Supplement
Differential Private Empirical Risk Minimization
Revisited: Faster and More General

1 Experiments

In this section, we validate our methods using Covertype dataselﬂ and logistic regression. This
dataset contains 581012 samples with 54 features. We use 200000 samples for training. We compare
our DP-SVRG algorithm with the DP-GD method in [7] for logistic regression with Ls-norm
regularization.

. 1 A
F'(w,D) = ~ Zlog(l +exp(1 + yiw”z;)) + §||w||2,

i=1
where ) is set to be 1072,

We also compare our DP-SVRG++ algorithm with the DP-GD method in [[7]] for logistic regression,

1 n
F'(w,D) =~ log(1+exp(l + yiw’ ;)
=1

We evaluate the optimality gap E[F" (wP™¢ D)] — F"(w*, D) and the running time for ¢ =
{0.2,0.5,1} and § = 0.001.

From the figure, it is clear that our method outperform the previous results in both cases.

2 Details and proofs

2.1 Using Advance Composition Theorem to Guarantee (¢, 0)-differential private

As we can see that there are constrains on € in Theorem 4.1 and Theorem 4.3. The constrains come
from Theorem 3.1 (see the proof below). For general €, we can just amplify a factor of O(In(7'/9))
on the 0. However, in this case, we will amplify a factor of O(log(7'm/¢)) (neglecting other terms)
in (5) and (7) in Theorem 4.2 and 4.4; the guarantee of DP is by advanced composition theorem and
privacy amplification via sampling [3]. Below we will show this. Consider the i-th query:

- [
]V[Z = Vf(l’f_h Z,:) - Vf(ili, ZZE) + E ZVf(l', 2’7) +./V'(O, gzlp),
i=1
where 47 is the uniform sampling. There are T-compositions of these queries. By advanced

composition theorem, we know that in order to guarantee the (¢, 0)-differential private, we need
> T'/26)-differential private in each M, for some constant c. Now consider M; on the

(cx/Tlog(l/é

"https://archive.ics.uci.edu/ml/datasets/covertype
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Figure 1: Comparison of DP-SVRG and DP-GD for Logistic regression with different € and Lo-
regularization. We set ' = 15, m = 5000 and use SVRG-BB for step size update in DP-SVRG,

T = 1500 in DP-GD.
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Figure 2: Comparison of DP-SVRG++ and DP-GD for Logistic regression with different e. We set
T =15,m = 10,7 = 0.01 in DP-SVRG++ and 7" = 1000, = 0.1 in DP-GD.

whole dataset (i.e., with no random sample).

n n

- 1 &

M; = Vi 1,2)— Y V@ z)+ =Y VI 2)+N00°1,).
; f@iy,2i) ; f(@ Z)+n; f(@,2:) + N(0,071)

From the above, we can see that the Lo-sensitive of Mi is A < 2G + % < 3G. Thus if 02 >

c1 % for some ¢y, M; will be (¢/,0"))-differential private. This implies that the query M;

will be (21¢’, §')-differential private, which comes from the following lemma (see Theorem 2.1 and

Lemma 2.2 in [3]]).

Lemma 2.1. If an algorithm A is €’-differentially private, then for any n-element dataset D, executing

A on uniformly random ~n entries ensures 2v¢'-differential private.



1o e / T
Let2 ¢ =c Tl TT) and &' = T/26, thatis €’ = ¢ Tlog(l/é) and
| GT log(T/6) log(1/9)
2
o 2c 2n2 .

We can guarantee that 7' composition of M; queries is (¢, ¢)-differential private.

2.2 Proof of Theorem 4.1 and 4.3

Proof. W.lo.g, we assume G = 1, i.e,, ||V f|| < 1 (otherwise we can rescale f).The Proof of
Theorem 4.1 and Theorem 4.3 are the same instead of the iteration number (or number of queries).
Let the difference data of D, D’ be the n-th data. Now, consider the i-th query:

~ 1 - =, S S
M; =V f(xi_1,2i5) = V(@ 25) + EZVf(z,zi) +ug,uf ~ N(0,0°1,),

where i € [n] is a uniform sample. This query can be thought as the composition of two queries:
My =V f(xi_y,2i5) — V(& 25) + N(0,071,) (1)

and
n

> V(@ z) + N(0,031,) )
i=1

for some o1, 02. By Theorem 2.1 in [1]] we have apz, (A) < ang, ; (A) + o, , (A). Now we bound
QM; 1 ()‘) and QM; o ()‘)

M; o =VF(& D)+ N(0,0351,) =

3=

For ay, ., we can use Lemma 3 in [1]] directly, where ¢ = +, f(-) = V f(z;_,,-) — Vf(&, ). For
some constant c; and any integer A < o In(n/o1), we have
A2 A3

()< —). 3
aM'L,l( )—Cln20%+0(n30f) 3)

For apy; ,(\), we use the relationship between moment account and Rényi divergence. By Definition
2.1 in [4] we have:

o, ,(A) = ADx11(P[Q), “)
where P = VF(;U D)+ N(0,031,) = N(VF(,D),03) and Q = VF(Z,D’) + N(0,031,) =
N(VF(%,D'),03). By Lemma 2.5 in [4], we have for some c;:

AA+1)||[VF(%,D) — VF(&,D")|? 2/\()\ +1) - c1\?

ADx11(P||Q) = < <45
202 n2o3 n2o2
Combining (3), @) and (5), we have
A2 A2 A3
() < O =). 6
(M) < e n2o2 te n2o? + (n3af) ©)
The rest is similar to the proof of Theorem 3.1.
After T iterations, we have for some ¢y, co,
T
A2 A2
< < —_ . 7
ap < ;aMl <a 207 +c2 207 (7
To be (¢, 0)-differential private, by Theorem 2.2 in [[1], it suffices that
TX\? n TN\? e
Cl——5 to——5 < —
"n202 T P22 < 2
and N
eXP(_TG) <34
In addition we need
A <oiln(n/oy). (8)



It can be verified that when € < c¢3 % for some constant c3, we have

Tlog(1/6
o1 = o, Y1080/ ©)
ne
and
Oy = C5M. (10)
ne

For some constant ¢4, cs5, all the conditions can be satisfied. Since the sum of two Gaussian distribu-

/T log(1/6)

tions is still a Gaussian distribution, and M; = M; 1 + M; >, we have 0 = ¢ for some c.

Thus, T-fold of the queries.

My = V(g g) — V() + - S0 VI (E2) + N(0,0°T,)

i=1

will guarantee (€, §)-differential private when e < c3 2.
For Theorem 4.1 T' = T'm while for Theorem 4.3 7' = 27+, O

2.3 Proof of Theorem 5.3 and Theorem 6.1

Proof. The proof is similar to the above.

1 n
M; = VF(z,D) + N(0,0%1,) = - > V@ z) + N(0,0%1,). (11
i=1
By (3) and (@), we have
2A(A+1)
Thus, after T-iterations, we have for some ¢
T
T)\?
an < ;am <o (13)
Taking o = ¢ 7”T12g€(1/6) for some constant c;, we can guarantee that
TN\? < e
cn202 - 2
and \
exp(—) <4,
2
which means (¢, §)-differential privacy due to Theorem 2.2 in [1]]. O
2.4 Proof of Theorem 4.2
Proof. Letgi = %(x;ll — prox,,.(zf_y — nv{)). Then we have zj =z} _, — ng;. Thus
g — aal|? = ll2fy = ngf — 2l * = |lwfy — 2a® = 20(g7, 271 — 2) +0%||g7 112 (14)

By Lemma 3 in [6], we have the following inequality
s s n s T T (S HF s Hor S
— (g, — )+ lgE? < F7(wa) = Fr(af) = EE gy — = BJag —
— (v} = VF(z{_y),2f —a7%). (15)
Plugging into (I4), we have
llzg = @ull* < llwgy — 2l = 20[F" (27) — F"(2.)] = 2n(vf — VF(a_y), 27 — 2%). (16)



Next we bound —2n(vf — VF (x5 ),z — 2*). Denote #,° = PrOXW(CUf,l )
—2n(v; = VF(xi_),v] —2%) =

— (o] = VF(x}_,),2; — x}) — 2n(vf — VF(2}_,), 4" — x.) (17)
< 2l|vf — VF(; )|z — 25l — 2n(v; — VF(x5_), #° — ) (18)
< 2nllvf = VE(@i_y)|[lzi_y —nvi — (z5_y = VE(23_)|[ = 2n{vf = VF(z5_,), 2" — x4)
(19)
< 2?||of — VF(z;_)|]> = 2n(v; — VF(x}_,), 2, — x.) (20)

The first inequality is due to the following lemma,
Lemma 2.2. Let r be a closed convex function on RP. Then for any =,y € dom(R)

[Iprox,.(x) — prox,.(y)[| < [l —y]|.

We can easily get Eys ;= (vi — VF(z;_;) = 0 since u; is independent with v;_;. Also by Lemma 1
in [6] and E[||a + b]|?] < 2E||a||? + 2E||b]|?, we have

Eisusllv; — VF(zi_1)|[> < SLIF"(2j_y) — F"(z.) + F"(2) — F"(z.)] + 20%p. (21)
Plugging (20) into (I6) and taking the expectation with i}, u7, we have

Ellef — 2. |* < [lef_y — 2.]]* = 29[E(F" (27) — F7 (2.)]+
160> L[F" (x5_,) — F"(x,) + F7 (%) — F" ()] + 4n%0?p.  (22)

Summing over t = 1,2, --- ,m and taking the expectation, we have

Efla, — @.]1*] +2n(1 — 8nL) Y [E(F" (x7)) — F"(x.)] (23)
t=1

< |7 = x| + 16Ln* (m + ) [F"(Z) — F"(x.)] + 4mn*a*p. (24)
Since F" is pu strongly convex, we have || — z.||? < %(Fr(a?) — F"(x,)). Dividing 2mn(1 — 8Ln)
from both sides, we get

1 8Ln(m + 1)

E[F"(2°)] = F"(x.) < ( ELE (1)~ ()4 —a—o?p.

n(l —8nL)um m(1 —8Ln) 1—8Lny
(25)
Thus we can choose 77 = O(1) < 157 and m = ©(%) to make
A 1 L 8n(m 1) 1
n(l —8nL)pm ~ m(l1—8Lny) 2
and 1—2%7; < i By and summing over s = 1,2--- ,T we can get
E[F"(zT)] — F"(x,) (26)
T a’p
Eig nid T pGQTmhl(l/CS)
= A°[F"(zo) — F"(x4)] + O(W) (28)
T . pG2TIn(1/5)
Thus if we take T such that AT [F"(zq) — F"(x.)] = O(%ﬁg/‘s)), ie.,
n2elu
T=0(log(———=) |-
(et )
We have G In(ne/pG) In(1/6)
(=T I p n\nep/p n(1
B (1)~ 1 () < O AU REL,)
where the big-O notation omitted the other In term. O



2.5 Proof of Theorem 4.4

Proof.
Eip g [F7(27) = F"(2)] = Egg g [F(a) = Fla) +7(a3) = r(a.) (30)
S S S S L S S S

< Eii,ui [F'(xi_1) +(VF(x{_q), 2] —x{_1) + 5”% - xt—1H2 = F(xs) +r(z)) —r(z.)]
(€1))

<Eis s [(VF(zi_1), 7i_1 — z)] + (VF(23_1), 25 — 7{_q)

L S S S
+ 5 llet =i P+ @) — ()] (32)

S S S S S L S S S
= Eig ug [(0f, 7 — @) +(VF(2]_1), 2] —2f_ ) + 5“% — i ||? () — ().
(33)
The last equality is due to the fact that E;: .z [v;] = VF(x;_;). Since we have ([2])

s .8 s s .8 s ||'II’“§LI_‘CC*||2 Hxs_x*HZ) Hxs_xsfl‘|2
(i, ai_y —m)+r(@) —r(zs) < (v, v —xi)+ : 2 e 2 -t 27; .
(34)
Plugging (34) into (33), we have
s s s s 1_77L s s
LHS <Ei; u; [(vi = VF(zi_y), x4 —af) — 2 2§ — 254
xS —x|? = ||zf — x4 |?
3 ety =P~ o = 55
21
n s s 2 ||ZE§_1 _1‘*”2 _]Eisms[ l‘f—d?*HQ]
< Ejs ys —————— — VF(x5_ Gl 36
— to t2(1_,'7L)Hvt \Y (‘Tt 1)|| + 277 ( )
WL [P (@) = F (@) + F(#0m1) = F (2)] + —1—po?
=~ 1_77[/ t—1 * s—1 * 1—77L
s 2 s 2
e e P et -
2n
Choosing n = ﬁ, summing overt = 1,--- , mg, dividing mg, and taking expectation, we have
1 11 et
Bl F(ai) = F ()] 5Bl Y [F(ai) = F'(w.) + F (1) = F ()] +
S =1 S =0
|lo§ — 2l® = Elllzy,, —2:] | 1
= ——o°p. (38
2y T o B9
By the definitions of a:3+1 and 7, we have
Fr(xzs) — Fr(z,) — (FT S-i-l_};"4<
QE[FT(i‘S) _Fr<x*)} SE[ (950) (.13 ) ( (xO ) (l‘ ))+
ms
. g — > = [l —a]® 1,
F'(24_1) — F" (s —o“p, (39
(Foma) = F7 (@) + 2n/3m, AR
which implies that
N lzg™ —a]|® | Fr(ag™) — Fr(x.)
2(E[F" s —F" * 40
(B (30) ~ Fr () + F4 2 ) (40)
- |o§ —z|® | Fr(@f) = F"(zs), , 1
<E[F"(zs_1) — F" (. —o°p. 41
< E[F"(Z5-1) (z) + I3 CT— I+ 5o (41)
Summing over s = 1,--- , T, we get
E[F"(2r) — F"(2.)] (42)
Fr(Zo) — F(z,)  |[fo—z? 1
< —o“p. 43
= 9T 1 o ay/3m 4’ P “43)



Thus, if we take m = ©(L) to make A = 2F" (Zo) — F" (z.)+ % independent of T, n, p, o, L,
plug o into (43) we have

E[F" (i7)] — F"(3.) < ;T + O(W) - ;T + O(%). (44)
LetT = O(log(#\e/m)). We have
B (2] - F7 (z.) < o TY2RO),)
The gradient complexity is O(2°m + Tn) = O( g\L/% +n log(éi;ﬁ)). O

2.6 Proof of lemma 5.1

Proof. If v = 0, this is true. If not, we will show that Hé”g < ||v]|¢- This is equivalent to show that
v ¢ HZIEC Take any y € C. Since IIHZijllz = ”ZHzHyHg, we know that ||y||2 < ||C]||2. Thus
{2 yl[o < [[v[]2. We have v ¢ Etzc. O
2.7 Proof of Theorem 5.4

Proof. We use || - || and || - || instead of || L'C and || - ||c=. Also, w.l.o.g we assume that ||C||]s = 1

(for the general case, just replace L by L||C||3). Since by is independent of x.y1, we have for any
u

Ebk+1 [(akJrlvF(karl)’ Rk — u>] = Ebk+1 [(akﬁLl(vF(karl) + bk+1)7 2k — u>]

= Epp s [(r 41 (VE(@ht1) +bk41), 25— 241) |+ By [(h1 (VE (Tg41) +brg1), 21 — ).
45)

Since zp+1 = argminec{Bw (2, zk) + k41 (VF(xk+1) + bpt1,2 — 2k)}, which implies that
(VB (zk41, 2k) + ap1(VF (2g41 + brg1),u — zk41) > 0 for every u € C. So we can get

Epyy (k41 (VE(@g41) + bk41)s 2541 — u))] (46)

S By (VB (2ha15 28)s 2611 — w)] = By [Buw (U, 21) — Bu (4, 2p11) — Buw(2k41, 21)],
47)

where the equality is due to the triangle equality of Bregman divergence. Since w is 1-strong convex
with respect to || - ||, we have =By, (2541, 21) < —3|2k41 — 2k||*. Plugging this into (44), we have

Ep, 4 (k1 VE(Tk41), 2 — u)] (48)

1
< By {0kt 1 (VF(2pg1) + brg1), 20 — Zrg1) — §sz+1 — 2] |*]+

B (u7 Zk) - Ebk+1 [Bw (u7 Zk+1)] (49)
1

< By {41 VE(@ger1), 26— 2041) = 21201 = 2| P) + af g1 By, [0k |2l (50)

+Bw(ua Zk) - Ebk+1[8w(u72k+l)]' (51

The last inequality is due to Cauchy-Shwartz Inequality. Thus we have (g 1bg+1, 2k — 2k+1) <
ai+1||bk+1||f + %sz — zi+1|[*. Now we want to bound Ey, | [(1 VF(T41), 2k — 2k41) —



%||zk+1 — 2;||?]. Define v = 12541 + (1 — 7% )yx € Cso that 21 — v = 74 (2% — 2141). We have

1 e
(1 VF (@s1) 2 = 211) = gllwen = 2l? = (L VF@rga), o = 0)

1
= gz llee = ol (52)
3
2 L 2
= 201 LUF (@h41), 21 = 0) = S l[@ner = 0f7) (53)
. L
<203, L(- 2161(131{§||y — 1|+ (F(2h41), Y — 2141)}) 54
L
= 20‘%+1L(*{§Hyk+1 — a1+ (F(@h41) Yor1 — Tr41)}) (55)
<208 1 L(F (2141) = Fyr+1))- (56)
The last inequality is due to the fact that F" is L||C||3-smooth (note that ||C||z = 1) in || - || norm and

the definition of yj 1. Thus, we get the following

Ebk+1 [<ak+1VF($k+1)7 2k — u>] = Ebk+1 [<ak+1(VF(xk+1) + bk+1)7 2k — u>]

< Zai—&-lL(F(xk-‘rl) - F(yk-i-l)) + Bw(“? Zk) - Ebk+1 [Bw(u’ Zk+1)] + ai-{-lEkaAku-‘rlHi'
(57)

By using the Concentration of Gaussian Width, Lemma 3.3 in [3] shows that Ey, ||bx41]|2 =
020(G2 +|C||3), where G is the Gaussian Width of C. From this, we have

By [k (F(zp41) — F(u)] < Epyy, {ar41 VE(Tgt1), D1 — )]
= Ep, ., (k1 VE(Tr41), Try1 — 26)] + Bopyy (k1 VF (Th41), 21 — u))]

o 1—r
< BT 90y 1), o) + Ba [on VF ), 21— )

%’;M(F(yk) = F(2r41) + Eop oy [(an1 VF(@441), 20 — )]

< (2031 L — ap1) (Fyr) — F(xr41) + 204 4 L(F (241) = F(yg+1))
+ Bu(u, zk) — By, [Buo (U, zkg1)] + 01 By | [brga |12
Thus we obtain

IN

2081 LF (y+1) — (20841 L — 1) F(yne) + E(Bu(u, zi41) = Bu(u, 2))  (58)
< agpy1F(u) + af 10°0(GE + |[C|[3). (59)
By the definition of a1, we have 204,€L = 2ak+1L akH +5z 7. Summing over k =0--- ;T —1

and setting u = x,, by the definition of o, we have Z k1 ol = O( 3). After taking the expectation
we get

207 LE[F (yr)] + EE[Z_: F(yr)] + E[Buy (2, 27-1)] — Bu(2s, 20) (60)
T
<Y apF(z.) + O(T%0*(GE + [C|[3)/L7). 61)

k=1
Plugging oy, = 4J2 into (59), (60) and dividing both sides by a factor of 2aTL by the fact that
By, > 0 we finally get

8LBy, (x4, x0)
E[F(yr)] — Flz.] < W

Since 0% = O(GQ%S/&), if choose

% — O L\/By (2., x0)ne ) 63)

~ GV /GE e

+ O(To*(Gz + 1[C|[3)/L). (62)




we have the bound

E[F(yr)] — F(z.) < O \/Bw(:v*,:co)\/G%n:r ICI2G+/I(1/9)

).

2.8 Proof of Theorem 6.2

Proof. First of all, we have
1
Eop[F(@rsn) = Flaw)] < B [= 7 (VE (1), VF(2x) + 2i) + *||VF($k) + 2i|%]

EZkHZkH?

2

S—%(F(ﬂﬂk)—FH‘i

1 , 1
= —iHVF(ﬂ?k)H + YA

Re-arranging the terms, we get

B{F(eisn)] — F* < (1 2)(F(w) — F) + 22

L 2L
Summing over k = 0, - - - , 7" and taking expectation, we obtain
Tpo?
E[F(27)] — F* < (1 — )T (F(wo) — Fx) + ~22—,
L 2L
2.2
Thus, when T' = O(log( ;57155 1757))
log” (n)pG* log(1/4)

E[F(zr)] = F* < O( 5 )

n2e

where the big-O notation neglects other log, L, u terms.

2.9 Proof of Theorem 6.3

Proof. The proof is similar to that of Theorem 6.2. Let F* = min,eg» F (2, D). We have

1 1
E., F(ais1) - Flax) < Esy [—7<VF<:ck>, VF(r) + )] + 57 B[V F(@r) + 2]
< - 2
IVEGIP + 22
From this, we get
1 02
—LHVF(xk)H? < Flow) = By Flane) + 5

Thus, By, 2} [ VE (200)[7] = & 120 ey [IVF () %], By (71). summing over k =0, -

1, we obtain
2L(F (z0) — E[F(z7)])

En, (-3 [IVF (2m)|?] < T ]+ po?
2L(F (z0) — F*) pG?log(1/86)T
< .
- T +0( n2e? )

Thus, if choose T = O(M we have E[||VF(z,,)|?] < O(@).

plog(l/J)G)’

References

(64)
(65)

(66)

(67)

(63)

(69)

(70)

(71)

T —

(72)

(73)

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pages 308-318. ACM, 2016.



[2] Z. Allen-Zhu and Y. Yuan. Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex
Objectives. In Proceedings of the 33rd International Conference on Machine Learning, ICML " 16,
2016.

[3] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 464—473. IEEE, 2014.

[4] M. Bun and T. Steinke. Concentrated differential privacy: Simplifications, extensions, and lower
bounds. In Theory of Cryptography Conference, pages 635-658. Springer, 2016.

[5] K. Talwar, A. Thakurta, and L. Zhang. Private empirical risk minimization beyond the worst
case: The effect of the constraint set geometry. arXiv preprint arXiv:1411.5417, 2014.

[6] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057-2075, 2014.

[7] J. Zhang, K. Zheng, W. Mou, and L. Wang. Efficient private ERM for smooth objectives. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IICAI
2017, Melbourne, Australia, August 19-25, 2017, pages 3922-3928, 2017.

10



	Experiments
	Details and proofs
	Using Advance Composition Theorem to Guarantee (,)-differential private
	Proof of Theorem 4.1 and 4.3
	Proof of Theorem 5.3 and Theorem 6.1
	Proof of Theorem 4.2
	Proof of Theorem 4.4
	 Proof of lemma 5.1
	 Proof of Theorem 5.4
	 Proof of Theorem 6.2
	 Proof of Theorem 6.3


