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Part I: Analysis

A Preparations

For the convenience of the reader, we here repeat material from the paper that will be frequently
referred to in this supplement. For r ∈ (−1, 1), we consider bivariate Gaussian random variables

(Z,Z ′)r ∼ N2

((
0
0

)
,

(
1 r
r 1

))
. (A.1)

For non-negative integers α, β, we define coefficients θα,β by

θα,β := Eρ[Q(Z)αQ(Z ′)β ]

=
∑

σ,σ′∈{−1,1}

K∑
s,u=1

σα(σ′)βµαs µ
β
uPρ

(
Z ∈ σ(ts−1, ts), Z

′ ∈ σ′(tu−1, tu)
)
, (A.2)

where (Z,Z ′) are bivariate normal (A.1) with r = ρ. We recall that {tk}K−1k=1 and {µk}Kk=1, K =

2b−1, denote the tresholds and codes, respectively, assciated with a b-bit scalar quantizer Q.

B Proof of Theorem 1

Consider the linear estimator ρ̂lin = 〈q, q′〉 /k based on quantized data q, q′.

Theorem 1. We have Bias2ρ(ρ̂lin) ≤ 4ρ2D2
b , where Db = 33/22π

12 2−2b ≈ 2.72 · 2−2b.

Proof. In the sequel, let Q(·) = Qb(· ; t?,µ?) be the Lloyd-Max quantizer at bit depth b and let
Db := E[{Z−Q(Z)}2] be the associated squared distortion. A standard property of the Lloyd-Max
quantizer is that (cf. [2], p. 180)

E[Q(Z)(Q(Z)− Z)] = 0. (B.1)

This (B.1) immediately yields

E[ZQ(Z)] = E[Q(Z)2] = θ2,0. (B.2)

according to notation (A.2). Therefore,

Db = E[{Z −Q(Z)}2] = E[Z2]− 2E[ZQ(Z)] + E[Q(Z)2]

= E[Z2]−E[Q(Z)2]

= 1− θ2,0.
(B.3)
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Next, we note that
Z ′
D
= ρZ +

√
1− ρ2 ξ (B.4)

with ξ ∼ N(0, 1) independent of Z, where D= means equality in distribution. Combining (B.2) and
(B.4), we obtain that

E[Z ′Q(Z)] = E[(ρZ +
√

1− ρ2 ξ)Q(Z)]

= ρE[ZQ(Z)]

= ρθ2,0. (B.5)

We now have

Eρ[ρ̂lin] = E[Q(Z)Q(Z ′)] = E[(Z + {Q(Z)− Z})(Z ′ + {Q(Z ′)− Z ′})]
= E[ZZ ′] + E[Z{Q(Z ′)− Z ′}] + E[Z ′{Q(Z)− Z}]+

+ E[{Q(Z)− Z}{Q(Z ′)− Z ′}]
= ρ+ 2E[Z ′{Q(Z)− Z}] + E[{Q(Z)− Z}{Q(Z ′)− Z ′}]
= ρ+ 2ρ(θ2,0 − 1) + E[{Q(Z)− Z}{Q(Z ′)− Z ′}]
= ρ− 2ρDb + E[{Q(Z)− Z}{Q(Z ′)− Z ′}], (B.6)

For the third identity from the top, we have used the fact that Z and Z ′ are exchangeable, and the
last two identities follow from (B.5) and (B.3), respectively. Re-arranging (B.6), we obtain

Bias2ρ(ρ̂lin) = (Eρ[ρ̂lin]− ρ)2 = {−2ρDb + E[{Q(Z)− Z}{Q(Z ′)− Z ′}] }2 (B.7)

It is proved in Lemma 1 below that

0 ≤ E[{Q(Z)− Z}{Q(Z ′)− Z ′}] ≤ ρDb. (B.8)

Using that ρ ≥ 0 and combining (B.7) and (B.8), it follows that

Biasρ(ρ̂lin)2 ≤ 4ρ2D2
b .

The following upper bound is well-known in the signal processing literature (cf. [3], p. 138)

Db ≤
33/22π

12
· 2−2b,

which yields the assertion.

Lemma 1.
0 ≤ E[{Q(Z)− Z}{Q(Z ′)− Z ′}] ≤ ρDb. (B.9)

Proof. Define

∆1(ρ) = Eρ[ZZ
′]−Eρ[ZQ(Z ′)]

∆2(ρ) = Eρ[ZQ(Z ′)]−Eρ[Q(Z)Q(Z ′)].

In the sequel, we will establish that for all ρ ∈ [0, 1], it holds that

(P1) ∆1(ρ)−∆2(ρ) ≥ 0,

(P2) ∆2(ρ) ≥ 0.

Relations (P1) and (P2) immediately yield (B.9). Indeed, we have

Eρ[(Z −Q(Z))(Z ′ −Q(Z ′))] = (Eρ[ZZ
′]−Eρ[ZQ(Z ′)])− (Eρ[Z

′Q(Z)]−Eρ[Q(Z)Q(Z ′)])

= ∆1(ρ)−∆2(ρ) ≥ 0,

which yields the lower bound in (B.9). Likewise,

Eρ[(Z −Q(Z))(Z ′ −Q(Z ′))] = (Eρ[ZZ
′]−Eρ[ZQ(Z ′)])− (Eρ[Z

′Q(Z)]−Eρ[Q(Z)Q(Z ′)])

= ∆1(ρ)−∆2(ρ)

≤ ∆1(ρ) = ρDb,
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where the last identity follows with the same argument as used for (B.6) above. It thus remains to
demonstrate (P1) and (P2).

Regarding (P2), we have

∆2(0) = Eρ=0[ZQ(Z ′)]−Eρ=0[Q(Z)Q(Z ′)] = 0 (B.10)

∆2(1) = Eρ=1[ZQ(Z ′)]−Eρ=1[Q(Z)Q(Z ′)] = E[ZQ(Z)]−E[Q(Z)2] = 0, (B.11)

using (B.2) again. Property (P2) then follows from the following property:

(P3) The map ρ 7→ θ1,1(ρ) is convex on [0, 1].

In fact, property (P3), which follows from Lemma 2 below, in turn implies that

∆2(ρ) = Eρ[ZQ(Z ′)]−Eρ[Q(Z)Q(Z ′)] = ρθ2,0 − θ1,1(ρ),

is a concave function of ρ. Combining (B.10) and (B.11) with Jensen’s inequality then yields that
∆2(ρ) ≥ 0 for ρ ∈ [0, 1].

Regarding (P1), we expand

∆1(ρ)−∆2(ρ) = (ρ− ρθ2,0)− (ρθ2,0 − θ1,1(ρ))

= ρ(1− 2θ2,0) + θ1,1(ρ).

We first note that
∆1(0)−∆2(0) = 0 (B.12)

To deduce (P1) given (B.12), one then shows that the map

ρ 7→ ∆1(ρ)−∆2(ρ) (B.13)

is non-decreasing on [0, 1]. We do this by obtaining the derivative

γ(ρ) :=
d

dρ
(∆1(ρ)−∆2(ρ)) = 1− 2θ2,0 +

d

dρ
θ1,1(ρ).

Denoting ν(ρ) := d
dρθ1,1(ρ), one computes that

ν(0) = θ22,0 (B.14)

as an immediate consequence of Lemma 2 below. Substituting this back into γ, one obtains

γ(0) = 1− 2θ2,0 + θ22,0 = (1− θ2,0)2 > 0.

Given (P3), d
dρθ1,1(ρ) is non-decreasing on [0, 1] and hence γ(ρ) ≥ 0 on [0, 1], which in turn implies

that the map (B.13) is non-decreasing. Combining this with (B.12) yields (P1) and thus the proof of
the lemma.

Property (P3) and (B.14) can be deduced from the following lemma.

Lemma 2. Let f : R→ R be uniformly bounded. Consider the following map defined on [0, 1]:

ρ 7→ ηf (ρ) := Eρ[f(Z)f(Z ′)], (Z,Z ′) ∼ N2

([
0
0

]
,

[
1 ρ
ρ 1

])
.

Then ηf obeys the following series expansion:

ηf (ρ) =

∞∑
k=0

ρk

k!

(∫
f(x)Hk(x)φ(x) dx

)2

, (B.15)

where φ denotes the standard Gaussian PDF and Hk is the k-th Hermite polynomial defined by

Hk(x) = (−1)k exp(x2/2)
dk

dxk
exp(−x2/2), k = 0, 1, . . .
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Proof. From a result in [1], p. 133, the PDF of (Z,Z ′), say φρ, can be expanded as

φρ(x, y) =

∞∑
k=0

ρk

k!
Hk(x)Hk(y)φ(x)φ(y).

Using this result, we obtain that

ηf (ρ) =

∫ ∫
f(x)f(y) φρ(x, y) dx dy

=

∫ ∫
f(x)f(y)

∞∑
k=0

ρk

k!
Hk(x)Hk(y)φ(x)φ(y)dx dy

Since f is uniformly bounded, the {Hk}∞k=0 are polynomials and φ is a Schwartz function, each
partial sum associated with the series inside the integrand is uniformly bounded. We may hence
appeal to the bounded convergence theorem to obtain that

ηf (ρ) =

∞∑
k=0

ρk

k!

∫ ∫
f(x)f(y)Hk(x)Hk(y)φ(x)φ(y)dx dy

=
∞∑
k=0

ρk

k!

(∫
f(x)Hk(x)φ(x) dx

)2

.

We apply Lemma 2 with the quantization map, i.e., f = Q. Expansion (B.15) yields that the second
derivative of θ1,1(ρ) is non-negative, and thus convexity. Similarly, (B.14) can be obtained by term-
wise differentiation of (B.15), and evaluation of the result at zero, noting that H1(x) = x, and using
again that E[ZQ(Z)] = θ2,0 (B.2).

C Proof of Proposition 1

Consider the normalized estimator ρ̂lin = 〈q, q′〉 /(‖q‖2‖q′‖2) based on quantized data q, q′.
Proposition 1. In terms of the coefficients θα,β defined in (A.2), as k →∞, we have

|Biasρ[ρ̂norm]| =
∣∣θ1,1
θ2,0
− ρ
∣∣+O(k−1), (C.1)

Var(ρ̂norm) =
1

k

(
θ2,2
θ22,0
− 2θ1,1θ3,1

θ32,0
+
θ21,1(θ4,0 + θ2,2)

2θ42,0

)
+O(k−2). (C.2)

Proof. We first show (C.1). From a first-order Taylor expansion of (a, b) 7→ a
b around (a0, b0), we

have
a

b
=
a0
b0

+
(a− a0)

b0
− (b− b0)a0

b20
+O((a− a0)2) +O((b− b0)2) as a→ a0, b→ b0.

Using this with a = 〈q, q′〉 /k and b =
√

1
k‖q‖

2
2

1
k‖q′‖

2
2, a0 = E[a], b0 = E[b], and taking

expectations, we obtain that

E[ρ̂norm] = E

 1
k 〈q, q

′〉√
1
k‖q‖

2
2

1
k‖q′‖

2
2

 =
E[ρ̂lin]

E
[√

1
k‖q‖

2
2

1
k‖q′‖

2
2

] +O(1/k) as k →∞. (C.3)

Let us now turn our attention to the expectation in the denominator. Let X0 = 1
k‖q‖

2
2

1
k‖q
′‖22 and

E0 = E[X0]. We have

E

[√
1

k
‖q‖22

1

k
‖q′‖22

]
= E

[√
E0 +

X0 − E0

2
√
E0

+O((X0 − E0)2)

]
as X0 → E0 (C.4)

=
√
E0 +O(1/k) as k →∞. (C.5)
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For E0 we obtain that

E0 = E

[
1

k
‖q‖22

1

k
‖q′‖22

]
= E

[{
1

k

k∑
l=1

Q(z(l))
2

}{
1

k

k∑
m=1

Q(z′(m))
2

}]

= E

 1

k2

∑
l 6=m

Q(z(l))
2Q(z′(m))

2

+ E

[
1

k2

k∑
l=1

Q(z(l))
2Q(z′(l))

2

]

=
k(k − 1)

k2
E[Q(z(1))]

2 +
1

k
E[Q(z(1))

2Q(z′(1))
2] = Ψ4 +O(1/k) as k →∞. (C.6)

For the last line, we use that for l 6= m, z(l) and z′(m) are independent and that {Q(z(l)), Q(z′(l))}
k
l=1

are identically distributed. Combining (C.3), (C.4), (C.6) and using one more first-order Taylor
expansion for the resulting O(1/k) term in the denominator in (C.3), the result (C.1) follows.

Let us now turn to the expression for the variance (C.2). Let a = 〈q, q′〉 /k, b = ‖q‖22/k, and
c = ‖q′‖22/k and consider the function φ(a, b, c) = a/

√
b · c so that Var(ρ̂norm) = Var(φ(a, b, c)).

By a first-order Taylor expansion of φ around (E[a],E[b],E[c]), we obtain

Var(ρ̂norm) = ∇φ(E[a],E[b],E[c])>Cova,b,c∇φ(E[a],E[b],E[c]) +O(1/k2), as k →∞,
where

Cova,b,c =
1

k

 θ2,2 − θ21,1 θ3,1 − θ1,1θ2,0 θ3,1 − θ1,1θ2,0
θ3,1 − θ1,1θ2,0 θ4,0 − θ22,0 θ2,2 − θ22,0
θ3,1 − θ1,1θ2,0 θ2,2 − θ22,0 θ4,0 − θ22,0

 , (C.7)

∇φ(a, b, c) =

(
1√
b · c

,−1

2
b−3/2

a√
c
,−1

2
c−3/2

a√
b

)>
.

The expression for the covariance Cova,b,c of a, b and c is obtained by direct calculation in terms of
coefficients (A.2). Evaluating∇φ(a, b, c) at (E[a] = θ1,1, E[b] = θ2,0,E[c] = θ2,0) yields

∇φ(E[a],E[b],E[c]) =

(
1

θ2,0
− θ1,1

2θ22,0
− θ1,1

2θ22,0

)>
.

The final expression (C.2) results by expanding the quadratic form and collecting terms.

D Proof of Theorem 2

Theorem 2. For any finite b, we have

Varρ(ρ̂norm) = Θ((1− ρ)1/2), Varρ(ρ̂col) = Θ((1− ρ)3/2) as ρ→ 1.

Sketch.

According to Proposition 1, we have that

Varρ(ρ̂norm) =
1

k

(
θ2,2
θ22,0
− 2θ1,1θ3,1

θ32,0
+

1

2

θ21,1(θ4,0 + θ2,2)

θ42,0

)
+O(1/k2) as k →∞. (D.1)

We have θ1,1 → θ2,0, as well as θ3,1 → θ4,0 and θ2,2 → θ4,0 as ρ → 1. Based on arguments made
in the proof of Theorem 1 in [4], it can be verified that the rate of convergence for all these limits
is Θ(

√
1− ρ). Expanding the fraction in (D.1), it can then be seen that the numerator converges to

zero at rate Θ(
√

1− ρ), while the denominator θ42,0 does not depend on ρ.

The rate of decay of Varρ(ρ̂col) can be directly deduced from Theorem 1 in [4], since in the limit the
collision-based estimator ρ̂col coincides with the maximum likelihood estimator whose variance has
been shown to decay at the rate Θ((1− ρ)3/2).
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E Quantization of norms (§3.4 in the paper)

Let x, x′ be a generic set of points from X = {x1, . . . , xn}, and let λ = ‖x‖2 and λ′ = ‖x′‖2
denote their norms. After quantizing the norms, we obtain λ̂ instead of λ and λ̂′ instead of λ′. Let ρ̂

be an estimator of the cosine similarity ρ =
〈x,x′〉
λ·λ′ of x and x′, and consider the following estimator

of the squared distance d = ‖x− x′‖22:

d̂2 = λ̂2 + λ̂′2 − 2λ̂λ̂′ρ̂

The MSE of d̂2 can then be bounded in terms of the MSE of ρ̂ and ε = max{|λ̂− λ|, |λ̂′ − λ′|}.
Proposition 2.

Eρ[{d̂2−d2}2] ≤ 4λ2(λ′)2 Eρ[{ρ̂−ρ}2]+8λλ′(λ+λ′)ε (2|Biasρ(ρ̂)|+ Varρ(ρ̂))+O(ε2). (E.1)

Proof. Let us denote δ = λ̂− λ and δ′ = λ̂′ − λ′. We then have

d̂2 = λ̂2 + λ̂′2 − 2λ̂λ̂′ρ̂ = λ2 + 2δλ+ λ′2 + 2δ′λ′ − 2λλ′ρ̂− 2(λδ′ + λ′δ)ρ̂+O(ε2)

and thus

d̂2 − d2 = 2λλ′(ρ− ρ̂)︸ ︷︷ ︸
L

+ 2λ(δ − δ′ρ̂)︸ ︷︷ ︸
R1

+ 2λ′(δ′ − δρ̂)︸ ︷︷ ︸
R2

+O(ε2).

Define R = R1 +R2. Then

Eρ[{d̂2 − d2}2] = Eρ[(L+R)2] = Eρ[L
2] + 2(Eρ[LR1] + Eρ[LR2]) + Eρ[R

2] +O(ε2)

= 4λ2λ′2 Eρ[(ρ− ρ̂)2] + 2(Eρ[LR1] + Eρ[LR2]) +O(ε2)
(E.2)

It remains to bound Eρ[LR1] and Eρ[LR2]. By collecting terms, we obtain that

Eρ[LR1] = 4λ2λ′Eρ[(ρ− ρ̂)(δ − δ′ρ̂)]

= 4λ2λ′
{
δ(ρ−Eρ[ρ̂])− δ′ρEρ[ρ̂] + δ′Eρ[ρ̂

2]
}

= 4λ2λ′
{
δ(ρ−Eρ[ρ̂])− δ′ρEρ[ρ̂] + δ′(Varρ(ρ̂) + Eρ[ρ̂]2)

}
= 4λ2λ′ {δ(ρ−Eρ[ρ̂]) + δ′Eρ[ρ̂](Eρ[ρ̂]− ρ) + δ′Varρ(ρ̂)}
≤ 4λ2λ′ε(2|Biasρ(ρ̂)|+ Varρ(ρ̂)) (E.3)

Similarly, it can be shown that

Eρ[LR2] ≤ 4λλ′2ε(2|Biasρ(ρ̂)|+ Varρ(ρ̂)) (E.4)

Combining (E.2), (E.3) and (E.4), we conclude the result.
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Part II: Additional Figures

Empirical verification of the asymptotic expressions in Proposition 1

The plots compares the asymptotic MSE of ρ̂norm according to Proposition 1 (solid grey line) to the
empirical MSEs (black dots) for ρ ∈ {0.01, 0.02, . . . , 0.99} based on 104 independent simulations
for different choices of k.
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Full set of plots for §4
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