṽ ∧ 1 to obtain the claimed bound.
Note that the range term arises from the constraint that ⌘ ∈ (0,1].

Proof of Theorem 4. Recall that we use the reduction:

• Initialize full information algorithm whose existence is guaranteed by Theorem 12 with G = �� ○F :

• For time t = 1, . . . , T :

– Receive xt and define Pt(a) � Est∼pt

st(a)∑a′∈[K] st(a′) , where pt is the output of the full informa-
tion algorithm at time t.

– Sample action at ∼ P
µ
t and feed importance-weighted loss ˆ̀

t(a) = 1{at = a}`t(a)�Pµ
t (a)

into the full information algorithm.

With this setup, Corollary 16 guarantees that the following deterministic regret inequality holds for
every sequence of outcomes (i.e. for every sequence a1, . . . , aT sampled by the algorithm):

T�
t=1

Est∼pt�st, ˆ̀t� − inf
f∈F

T�
t=1
���(f(xt)), ˆ̀t�

≤ 2⌘

RB

T�
t=1

Est∼pt�st, ˆ̀t�2 + 4RB

⌘
logN∞,∞(��2,�� ○F , T ) + 3e2↵ T�

t=1
�ˆ̀t�1

+ 24e� �
4R

T�
t=1
�ˆ̀t�21 + R

�
�� �

↵

�
logN∞,∞(",�� ○F , T )d",

where the boundedness of the ramp loss implies B ≤ 1 and the smoothing factor µ in Pµ
t guarantees

R ≤ 1�µ. Taking expectation over the draw of a1, . . . , aT , for any fixed f ∈ F we obtain the inequality

E� T�
t=1

Est∼pt�st, ˆ̀t� − T�
t=1
���(f(xt)), ˆ̀t��

≤ E� 2⌘
1�µ

T�
t=1

E�Est∼pt�st, ˆ̀t�2 � Jt� + 4

⌘µ
logN∞,∞(��2,�� ○F , T ) + 3e2↵ T�

t=1
E��ˆ̀t�1 � Jt�

+ 24e� �

4�µ
T�
t=1

E��ˆ̀t�21 � Jt� + 1

�µ
�� �

↵

�
logN∞,∞(",�� ○F , T )d"�,
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where the filtration Jt is defined as in Lemma 3. Using that the importance weighted losses are
unbiased, we have that the left-hand side is equal to

E�
T

�
t=1Est∼pt�st, `t� −

T

�
t=1��

�
(f(xt)), `t��.

We also have the following three properties, where the first two use that ˆ̀t is 1-sparse, and the last
follows from Lemma 3:

1. E��ˆ̀t�1 � Jt� = ∑a∈[K] Pµ
t (a)

ˆ̀
t(a) = ∑a∈[K] `t(a) ≤K.

2. E��ˆ̀t�
2

1
� Jt� = ∑a∈[K] Pµ

t (a)
ˆ̀2
t (a) = ∑a∈[K] `t(a)Pµ

t (a) ≤
K
µ .

3. E�Est∼pt�st, ˆ̀t�
2
� Jt� ≤K

2.

Together, these facts yield the bound

E� T�
t=1

Est∼pt�st, `t� − T�
t=1
���(f(xt)), `t�� ≤ 2⌘

1�µK
2
T + 4

⌘µ
logN∞,∞(��2,�� ○F , T ) + 3e2↵KT

+ 24e��KT

4
+ 1

�µ
�� �

↵

�
logN∞,∞(",�� ○F , T )d".

Optimizing ⌘ and � (as in the proof of the second claim of Corollary 16) leads to a bound of

E� T�
t=1

Est∼pt�st, `t� − T�
t=1
���(f(xt)), `t��

≤ 4�2K2T logN∞,∞(��2,�� ○F , T ) + 8

µ
logN∞,∞(��2,�� ○F , T )

+ 3e2↵KT + 24e
�

KT

µ
� �

↵

�
logN∞,∞(",�� ○F , T )d".

Since �� is 1
� -Lipschitz with respect to the `∞ norm (as a coordinate-wise mapping from RK to RK ),

we can upper bound in terms of the covering numbers for the original class:

E� T�
t=1

Est∼pt�st, `t� − T�
t=1
���(f(xt)), `t�� ≤ 4�2K2T logN∞,∞(���2,F , T ) + 8

µ
logN∞,∞(���2,F , T )

+ 3e2↵KT + 24e
�

KT

µ
� �

↵

�
logN∞,∞(�",F , T )d".

Using a change of variables and the reparameterization ↵′ = ↵�, �′ = ��, the right hand side equals

4
�
2K2T logN∞,∞(�′�2,F , T ) + 8

µ
logN∞,∞(�′�2,F , T )
+ 1

�

�
�3e2↵KT + 24e

�
KT

µ
� �′

↵′
�
logN∞,∞(",F , T )d"��.

Lastly, via Lemma 1, we have

T

�
t=1Est∼pt�st, `t� ≥

T

�
t=1Est∼pt

∑a∈[K] st(a)`t(a)
∑a∈[K] st(a) =

T

�
t=1Eat∼Pt `t(at).

Finally, the definition of the smoothed distribution Pµ
t and boundedness of ` immediately implies

T

�
t=1Eat∼Pt `t(at) ≥

T

�
t=1Eat∼Pµ

t
`t(at) − µKT.

Proof of Proposition 5. Suppose logN∞,∞(",F , T )∝ "−p.
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• When p ≥ 2, it suffices to set � = rad∞,∞(F , T ), µ = (KT )−1�(p+1)�−p�(p+1), and ↵ =
1�(KTµ)1�p in Theorem 4 to obtain Õ�(KT ��)p�(p+1)� .

• When p ∈ (0,2], it suffices to set ↵ = 1�(KT ), µ = (KT )−2�(p+4)�−2p�(4+p), and � =
�2�(2+p)�(KTµ)1�(2+p) in Theorem 4 to obtain Õ�(KT )(p+2)�(p+4)�−2p�(p+4)�.

For the parametric case, set ↵ = � = ��KT and µ =
�

d log(KT ��)�KT to conclude the bound.

Similarly, in the finite class case, set ↵ = � = 0 and µ =
�

log�⇧��KT .

Proof of Example 3. Let F �a = {x� f(x)a � f ∈ F}. Then clearly it holds that
logN∞,∞(",F , T ) ≤ �

a∈[K]
logN∞(",F �a, T ) ≤K max

a∈[K] logN∞(",F �a, T ),
where have dropped the second “∞” subscript on the right-hand side to denote that this is the covering
number for a scalar-valued class. Let a� be the action that obtains the maximum in this expression.
Returning to the integral expression in Theorem 4, we have just shown an upper bound of

3e2↵KT + 24eK

�
T

µ �
�

↵

�

logN∞(",F �a� , T )d".
For any scalar-value function class G ⊆ (X → [0,1]), define

R(G, T ) = sup
x

E✏ sup
g∈G

T

�
t=1 ✏tg(xt(✏)).

Following the proof of Lemma 9 in Rakhlin et al. [42], by choosing � = 1 and ↵ = 2R(F �a� , T )�T ,
we may upper bound the L∞ covering number by the sequential Rademacher complexity (via
fat-shattering), to obtain

6eKR(F �a� , T ) + 96
√
2eK

�
1

µ
R(F �a� , T )�

1

2R(F �a� ,T )�T
1

"

�

log(2eT �")d".

Using straightforward calculation from the proof of Lemma 9 in Rakhlin et al. [42], this is upper
bounded by

O�
K
√
µ
R(F �a� , T ) log3�2(T �R(F �a� , T ))�.

Returning to the regret bound in Theorem 4, we have shown an upper bound of

O�
K

�
√
µ
R(F �a� , T ) log3�2(T �R(F �a� , T )) + µKT�,

where we have used that logN∞(1,F �a� , T ) = 0 under the boundedness assumption on F . Setting
µ∝ (R(F �a� , T )�(T�))2�3 yields the result.

Proof of Example 4. This is an immediate consequence of Example 3 and that Banach spaces for
which the martingale type property holds with constant � have sequential Rademacher complexity
O(
√
�T ) [45].

C.4 Additional results

Here we briefly state an analogue of Theorem 4 for the hinge loss. Note that this bound leads to the
same exponents for T as Theorem 4, but has worse dependence on the margin � and depends on the
scale parameter B explicitly.
Theorem 17 (Contextual bandit chaining bound for hinge loss). For any fixed constants � > ↵ > 0,
hinge loss parameter � > 0, and smoothing parameter µ ∈ (0,1�K] there exists an adversarial
contextual bandit strategy (Pt)t≤T with expected regret bounded as

E� T�
t=1
`t(at)� ≤ 1

K

������� inff∈F E� T�
t=1
� �(f(xt)), `t�� + 1

�

�
2K2B2T logN∞,∞(��2,F , T ) + µBK

2
T

+ 8B

�µ
logN∞,∞(��2,F , T ) + 1

�

�
�3e↵KT + 24e

�
KT

µ
� �

↵

�
logN∞,∞(",F , T )d"��

�������,
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where we recall B = supf∈F supf∈X �f(x)�∞.

D Analysis of HINGE-LMC

This appendix contains the proofs of Theorem 6 and the corresponding corollaries. The proof has
many ingredients which we compartmentalize into subsections. First, in Subsection D.1, we analyze
the sampling routine, showing that Langevin Monte Carlo can be used to generate a sample from an
approximation of the exponential weights distribution. Then, in Subsection D.2, we derive the regret
bound for the continuous version of exponential weights. Finally, we put the components together
together, instantiate all parameters, and compute the final regret and running time in Subsection D.3.
The corollaries are straightforward and proved in Subsection D.4

To begin, we restate the main theorem, with all the assumptions and the precise parameter settings.
Theorem 18. Let F be a set of functions parameterized by a compact convex set ⇥ ⊂ Rd that
contains the origin-centered Euclidean ball of radius 1 and is contained within a Euclidean ball of
radius R. Assume that f(x; ✓) is convex in ✓ for each x ∈ X , and that supx,✓ �f(x; ✓)�∞ ≤ B, that
f(x, a; ✓) is L-Lipschitz as a function of ✓ with respect to the `2 norm for each x, a. For any �, if we
set

⌘ =

�

d�2 log(RLTK��)

5K2B2T
, µ =

�

1

K2T
, M =

√

T ,

in HINGE-LMC, and further set

u =
1

T 3�2LB`R⌘
√
d
, � =

1

8T 1�2R3
, ↵ =

R2

N
,

N = Õ�R18L12T 6d12 +
R24L48d12

K24
�, m = Õ �T 3dR4L2B2

` (K�)
−2
� ,

in each call to Projected LMC, then HINGE-LMC guarantees

T

�
t=1E`t(at) ≤min

✓∈⇥
T

�
t=1E�`t, 

�
(f(xt; ✓))� +

√
T

�
+

2d

K⌘
log(RLTK��) +

10⌘

�2
B2KT

≤min
✓∈⇥

T

�
t=1E�`t, 

�
(f(xt; ✓))� + Õ �

B

�

√

dT� .

Moreover, the running time of HINGE-LMC is Õ�R
22L14d14B2

`T
10

K2�2 +
R28L50d14B2

`T
4

K26�2 �.

D.1 Analysis of the sampling routine

In this section, we show how Projected LMC can be used to generate a sample from a distribution
that is close to the exponential weights distribution. Define

F (✓) = ⌘
t

�
⌧=1�

˜̀
⌧ , 

�
(f(x⌧ ; ✓))�, P (✓)∝ exp(−F (✓)). (11)

We are interested in sampling from P (✓).

Let us define the Wasserstein distance. For random variables X,Y with density µ, ⌫ respectively

W1(µ, ⌫) � inf
⇡∈�(µ,⌫)� �X − Y �2d⇡(X,Y ) = sup

f ∶Lip(f)≤1 �� f(dµ(X) − d⌫(Y ))� .

Here �(µ, ⌫) is the set of couplings between the two densities, that is the set of joint distributions
with marginals equal to µ, ⌫. Lip(f) is the set of all functions that are 1-Lipschitz with respect to `2.

Theorem 19. Let ⇥ ⊂ Rd be a convex set containing a Euclidean ball of radius r = 1 with center
0, and contained within a Euclidean ball of radius R. Let f ∶ X × ⇥ → RK=0 be convex in ✓
with fa(x; ⋅) being L-Lipschitz w.r.t. `2 norm for each a ∈ A. Assume �˜̀⌧�1 ≤ B` and define
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Algorithm 3 Smoothed Projected Langevin Monte Carlo for (11)
Input: Parameters m,u,�,N,↵.
Set ✓̃0 ← 0 ∈ Rd

for k = 1, . . . ,N do
Sample z1, . . . , zm

iid
∼ N (0, u2Id) and form the function

F̃k(✓) =
1

m

m

�

i=1
F (✓ + zi) +

�

2
�✓�22.

Sample ⇠k ∼N (0, Id) and update

✓̃k ← P⇥ �✓̃k−1 − ↵
2
∇F̃k(✓̃k−1) +√↵⇠k� .

end for
Return ✓̃N .

F and P as in (11). Let a target accuracy ⌧ > 0 be fixed. Then Algorithm 3 with parameters
m,N,�, u,↵ ∈ poly(1�⌧, d,R, ⌘,B`, L) generates a sample from a distribution P̃ satisfying

W1(P̃ , P ) ≤ ⌧.

Therefore, the algorithm runs in polynomial time.

The precise values for each of the parameters m,N,u,�,↵ can be found at the end of the proof,
which will lead to a setting of ⌧ in application of the theorem.

Towards the proof, we will introduce the intermediate function F̂ (✓) = EZF (✓ +Z) +
�
2 �✓�

2
2, where

Z is a random variable with distribution N (0, u2Id). This is the randomized smoothing technique
studied by Duchi, Bartlett and Wainwright [19]. The critical properties of this function are

Proposition 20 (Properties of F̂ ). Under the assumptions of Theorem 19, The function F̂ satisfies

1. F (✓) ≤ F̂ (✓) ≤ F (✓) + ⌘TB`Lu
√
d�� + �

2R
2.

2. F̂ (✓) is ⌘TB`L�� + �R-Lipschitz with respect to the `2 norm.

3. F̂ (✓) is continuously differentiable and its gradient is ⌘TB`L
u� + �-Lipschitz continuous with

respect to the `2 norm.

4. F̂ (✓) is �-strongly convex with respect to the `2 norm.

5. E∇F (✓ +Z) = ∇F̂ (✓).

Proof. See Duchi et al. [19, Lemma E.3] for the proof of all claims, except for claim 4, which is an
immediate consequence of the `2 regularization term.

Using property 1 in Proposition 20 and setting "1 � ⌘TB`Lu
√
d�� + �R2, we know that

e−"1 exp(−F (✓) ≤ exp(−F̂ (✓)) ≤ exp(−F (✓)),
pointwise. Therefore, defining P̂ to be the distribution with density p̂(✓) = exp(−F̂ (✓))�Ẑ, where
Ẑ = ∫ exp(−F̂ (✓))d✓, we have

TV (P �� P̂ ) = �
e−F (✓)
Z

�����������

e−F̂ (✓)+F (✓)
Ẑ�Z

− 1
�����������

d✓ ≤ e"1 − 1 ≤ 2"1,

for "1 ≤ 1. This shows that P̂ approximates P well when u and � are sufficiently small. The next
lemma further shows that the F̃k functions themselves approximate F̂ well.
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Lemma 21 (Properties of F̃k). For any fixed ✓, k ∈ [N], and constant "2 > 0,

P��∇F̂ (✓) −∇F̃k(✓)�2 ≥ "2 +
2
√
m
⋅
⌘TB`L

�
� ≤ exp�

−4"22�
2m

(⌘TLB`)2
� .

Proof of Lemma 21. Let k be fixed. Since F̃k are identically distributed for all k we will henceforth
abbreviate to F̃ .

We proceed using a crude concentration argument. Observe that by Proposition 20, E∇F̃ (✓) = ∇F̂ (✓)
and moreover ∇F̃ (✓) is a sum of m i.i.d., vector-valued random variables (plus the deterministic
regularization term).

Via the Chernoff method, for any fixed ✓, we have

P ��∇F̃ (✓) −∇F̂ (✓)�2 ≥ t� ≤ inf
�>0 exp(−t�)E exp(��∇F̃ (✓) −∇F̂ (✓)�2)

Using the sum structure and symmetrizing:

≤ inf
�>0 exp(−t�)Ez1∶m E✏ exp�2��

1

m

m

�

i=1
✏t∇G(✓ + zi)�

2

�,

where G(✓) = ⌘∑t
⌧=1�˜̀⌧ , �(f(x⌧ ; ✓))�. Condition on z1∶m and let W (✏) =

�
1
m ∑

m
i=1 ✏i∇G(✓ + zi)�2. Then for any i,

�W (✏1, . . . , ✏i, . . . , ✏m) −W (✏1, . . . ,−✏i, . . . , ✏m)� ≤
1

m
�∇G(✓ + zi)�2

≤
⌘

m

t

�
⌧=1
�˜̀⌧�1�∇ 

�
(f(x⌧ ; ✓ + zi))a�2

≤
⌘TB`L

m�
.

By the standard bounded differences argument (e.g. [11]), this implies that W −EW is subgaussian

with variance proxy �2
=

1
4m�

⌘TB`L
� �

2
. Furthermore, the standard application of Jensen’s inequality

implies that EW ≤ 2�.

Returning to the upper bound, these facts together imply

E✏ exp�2��
1

m

m

�

i=1
✏t∇G(✓ + zi)�

2

� ≤ exp(2�2�2
+ 4��).

The final bound is therefore,

P ��∇F̃ (✓) −∇F̂ (✓)�2 ≥ t� ≤ inf
�>0 exp(−t� + 2�

2�2
+ 4��).

Rebinding t = t′ + 4� for t′ ≥ 0, we have

P ��∇F̃ (✓) −∇F̂ (✓)�2 ≥ t′ + 4�� ≤ inf
�>0 exp(−t

′� + 2�2�2
) = exp(−(t′)2�8�2

).

Now, for the purposes of the proof, suppose we run the Projected LMC algorithm on the function F̂ ,
which generates the iterate sequence ✓̂0 = 0

✓̂k ← P⇥ �✓̂k−1 − ↵
2
∇F̂ (✓̂k−1) +√↵⇠k� .

Owing to the smoothness of F̂ , we may apply the analysis of Projected LMC due to Bubeck,
Eldan, and Lehec [12] to bound the total variation distance between the random variable ✓̂N and the
distribution with density proportional to exp(−F̂ (✓)).
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Theorem 22 ([12]). Let P̂ be the distribution on ⇥ with density proportional to exp(−F̂ (✓)). For
any " > 0 and with ↵ = ⇥̃(R2

�N), we have TV (✓̂N , P̂ ) ≤ " with

N ≥ ⌦̃�
R6max{d,R⌘TB`L�� +R

2�,R(⌘TB`L�(u�) + �)}
12

"12
� .

This specializes the result of Bubeck et al. [12] to our setting, using the Lipschitz and smoothness
constants from Proposition 20.

Unfortunately, since we do not have access to F̂ in closed form, we cannot run the Projected LMC
algorithm on it exactly. Instead, Algorithm 3 runs LMC on the sequence of approximations F̃k and
generates the iterate sequence ✓̃k. The last step in the proof is to relate our iterate sequence ✓̃k to a
hypothetical iterate sequence ✓̂k formed by running Projected LMC on the function F̂ .
Lemma 23. Let "2 be fixed. Assume the conditions of Theorem 19—in particular that

m ≥ 16(⌘TLB`��)
2 log(4R�↵"2)�"

2
2, ↵ ≤ 2(⌘TB`L�(u�) + �)

−1.
Then for any k ∈ [N] we have

W1(✓̂k, ✓̃k) ≤ k↵"2.

Proof of Lemma 23. The proof is by induction, where the base case is obvious, since ✓̂0 = ✓̃0. Now,
let ⇡�k−1 denote the optimal coupling for ✓̃k−1, ✓̂k−1 and extend this coupling in the obvious way by
sampling z1, . . . , zm i.i.d. and by using the same gaussian random variable ⇠k in both LMC updates.
Let Ek = {z1∶m ∶ �∇F̃ (✓̃k−1) − ∇F̂ (✓̃k−1)� ≤ "2 + "′}, where "′ � 2√

m
⋅
⌘TB`L
� ; this is the “good”

event in which the samples provide a high-quality approximation to the gradient at ✓̃k−1. We then
have
W1(✓̂k, ✓̃k)

= inf
⇡∈�(✓̂k,✓̃k)� �✓̂k − ✓̃k�2d⇡

≤ � Ez1∶m(1{Ek} + 1{ECk })�P⇥(✓̂k−1 − ↵
2
∇F̂ (✓̂k−1) −√↵⇠k) −P⇥(✓̃k−1 − ↵

2
∇F̃ (✓̃k−1) −√↵⇠k)�2d⇡�k−1

≤ � Ez1∶m1{Ek}�✓̂k−1 − ↵
2
∇F̂ (✓̂k−1) − (✓̃k−1 − ↵

2
∇F̃ (✓̃k−1))�2d⇡�k−1 + 2R� P[ECk−1]d⇡�k−1

≤ � Ez1∶m1{Ek}�✓̂k−1 − ↵
2
∇F̂ (✓̂k−1) − (✓̃k−1 − ↵

2
∇F̃ (✓̃k−1))�2d⇡�k−1 + 2R exp�

−4"22�
2m

(⌘TLB`)2
� .

The first inequality introduces the potentially suboptimal coupling ⇡�k−1. In the second inequality
we first use that the projection operator is contractive, and we also use that the domain is contained
in a Euclidean ball of radius R, providing a coarse upper bound on the second term. For the third
inequality, we apply the concentration argument in Lemma 21. Working just with the first term, using
the event in the indicator, we have

� Ez1∶m1{Ek}�✓̂k−1 − ↵
2
∇F̂ (✓̂k−1) − (✓̃k−1 − ↵

2
∇F̃ (✓̃k−1))�2d⇡�k−1

≤ � �✓̂k−1 − ↵2∇F̂ (✓̂k−1) − (✓̃k−1 −
↵

2
∇F̂ (✓̃k−1))�2d⇡�k−1 + ↵("2 + "

′
)

2
.

Now, observe that we are performing one step of gradient descent on F̂ from two different starting
points, ✓̂k−1 and ✓̃k−1. Moreover, we know that F̂ is smooth and strongly convex, which implies that
the gradient descent update is contractive. Thus we will be able to upper bound the first term by
W1(✓̂k−1, ✓̃k−1), which will lead to the result.

Here is the argument. Consider two arbitrary points ✓, ✓′ ∈ ⇥. Let G ∶ ✓ → ✓ −↵�2∇F̂ (✓) be a vector
valued function, and observe that the Jacobian is I − ↵�2∇2F̂ (✓). By the mean value theorem, there
exists ✓′′ such that

�✓ −
↵

2
∇F̂ (✓) − (✓′ − ↵

2
∇F̂ (✓′))�2 ≤ �(I − ↵�2∇2F̂ (✓′′))(✓ − ✓′)�2

≤ �I − ↵�2∇2F̂ (✓′′)���✓ − ✓′�2.
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Now, since F̂ is �-strongly convex and ⌘TB`L�u + � smooth, we know that all eigenvalues of
∇

2F̂ (✓′′) are in the interval [�, ⌘TB`L�(u�) + �]. Therefore, if ↵ ≤ 2(⌘TB`L�(u�) + �)−1 ≤ 1��,
the spectral norm term here is at most 1, implying that gradient descent is contractive. Thus, we get

W1(✓̂k, ✓̃k) ≤ � �✓̂k−1 − ✓̃k−1�2d⇡�k−1 + ↵("2 + "
′
)

2
+ 2R exp�

−4"22�
2m

(⌘TLB`)2
�

≤W1(✓̂k−1, ✓̃k−1) + ↵
2
"2 +

↵
√
m
⋅
⌘TB`L

�
+ 2R exp�

−4"22�
2m

(⌘TLB`)2
� .

The choice of m ensures that the second and third term together are at most ↵"2, from which the
result follows.

Fact 24. For any two distributions µ, ⌫ on ⇥, we have
W1(µ, ⌫) ≤ R ⋅ TV (µ, ⌫).

Proof. We use the coupling characterization of the total variation distance:

W1(µ, ⌫) = inf
⇡
� �✓ − ✓

′
�2d⇡ ≤ diam(⇥) inf

⇡
P⇡[✓ ≠ ✓′] ≤ R ⋅ TV (µ, ⌫).

Proof of Theorem 19. By the triangle inequality and Fact 24 we have

W1(✓̃N , P ) ≤W1(✓̃N , ✓̂N) +R ⋅ �TV (✓̂N , P̂ ) + TV (P̂ , P )� .

The first term here is the Wasserstein distance between our true iterates ✓̃N and the idealized iterates
from running LMC on F̂ , which is controlled by Lemma 23. The second is the total variation distance
between the idealized iterates and the smoothed density P̂ , which is controlled in Theorem 22. Finally,
the third term is the approximation error between the smoothed density P̂ and the true, non-smooth
one P . Together, for any choice of " > 0 and "2 > 0 we obtain the bound

W1(✓̃N , P ) ≤ N↵"2 +R" + 2R(⌘TB`Lu
√

d�� + �R2
), (12)

under the requirements

N ≥
c0R

6max{d,R⌘TB`L�� +R
2�,R(⌘TB`L�(u�) + �)}

12

"12
, (13)

m ≥
16(⌘TLB`��)

2 log(4R�↵"2)

"22
.

There are also two requirements on ↵, one arising from Theorem 22 and the other from Lemma 23.
These are:

↵ ≤ 2(⌘TB`L�(u�) + �)
−1, and ↵ = c1R

2
�N, (14)

for any constant c1.

Returning to the error bound, if we set

u =
⌧

8R⌘TB`L
√
d
, and � =

⌧

8R3
,

the last term in (12) is at most ⌧�2.

We will make the choice ↵ = c1R2
�N . In this case, the values for u and � above, combined with the

inequality (14) give the constraint

N ≥ 2c1R
2
⋅ �

8(⌘TLB`)
2R
√
d

�⌧
+

⌧

8R2
�. (15)

Now for the first term in (12), plug in the choice ↵ = c1R2
�N and set "2 = ⌧�(4c1R2

) so that this
term is at most ⌧�4. For the second term, set " = ⌧�(4R) so that this term is also at most ⌧�4. With
these choices, the requirements on m and N become:

m ≥
64c21R

4
(⌘TB`��)

2 log(⌧�(16RN))

⌧2
, and N ≥ c′0R18max{d, (R⌘TB`L��)

2
√

d�⌧}12�⌧12,

where we have noted that the first constraint (13) clearly implies the second constraint (15), and this
proves the theorem.
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D.2 Continuous exponential weights.

The focus of this section of the appendix is Lemma 25, which analyzes a continuous version of
the Hedge/exponential weights algorithms in the full information setting. This lemma appears in
various forms in several places, e.g. [13]. For the setup, consider an online learning problem with a
parametric benchmark class F = {f(⋅; ✓) � ✓ ∈ ⇥} where f(⋅; ✓) ∈ (X → RK=0) and further assume
that ⇥ ∈ Rd contains the centered Euclidean ball of radius r = 1 and is contained in the Euclidean ball
of radius R. Finally, assume that f(x; ⋅)a is L-Lipschitz with respect to `2 norm in ✓ for all x ∈ X .
On each round t an adversary chooses a context xt ∈ X and a loss vector `t ∈ RK+ , the learner then
choose a distribution pt ∈�(F) and suffers loss:

Ef∼pt�`t, 
�
(f(xt))�.

The entire loss vector `t is then revealed to the learner. Here, performance is measured via regret:

Regret(T,F) �
T

�
t=1Ef∼pt�`t, 

�
(f(xt))� − inf

f∈F
T

�
t=1�`t, 

�
(f(xt))�.

Our algorithm is a continuous version of exponential weights. Starting with w0(f) � 0, we perform
the updates:

pt(f) =
exp(−⌘wt(f))

∫F exp(−⌘wt(f))d�(f)
, and wt+1(f) = wt(f) + �`t, 

�
(f(xt))�.

Here ⌘ is the learning rate and � is the Lebesgue measure on F (identifying elements f ∈ F with
their representatives ✓ ∈ Rd).

With these definitions, the continuous Hedge algorithm enjoys the following guarantee.
Lemma 25. Assume that the losses `t satisfy �`t�∞ ≤ B`, ⇥ ⊂ Rd is contained within the Euclidean
ball of radius R, and f(x; ⋅)a is L-Lipschitz continuous in the third argument with respect to `2. Let
the margin parameter � be fixed. Then the continuous Hedge algorithm with learning rate ⌘ > 0
enjoys the following regret guarantee:

Regret(T,F) ≤ inf
">0�

TKB`"

�
+
d

⌘
log(RL�") +

⌘

2

T

�
t=1Ef∼pt�`t, 

�
(f(xt))�

2
� .

Proof. Following the standard analysis for continuous Hedge (e.g. Lemma 10 in [32]), we know that
the regret to some benchmark distribution Q ∈�(F) is

T

�
t=1(Ef∼pt −Ef∼Q)(�`t, �(f(xt))� =

KL(Q �� p0) −KL(Q �� pT )

⌘
+
1

⌘

T

�
t=1KL(pt−1 �� pt).

For the KL terms, using the standard variational representation, we have

KL(pt−1 �� pt) = logEf∼pt−1 exp�−⌘�`t, �(f(xt)) −Ef∼pt−1 �(f(xt))��

≤ log
�

�
1 +

⌘2

2
Ef∼pt−1�`t, �(f(xt)) −Ef∼pt−1 �(f(xt))�

2
�

�

≤
⌘2

2
Ef∼pt−1�`t, �(f(xt))�

2.

Here the first inequality is e−x ≤ 1 − x + x2
�2, using that the term inside the exponential is centered.

The second inequality is log(1 + x) ≤ x.

Using non-negativity of KL, we only have to worry about the KL(Q �� p0) term. Let f� be the
minimizer of the cumulative hinge loss. Let ✓� ∈ ⇥ be a representative for f� and let Q be the
uniform distribution on F"(✓�, x1∶T ) � {✓ ∶maxt∈[T ] �f(xt; ✓) − f(xt; ✓

�
)�∞ ≤ "}, then we have

KL(Q �� p0) = �
f
q(f) log(q(f)�p0(f))d�(f) = � dQ(f) ⋅ log ∫F d�(f)

∫F"
d�(f)

= log
Vol(F)

Vol(F"(✓�, x1∶T ) ,
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where Vol(S) denotes the Lebesgue integral. We know that Vol(⇥) ≤ cdRd where cd is the Lebesgue
volume of the unit Euclidean ball and R is the radius of the ball containing ⇥, and so we must lower
bound the volume of F"(f�, x1∶T ). For this step, observe that by the Lipschitz-property of f ,

sup
x∈X �f(x; ✓) − f(x; ✓

�
)�∞ ≤ L�✓ − ✓��2,

and hence F"(✓�, x1∶T ) ⊃ B2(✓
�, "�L). Thus the volume ratio is

Vol(F)
Vol(F"(✓�, x1∶T )) ≤

cdR
d

cd("�L)d
= (RL�")d.

Finally, using the fact that the hinge surrogate is 1��-Lipschitz, we know that

T

�
t=1Ef∼Q�`T , �(f(xt)) − 

�
(f�(xt))� ≤ TB` sup

t∈[T ],f∈supp(Q) � 
�
(f(xt)) −  

�
(f�(xt))�1

≤
TKB`"

�
.

D.3 From full information to bandits.

We now combine the results of Subsection D.1 and Subsection D.2 to give the final guarantee for
HINGE-LMC.

We begin by translating the regret bound in Lemma 25, followed by many steps of approximation.
At round t, let Pt denote the Hedge distribution on ⇥ using the losses ˜̀

1∶t−1. Let P̃t denote the
distribution from which ✓t ∈ ⇥ is sampled in Algorithm 3.

Let pt ∈�(A) denote the induced distributions on actions induced by Pt, i.e. the distribution induced
by the process ✓ ∼ Pt, pt(a)∝  �(f(xt; ✓)). Likewise, let ∼ pt ∈�(A) be the distribution induced
by ✓ ∼ P̃t, p̃t(a)∝  �(f(xt; ✓)); in this notation p̃µt is precisely the distribution from which actions
are sampled in Algorithm 1.

Recall that we use µ in the superscript to denote smoothing (e.g. pµt ). Let mt denote the random
variable sampled at round t to approximate the importance weight.

We also let ˆ̀t(a) =
`t(a)
p̃µ
t (a)1{at = a} denote estimated losses under the true importance weights, which

are not explicitly used by Algorithm 1 but are used in the analysis.

Let 1a ∈ RK be the vector with 1 at coordinate a and 0 at all other coordinates.

Proof of Theorem 18. The thrust of this proof is to show that the full information bound in
Lemma 25 does not degrade significantly under importance weighting and under the approximate
LMC implementation of continuous exponential weights.
Variance control Controlling the variance term in Lemma 25 requires an application of Lemma 3.
After taking conditional expectations, the variance term is

T

�
t=1E✓∼PtEat∼p̃µ

t
Emt�

˜̀
t, 

�
(f(xt; ✓))�

2
=

T

�
t=1Es∼PtEat∼p̃µ

t
Emtm

2
t �`t(at)1at , s�

2.

Here we are identifying s with  �(f(xt; ✓)) and marginalizing out ✓ in the outermost expectation.
Note that this is the same definition of s as in Lemma 3.

First let us handle the mt random variable. Note that conditional on everything up to round t and
at, mt is distributed according to a geometric distribution with mean p̃µt (at), truncated at M . It is
straightforward (cf. [33]) to show that mt is stochastically dominated by a geometric random variable
with mean 1

p̃µ
t (at) and hence the second moment of this random variable is at most 2

p̃µ
t (at)2 . Thus, we
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are left with

≤ 2
T

�
t=1Es∼PtEat∼p̃µ

t

1

p̃µt (at)
2
�`t(at)1at , s�

2

= 2
T

�
t=1Es∼PtEat∼p̃µ

t
�ˆ̀t, s�

2

≤ 2
T

�
t=1(Es∼P̃t

−Es∼Pt)Eat∼p̃µ
t
�ˆ̀t, s�

2
+Es∼P̃t

Eat∼p̃µ
t
�ˆ̀t, s�

2.

We can apply Lemma 3 on the second term, since the only condition for the lemma is that the action
distribution is induced from the distribution in the outer expectation. It follows that this term is
bounded as

T

�
t=1Es∼P̃t

Eat∼p̃µ
t
�ˆ̀t, s�

2
≤ TK2

(1 +B��)2.

For the first term, evaluating the inner expectation, using the fact that p̃µt (a) ≥ µ and applying the
Lipschitz properties of  �(⋅), f(x; ⋅) (in particular that f(x; ⋅) is L-Lipschitz with respect to `2 and
that the Wasserstein distance we work with is defined relative to `2) we have

(Es∼P̃t
−Es∼Pt)Eat∼p̃µ

t
�ˆ̀t, s�

2
=�

a

(E✓∼P̃t
−E✓∼Pt)

`2t (a)

p̃µt (a)
 �(f(xt; ✓)a)

2

≤ 2
(1 +B��)KL

�µ
sup

g,�g�Lip≤1
�� g(dPt − dP̃t)� = 2

(1 +B��)KL

�µ
W1(Pt, P̃t).

Finally, using the Wasserstein guaranteeW1(Pt, P̃t) ≤ ⌧ from Theorem 19, we conclude that the
cumulative variance term is upper bounded as

T

�
t=1E�

˜̀
t, 

�
(f(xt; ✓))�

2
≤
4(1 +B��)KTL⌧

�µ
+ 2(1 +B��)2K2T.

Bounding regret We first relate the cumulative loss under Algorithm 1 to the cumulative loss of
continuous exponential weights. Observe that

T

�
t=1�`t, p̃

µ
t � ≤ µKT +

T

�
t=1�`t, p̃t�

≤ µKT +
1

K

T

�
t=1E✓∼P̃t

�`t, 
�
(f(xt; ✓))�

≤ µKT +
TL⌧

�
+

1

K

T

�
t=1E✓∼Pt�`t, 

�
(f(xt; ✓))�.

This first inequality is a straightforward consequence of smoothing, while the second is a direct
application of Lemma 1.

The third inequality is based on the fact that �`t, �(f(xt; ✓))� is KL��-Lipschitz in ✓ with respect
to `2 norm under our assumptions. This step also uses the Wasserstein guarantee in Theorem 19
which produces the approximation factor ⌧ .

Following the analysis in [33] and using the boundedness of  � , the bias introduced due to using
geometric resampling with truncation at M instead of exact inverse propensity scores is

T

�
t=1E✓∼Pt�`t, 

�
(f(xt; ✓))� ≤ Ea1∶T ,m1∶T

T

�
t=1E✓∼Pt�

˜̀
t, 

�
(f(xt; ✓))� +

T (1 +B��)

eM
.

For the remaining term, we apply Lemma 25 with " = ��(TKM), since M is an upper bound on the
norm �˜̀t�1 of the losses to the full information algorithm.

Ea1∶T ,m1∶T
T

�
t=1E✓∼Pt�

˜̀
t, 

�
(f(xt; ✓))�

≤ E inf
✓∈⇥

T

�
t=1�

˜̀
t, 

�
(f(xt, ✓))� + 1 +

d

⌘
log(RLTKM��) + ⌘ �

(1 +B��)KTL⌧

�µ
+ (1 +B��)2K2T� .

36



The first term here is the benchmark we want to compare to, since E inf(⋅) ≤ inf E[⋅] and so the regret
contains several terms:

µKT +
TL⌧

�
+
T (1 +B��)

eMK
+

1

K
+

d

K⌘
log(RLTKM��) +

⌘

2K
�
2(1 +B��)KTL⌧

�µ
+ 4(1 +B��)2K2T�

≤ µKT +
TL⌧

�
+
T (1 +B��)

eMK
+

1

K
+

d

K⌘
log(RLTKM��) +

2⌘

K�2
�
BKTL⌧

µ
+ 4B2K2T� .

Here we use the assumption B�� ≥ 1. We will simplify the expression to obtain an Õ(
√
dKT )-type

bound, first set µ = 1�(K
√
T ),M =

√
T and ⌧ =

�

1�(TL2). This gives

2
√

T +
2B

�

√

T +
2d

K⌘
log(RLTK��) +

2⌘

K�2
�BK2T + 4B2K2T�

≤ O(B
√

T ��) +
2d

K⌘
log(RLTK��) +

10⌘

�2
B2KT.

Finally set ⌘ =
�

d�2 log(RLTK��)
5K2B2T to get

O(
√

T ��) +O �
B

�

�

dT log(RLTK��)� = Õ(
B

�

√

dT ).

This concludes the proof of the regret bound.

Running time calculation. At each round make M + 1 calls to the LMC sampling routine for a
total of O(T 3�2

) calls across all rounds. We now bound the running time for a single call.

We always use parameter ⌧ =
�

1�(TL2) and we know �˜̀�1 ≤ 1�µ = K
√
T and ⌘ = Õ(

�
d

K2T ).
Plugging into the parameter choices at the end of the proof of Theorem 19, we must sample

m = Õ(T 3dR4L2B2
` �(K�)

2
)

samples from a gaussian distribution on each iteration, and the number of iterations to generate a
single sample is:

N = Õ�R18L12T 6d12 +
R24L48d12

K24
�.

Therefore, the total running time across all rounds is

Õ�
R22L14d14B2

`T
10

K2�2
+
R28L50d14B2

`T
4

K26�2
�.

D.4 Proofs for corollaries

Corollary 7 is an immediate consequence of Theorem 6. For Corollary 8, we apply Lemma 10, since
✓� ∈ ⇥ satsifies the conditions of the lemma pointwise. Thus

K−1E�`t, �(f(xt; ✓
�
))� =K−1E[�¯̀t, �(f(xt; ✓

�
))� � xt] = E[min

a
¯̀
t(a)�xt].

Therefore, letting a�t denote the optimal action minimizing ¯̀
t, we obtain the expected regret bound

T

�
t=1E[�

¯̀
t, at − a

�
t �] ≤ Õ((B��)

√

dT ).

E Analysis of SMOOTHFTL

Recall we are in the stochastic setting. Let D denote the distribution over (X ,RK+ ).
The bulk of the analysis is the following uniform convergence lemma, which is based on chaining for
the function class F . Recall that N∞,∞(",F) is the L∞�`∞ covering number from Definition 1.
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Lemma 26. Fix a predictor f̂ and let {xi, ai, `i(ai)}
n
i=1 be a dataset of n samples, Suppose that

(xi, `i) are drawn i.i.d. from some distributionD and ai is sampled from pi � (1−Kµ)⇡hingef̂(xi)+µ.
Define R̂ n(f) �

1
n ∑

n
i=1�ˆ̀i, �(f(xi))�, where ˆ̀

i is the importance-weighted loss. Then:

E sup
f∈F �R

 
(f) − R̂ n(f)��

≤
1

�
inf
�≥0
�
��
�
��
�

2K� + 12�
2

�

�

�

�
2K

nµ
log(nN∞,∞(",F , n)) + 3 log(nN∞,∞(",F , n))

nµ

�

�
d"
�
��
�
��
�

.

Proof of Lemma 26. Note that since the data-collection policy f̂ is fixed, and since we are in the
stochastic setting with (xi, `i) ∼ D, the samples {xi, ai, `i(ai)}

n
i=1 are i.i.d. Consequently, we can

apply the standard symmetrization upper bound for uniform convergence. Beginning with

Ex1∶n,a1∶n,`1∶n sup
f∈F�R

 
(f) − R̂ n(f)�,

we introduce a second “ghost” dataset of samples ⌧ = n + 1, . . . ,2n via Jensen’s inequality.

≤ Ex1∶2n,a1∶2n,`1∶2n sup
f∈F

1

n

2n

�
⌧=n+1�

ˆ̀
⌧ , 

�
(f(x⌧))� −

1

n

n

�
⌧=1�

ˆ̀
⌧ , 

�
(f(x⌧))�.

Introducing Rademacher random variables and splitting the supremum:

≤ 2Ex1∶n,a1∶n,`1∶n,✏1∶n sup
f∈F

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(f(x⌧))�.

Now condition on x1∶n and define a sequence �i = 21−i for i ∈ {0,1,2, . . . ,N}, where N is such
that �N+1 ≥ � ≥ �N+2 for the value of � in the lemma statement. For each �i let Vi be a (classical)
L∞�`∞ cover for f at scale �i on x1∶n, that is

∀f ∈ F ,∀i,∃v ∈ Vi s.t. max
t∈[n] �f(xt) − vt�∞ ≤ �i.

We can always ensure �Vi� ≤ N∞,∞(�i,F , n) and since �f(x)�∞ ≤ 1, we know that
N∞,∞(�0,F , n) ≤ 1. Now, letting v(i)(f) denote the covering element for f at scale �i, we
have

Ea1∶n,`1∶n,✏1∶n sup
f∈F

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(f(x⌧))�

≤ Ea1∶n,`1∶n,✏1∶n sup
f∈F

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(f(x⌧)) −  

�
(v(N)⌧ (f))�

+

N

�

i=1
sup
f∈F

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(v(i)⌧ (f)) −  �(v(i−1)⌧ (f))�

+ sup
f∈F

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(v(0)⌧ (f))�.

Since �V0� ≤ 1, the expected value of the third term is zero. The remaining work is to bound the first
and second terms.

For the first term note that by Hölder’s inequality, for any f ∈ F ,

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(f(x⌧)) − 

�
(v(N)⌧ (f))� ≤

1

n

n

�
⌧=1 �

ˆ̀
⌧�1� 

�
(f(x⌧)) −  

�
(v(N)⌧ (f))�∞

≤
�N
�

1

n

n

�
⌧=1 �

ˆ̀
⌧�1,

since  � is 1��-Lipschitz. Thus for the first term, we have

Ea1∶n,`1∶n,✏1∶n sup
f∈F

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(f(x⌧)) −  

�
(v(N)⌧ (x⌧))� ≤

�N
�

Ea1∶n,`1∶n
1

n

n

�
⌧=1 �

ˆ̀
⌧�1 ≤

�NK

�
.
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Note that there is no dependence on the smoothing parameter µ here.

For the second term, let us denote the ith term in the summation by

Ea1∶n,`1∶n,✏1∶n sup
f∈F

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(v(i)⌧ (f)) −  �(v(i−1)⌧ (f))�

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ Ei

.

We control Ei using Bernstein’s inequality and a union bound. First, note that the individual elements
in the sum satisfy the deterministic bound

�✏⌧ �ˆ̀⌧ , 
�
(v(i)⌧ (f)) − �(v(i−1)⌧ (f))�� ≤

3�i
µ�

, (16)

and the variance bound,

E�ˆ̀⌧ , �(v(i)⌧ (f)) −  �(v(i−1)⌧ (f))�2 ≤�
a

Ea⌧

1{a⌧ = a}
p⌧(a)2

( �(v(i)⌧ (f)a) −  �(v(i−1)⌧ (f)a))
2

≤�
a

1

µ
(3�i��)

2
=
9�2

i K

µ�2
. (17)

Here we are using that v(i)(f) and v(i−1)(f) are the covering elements for f , Lipschitzness of  � ,
and the definition of the importance weighted loss ˆ̀

⌧ .

Using (16) and (17), Bernstein’s inequality (e.g. [11], Theorem 2.9) implies that for any � ∈ (0,1),

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(v(i)⌧ (f)) − �(v(i−1)⌧ (f))� ≤ 6

�

�
�� �2

i K

nµ�2
log(1��) +

6�i
nµ�

log(1��),

with probability at least 1 − �. The important point here is that 1�(nµ) appears in the square root, as
opposed to 1�(nµ2

). Via a union bound, for any � ∈ (0,1), with probability at least 1 − �,

sup
f

1

n

n

�
⌧=1 ✏⌧ �

ˆ̀
⌧ , 

�
(v(i)⌧ (f)) −  �(v(i−1)⌧ (f))�

≤ 6

�

�
�� �2

i K

nµ�2
log(�Vi��Vi−1���) + 6�i

nµ�
log(�Vi��Vi−1���)

≤
6�i
�

�

�

�
2K

nµ
log(�Vi���) +

2 log(�Vi���)

nµ

�

�
,

since �Vi−1� ≤ �Vi�. Now, recalling the shorthand definition Ei

Ea1∶n,`1∶n,✏1∶nEi ≤ inf
⇣
E1{Ei ≤ ⇣} ⋅ ⇣ +E1{Ei > ⇣} ⋅

3�i
µ�

≤ inf
�∈(0,1)

6�i
�

�

�

�
2K

nµ
log(�Vi���) +

2 log(�Vi���)

nµ

�

�
+
3�i�

µ�
.

Choosing � = 1�n:

≤
6�i
�

�

�

�
2K

nµ
log(n�Vi�) +

3 log(n�Vi�)

nµ

�

�
.

Thus, the second term in the chaining decomposition is

6

�

N

�

i=1
�i
�

�

�
2K

nµ
log(n�Vi�) +

3 log(n�Vi�)

nµ

�

�

=
12

�

N

�

i=1
(�i − �i+1)�

�

�
2K

nµ
log(n�Vi�) +

3 log(n�Vi�)

nµ

�

�

≤
12

� �
�0

�N+1
�

�

�
2K

nµ
log(nN∞,∞(�,F)) + 3 log(nN∞,∞(�,F))

nµ

�

�
d�.

This concludes the uniform deviation statement. Exactly the same argument applies to the other tail,
so the bound holds on the absolute value.
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Proof of Theorem 9. Let us denote the right hand side of Lemma 26, when the dataset is size n, as
�n. Define,

f� = argmin
f∈F E�`, �(f(x))�,

Since the mth epoch proceeds for nm � 2
m rounds, and the predictor that we use in the mth epoch is

the ERM on all of the data from the (m − 1)st epoch, the expected cumulative hinge regret for the
mth epoch is

2m ⋅ �ER (f̂m−1) −R (f�)�.
Using the optimality guarantee for ERM:

≤ 2m ⋅ �ER (f̂m−1) − 1

nm−1
nm−1
�

⌧=nm−1
�ˆ̀⌧ , 

�
(f̂m−1(x⌧))� + 1

nm−1
nm−1
�

⌧=nm−1
�ˆ̀⌧ , 

�
(f�(x⌧)) −R (f�)�

≤ 2m+1E sup
f
�R (f) − R̂ nm−1(f)� .

Using the guarantee from Lemma 26:
≤ 2m+1�nm−1 . (18)
Summing this bound over all rounds, the cumulative expected regret after the zero-th epoch is
∑

log2(T )
m=1 2m+1�nm−1 . The zero-th epoch contributes 1�� to the regret, which will be lower order.

This gives the following upper bound on the cumulative expected hinge loss regret.

Regret(T,F) ≤
log2(T )
�
m=1 2m+1�nm−1

≤
4

�

log2(T )
�
m=1 inf

�>0
�
��
�
��
�

nmK� + 12 ⋅ 2m−1 ⋅ �
2B

�

�

�

�
2K

nm−1µ log(nm−1N∞,∞(",F)) + 3 log(nm−1N∞,∞(",F))
nm−1µ

�

�
d"
�
��
�
��
�

≤
4

�
inf
�>0
�
��
�
��
�

KT� + 12 log2(T ) ⋅ �
2B

�

�

�

�
2KT

µ
log(TN∞,∞(",F)) + 3 log(TN∞,∞(",F))

µ

�

�
d"
�
��
�
��
�

.

� C.

Let zt = f̂m−1(xt) for each time t in epoch m. We have just shown
T

�
t=1E�`t, 

�
(zt)� ≤ T ⋅E�`, �(f�(x))� +C.

Using Lemma 1, this implies
T

�
t=1E
�`t,⇡hinge(zt)� ≤

T

K
⋅E�`, �(f�(x))� + C

K
.

Finally since pt = (1 −Kµ)⇡hinge(zt) + µ and �`t�∞ ≤ 1, this implies the bound
T

�
t=1E `t(at) ≤

T

K
⋅E�`, �(f�(x))� + C

K
+ µKT

���������������������������������������������� C′

.

We proceed to bound the final regret C ′ under the specific covering number behavior assumed in
the theorem statement. Assume that log(N∞,∞(",F)) ≤ "−p for some p > 2. Omitting the log(T )

additive terms, which will contribute O(B�−1�KT log(T )�µ + B�−1 log(T )�µ) to the overall
regret, the bound is now

µKT +
1

�K

�

�
inf
�>04KT� + 12 log2(T ) ⋅ �

2

�

�
2KT

µ"p
d" + 36 log2(T ) ⋅ �

2

�

1

µ"p
d"
�

�
.

Choosing � = (KTµ)−1�p, this bound becomes

O�µKT +
1

�K
log(T )(KT )1−1�pµ−1�p�.

Finally, we choose µ = �− p
p+1T − 1

p+1K−1, leading to a final bound of O�(T ��)
p

p+1 �.
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F SMOOTHFTL for Lipschitz CB

Here we analyze SMOOTHFTL in a stochastic Lipschitz contextual bandit setting. To describe the
setting, let X be a metric space endowed with metric ⇢ and with covering dimension p. This latter
fact means that for each 0 < " ≤ 1, X can be covered using at most CX "−p balls of radius ". Let A be
a finite set of K actions. In this section, we define the benchmark class G ⊂ (X →�(A)) to be the
set of 1-Lipschitz functions, meaning that �g(x) − g(x′)�1 ≤ ⇢(x,x′) for all g, x, x′ (The choice of
`1 norm is natural since we are operating over the simplex).

We focus on the stochastic setting where there is a distribution D over X × [0,1]K . At each round
(xt, `t) ∼ D is drawn and xt is presented to the learner. The learner chooses a distribution pt ∈�(A),
samples an action at ∈ A from pt, and observes the loss `t(at). We measure regret via

Regret(T,G) =
T

�
t=1E`t(at) − infg∈G TE�g(x), `�.

In this setting, SMOOTHFTL takes the following form. Before the mth epoch, we choose a function
ĝm−1 by solving the empirical risk minimization (ERM) problem

ĝm−1 = argmin
g∈G

nm−1
�

⌧=nm−1
�ˆ̀⌧ , g(x⌧)�,

where ˆ̀
⌧ is the importance weighted loss. Then, we use ĝm−1 for all the rounds in the mth epoch,

which means that after observing xt, we set pt(a) = (1 −Kµ)ĝm(xt, a) + µ. We sample at ∼ pt,
observe `t(at) and use the standard importance weighting scheme:

ˆ̀
t(a) =

`t(at)1{a = at}
pt(a)

.

For this algorithm, we have the following guarantee.

Theorem 27. SMOOTHFTL in the Lipschitz CB setting enjoys a regret of Õ((KT )
p

p+1 ).

This theorem improves upon the recent result of Cesa-Bianchi et al. [14], who obtain Õ(T
p+1
p+2 ) in

this setting.

Proof. We are in a position to apply Lemma 26. The main difference is that there is no margin
parameter, since our functions are 1-Lipschitz, instead of 1��-Lipschitz after applying the surrogate
loss. The `∞-metric entropy at scale " is CX "−p up to polynomial factors in K and logarithmic
factors, and so in the mth epoch the ERM has sub-optimality (see (18)) at most

Õ
�

�
inf
�

K� +�
1

�

�
K�−p
nm−1µ +

�−p
nm−1µ

�

�
,

where Õ hides dependence on CX . Following the argument in the proof of Theorem 9, the overall
regret is then

Regret(T,G) = Õ
�

�
µKT + inf

�
TK� +�

1

�

�
TK�−p

µ
+
�−p
µ

�

�
.

Set � = (TKµ)−1�p and then µ = (TK)
−1
p+1 now to obtain the result.

In principle our technique can be further extended to the setting where the action space is also
a general metric space, and the losses are Lipschitz, which is the more general setting addressed
by Cesa-Bianchi et al. [14]. If the action space has covering dimension pA then we discretize the
action space to resolution ✏, set K = ✏−pA in the above argument, and balance ✏ with an additional
T ✏ factor that we pay for discretization. This is the approach used in Cesa-Bianchi et al. [14] to
obtain T

p+pA+1
p+pA+2 . Unfortunately, our argument above obtains a somewhat poor dependence on K

(K
p

p+1 as opposed to K
1

p+1 , which is more natural). Consequently, the argument produces a bound of
Õ(T

p+ppA
p+ppA+1 ) which only improves on Cesa-Bianchi et al. [14] when pA ≤ 1�(p − 1).
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