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Part I: Analysis

A Preparations

For the convenience of the reader, we here repeat material from the paper that will be frequently
referred to in this supplement. For r € (—1, 1), we consider bivariate Gaussian random variables

aonn () 1)

For non-negative integers «, 3, we define coefficients 6, g by

bap = E,[Q(2)*Q(Z)"]

K
= Y D 0P, (Z € o(terts), Z' €0 (tu1,tn),  (A2)
o,0'e{-1,1} s,u=1

where (Z, Z') are bivariate normal (A.1) with 7 = p. We recall that {3 }1," and {1, }i,, K
20=1 denote the tresholds and codes, respectively, assciated with a b-bit scalar quantizer Q.

B Proof of Theorem 1

Consider the linear estimator piin = (¢, ¢') /k based on quantized data ¢, ¢'.

Theorem 1. We have Biasi(ﬁlin) < 4p*>D3, where D, = 33/22”2_2}’ ~ 2722720

Proof. In the sequel, let Q(-) = Qp(-;t*, w*) be the Lloyd-Max quantizer at bit depth b and let
Dy, = E[{Z —Q(Z)}?] be the associated squared distortion. A standard property of the Lloyd-Max
quantizer is that (cf. [2], p. 180)

E[Q(2)(Q(Z2) — z)] = 0. (B.1)
This (B.1) immediately yields
E[ZQ(Z)] = E[Q(Z)*] = b20. (B.2)
according to notation (A.2). Therefore,
=E[{Z - Q(2)}*] = E[2%] - 2E[ZQ(2)] + E[Q(Z)?]
=E[Z%] - E[Q(2)?] (B.3)
=1- 9270.
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Next, we note that
7B pz 4+ /1= p2¢ (B.4)

with £ ~ N (0, 1) independent of Z, where 2 means equality in distribution. Combining (B.2) and
(B.4), we obtain that

B[Z'Q(2)] = El(pZ + V1= £ €)Q(2)
= pE[2Q(2)]
= pbao. (B.5)
We now have
E,[pin] = E[Q(2)Q(Z)] = E[(Z +{Q(Z2) - Z})(Z' +{Q(Z") - Z'})]
=E[ZZ'| + E[Z{Q(Z') - Z'}| + E[Z{Q(Z) — Z}]+
+E[{Q((2) - ZHQe(Z') - Z'}]

=p+2E[Z{Q(2) - Z}] + E[{Q(2) — ZHQ(Z') - Z'}]

= p+2p(620 — 1) + E{Q(2) — ZH{Q(Z') — Z'}]

=p—2pDy + E[{Q(Z) - ZHQ(Z') - Z'}], (B.6)

For the third identity from the top, we have used the fact that Z and Z’ are exchangeable, and the
last two identities follow from (B.5) and (B.3), respectively. Re-arranging (B.6), we obtain

Bias2 (i) = (B, [pun] — p)* = { —20D5 + B{Q(Z) - ZHQ(Z) - ZY)}Y* (B
It is proved in Lemma 1 below that
0<E[{Q(2) - ZHQ(Z') - Z'}] < pDs. (B.8)

Using that p > 0 and combining (B.7) and (B.8), it follows that
Bias, (pin)* < 4p>D3.
The following upper bound is well-known in the signal processing literature (cf. [3], p. 138)

< 33/297 Lg-2b

Do < —5 ’

which yields the assertion.

Lemma 1.
0<E[{Q(Z)-Z}HQ(Z') - Z'}] < pDy. (B.9)
Proof. Define
Ai(p) = E,[2Z'] - E,[Z2Q(Z)]
As(p) = E,[2Q(Z')] - B,[Q(2)Q(Z")].
In the sequel, we will establish that for all p € [0, 1], it holds that
(P1) Ailp) — Az(p) 20,
(P2)  Az(p) = 0.
Relations (P1) and (P2) immediately yield (B.9). Indeed, we have
E [(Z - Q(2)(Z' - Q(2)] = (E,[2Z'] - E,[ZQ(Z)]) — (E,[Z'Q(Z)] — E,[Q(2)Q(Z")])
= Ai(p) — Az(p) = 0,
which yields the lower bound in (B.9). Likewise,
E [(Z - Q(2)(Z' - Q(Z)] = (E,[22'] - E,[ZQ(Z)]) — (E,[Z'Q(Z)] — E,[Q(2)Q(Z")])

= A1(p) — Az(p)
< Ai(p) = pDy,



where the last identity follows with the same argument as used for (B.6) above. It thus remains to
demonstrate (P1) and (P2).

Regarding (P2), we have
25(0) = B,—[ZQ(Z")] - E,—[Q(2)Q(2))] = 0 (B.10)
As(1) = Epm[2Q(2")] - Epma[Q(2)Q(2))] = E[2Q(Z)] - E[Q(Z)*] = 0, (B.11)
using (B.2) again. Property (P2) then follows from the following property:
(P3) The map p +— 61.1(p) is convex on [0, 1].
In fact, property (P3), which follows from Lemma 2 below, in turn implies that
Az(p) = Ep[ZQ(Z')] — Eo[Q(Z2)Q(Z")] = pba,o — 01,1(p),

is a concave function of p. Combining (B.10) and (B.11) with Jensen’s inequality then yields that
As(p) > O for p € [0,1].

Regarding (P1), we expand

Ai(p) — Az2(p) = (p — pb2,0) — (pb2,0 — 01,1(p))
= p(l — 292,0) + 91’1(p).

‘We first note that

A1(0) — Ay(0) =0 (B.12)
To deduce (P1) given (B.12), one then shows that the map
p = A1(p) — Az(p) (B.13)
is non-decreasing on [0, 1]. We do this by obtaining the derivative
d d
V(p) = %(Al(p) —Az(p)) =1 =200 + %91,1(0)-

Denoting v(p) := %91’1@), one computes that

v(0) =63, (B.14)
as an immediate consequence of Lemma 2 below. Substituting this back into -, one obtains
Y(0) =1—2050+ 03 = (1 —620)* > 0.
Given (P3), %91,1 (p) is non-decreasing on [0, 1] and hence y(p) > 0 on [0, 1], which in turn implies

that the map (B.13) is non-decreasing. Combining this with (B.12) yields (P1) and thus the proof of
the lemma. O

Property (P3) and (B.14) can be deduced from the following lemma.
Lemma 2. Let f : R — R be uniformly bounded. Consider the following map defined on [0, 1]:

pouslo) =mlrrz @ ~m([ 0]} 1)

Then 1y obeys the following series expansion:

= 3 &k €T €T X X i
o) =35 ([ s ar) ®.15

where ¢ denotes the standard Gaussian PDF and Hy, is the k-th Hermite polynomial defined by

k
Hy(x) = (—1)]“exp(:102/2)dc‘i—]C exp(—2%/2), k=0,1,...



Proof. From aresultin [1], p. 133, the PDF of (Z, Z'), say ¢, can be expanded as

ok
bp(@,y) = Y T Hila) Hi(y)d(2)(y).
k=0

Using this result, we obtain that

ns(p) = / / F(@)£(5) by, y) do dy

>k
= [ [ 1@rw) Y & @ Huwéla)owis dy
k=0

Since f is uniformly bounded, the {H},}?° , are polynomials and ¢ is a Schwartz function, each
partial sum associated with the series inside the integrand is uniformly bounded. We may hence
appeal to the bounded convergence theorem to obtain that

O

We apply Lemma 2 with the quantization map, i.e., f = (). Expansion (B.15) yields that the second
derivative of 0; 1 (p) is non-negative, and thus convexity. Similarly, (B.14) can be obtained by term-
wise differentiation of (B.15), and evaluation of the result at zero, noting that H; (x) = x, and using
again that E[ZQ(Z)] = 02 (B.2).

C Proof of Proposition 1

Consider the normalized estimator pi, = (q,¢’) /(||¢]|2]|¢’||2) based on quantized data g, ¢'.
Proposition 1. In terms of the coefficients 0, g defined in (A.2), as k — oo, we have

R 0 .
‘Bla’Sp[pnormH = ‘9171 - p’ + O(]f 1), (Cl)
2,0
02 1 (040 + 0
Var(Guom) = 1 0372 B 291,;93,1 n a( 4,04 2,2) Ok C2)
k 02,0 92,0 202,0

Proof. We first show (C.1). From a first-order Taylor expansion of (a, b) — ¢ around (ao, bo), we
have

- b—b
_ % (a=d) 20)“0 +0((a—ap)?) + O((b — by)?) asa — ag, b— bo.
b by bo 0
Using this with a = (g,¢') /k and b = /z]l¢|3 £ll¢’
expectations, we obtain that

2, ap = Ela], by = E[b], and taking

+{a,q) B E[fin]

Halg Hla13] B [y/Eal HlalB

Let us now turn our attention to the expectation in the denominator. Let Xy = %H(JH% %”q/H% and
Ey = E[Xj]. We have

E[ﬁnorm] =E

+O(1/k) as k — cc. (C.3)

1 1 Xo — E
Byl {113 =B VB + 2 O - Eof)| wXo s Bo (C
=V Ey+O(1/k) as k — oc. (C.5)



For Ey we obtain that

1 1
£y =B gl ||q'|§}

r k 1 &

=E { Z Z(z) } {k: Z: Q(ZEM))2H
k
=1

I#m
= L EQ(m)]* + %E[Q(z(l))zQ(zgl))Q] =0t +O0(1/k) ask — oc0.  (C.6)

k(/; —1)
k?

For the last line, we use that for [ # m, z(;) and z(,,,, are independent and that {Q(z()), Q(zzl))}f:1

are identically distributed. Combining (C.3), (C.4), (C.6) and using one more first-order Taylor
expansion for the resulting O(1/k) term in the denominator in (C.3), the result (C.1) follows.

Let us now turn to the expression for the variance (C.2). Let a = (q,q¢') /k, b = |q||3/k, and

¢ = ||¢'||3/k and consider the function ¢(a,b,c) = a/V/b - ¢ so that Var(puom) = Var(é(a, b, c)).
By a first-order Taylor expansion of ¢ around (E[a], E[b], E[c]), we obtain

Var (pnom) = Vo(Ela], E[b},E[c])T Covape Vo(E[a], E[b], Elc]) + O(1/k?), as k — oo,
where
1 022 — 071 031 —011020 631 —0116020
Covape = T 031 — 01,1020 010 — 9%70 02,2 — 05,0 ) (C.7)
031 — 011020 022 — 03 010 — 03

(L Lgpa 1 ogpal)!
Vo(a,b,c) = (m, 2b e 5¢ )

The expression for the covariance Cov,, 3, . of a, b and c is obtained by direct calculation in terms of
coefficients (A.2). Evaluating V¢(a, b, c) at (E[a] = 011, E[b] = 020, E[c] = 02,0) yields

The final expression (C.2) results by expanding the quadratic form and collecting terms. O

D Proof of Theorem 2

Theorem 2. For any finite b, we have

Var, (Prom) = O((1 = p)'/?),  Var, () = O((1 = p)*?) asp— 1.
Sketch.
According to Proposition 1, we have that

Oso 2011031 167 1(040+022)

~ _ e > ) - » ’ ’ 2
Var, (Prorm) = z <0%0 07, + 3 o1, > +O(1/k*)ask — c0.  (D.1)

We have 611 — 029, as well as 031 — 049 and 03 5 — 04 as p — 1. Based on arguments made
in the proof of Theorem 1 in [4], it can be verified that the rate of convergence for all these limits
is ©(y/1 — p). Expanding the fraction in (D.1), it can then be seen that the numerator converges to
zero at rate ©(1/1 — p), while the denominator 0‘2{0 does not depend on p.

The rate of decay of Var,(peo1) can be directly deduced from Theorem 1 in [4], since in the limit the
collision-based estimator p, coincides with the maximum likelihood estimator whose variance has
been shown to decay at the rate ©((1 — p)3/?).



E Quantization of norms (§3.4 in the paper)

Let x, 2’ be a generic set of points from X = {z1,...,z,}, and let A = ||z|2 and A" = |22
denote their norms. After quantizing the norms, we obtain X instead of X and \’ instead of \'. Let p

)

be an estimator of the cosine similarity p = <ii/ of z and 2/, and consider the following estimator
of the squared distance d = ||z — 2'||3:

=X+ N2 - 22\p
The MSE of d? can then be bounded in terms of the MSE of 7 and & = max{|X — Al |X’ — N}
Proposition 2.

E,[{d*—d*}?] < 4X(X)? B, [{p—p}?|+8 N (\+X)e (2| Bias, (p)| + Var,(5))+O0(e?). (E.1)

Proof. Letus denote § = A — X and 8 = X\ — \'. We then have
d®> =22+ N2 =20V = A2+ 260 + A2 +20'N — 2AN 5 — 2(A0 + N6)p + O(e?)
and thus
d> —d? =2)\\(p— D) +2A(0 — &'p) + 2N (8" — 6p) +O(£2).

L R1 R>

Define R = R; + Rs. Then

B, [{d® - d*}?) = B,[(L + R)] = B,|L*] + 2(B,[LR] + B, [LRy)) + B,[R’] + O(?)
= NN E,[(p — 7)?) + 2, [LR] + E,[LR.]) + O(=?)

(E.2)
It remains to bound E,[LR;] and E,[LR5]. By collecting terms, we obtain that
E,[LR)] = 4\*X E,[(p — 9)(6 — §'p)]
— 2N {3(p — B,[]) — 9 pE,[] + ' B, [5]}
= AN {8(p — B,[p]) — ' pB,[] + & (Var,(p) + B, [71)}
= AN {6(p — B, (7)) + &' By [A1(B,[] — p) + &' Var,(p)}
< AN Ne(2| Bias, (p)| + Var, () (E3)
Similarly, it can be shown that
E,[LRs] < 4\\?e(2| Bias,(p)| + Var,(p)) (E.4)
Combining (E.2), (E.3) and (E.4), we conclude the result. O]



Part II: Additional Figures

Empirical verification of the asymptotic expressions in Proposition 1

The plots compares the asymptotic MSE of ppom according to Proposition 1 (solid grey line) to the
empirical MSEs (black dots) for p € {0.01,0.02,...,0.99} based on 10* independent simulations
for different choices of k.
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Full set of plots for §4
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