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1 Proof of Theorem 1.

We first recall the original framework presented in [2], whose results we apply to establish the
asymptotic lower bound in Theorem 1. Consider a controlled Markov chain (Yt)t≥0 on a measurable
state space Y with a control set U . For a given control u ∈ U the transition probabilities are
parametrized by θ ∈ Θ, where Θ is a compact metric space. We denote the probability to move from
state y to state y′, given the control u and the parameter θ as p(y, y′|u, θ). The parameter θ is not
known. The decision maker is provided with a finite set of stationary control lawsG = {g1, . . . , gK}
where each control law gj is a mapping from Y to U : when control law gj is applied in state y, the
applied control is u = gj(y). It is assumed that if the decision maker always selects the same control
law g, the Markov chain is ergodic with stationary distribution πg

θ . The expected reward obtained
when applying control u in state y is denoted by r(y, u), so that the expected reward achieved under
control law g is: µ(θ, g) =

∫

r(y, g(y))πg
θ (y)dy. The decision maker knows the mapping r but not

θ, and she selects control laws g(1), g(2), ..., to minimize the cumulated regret:

R(T, θ) =

T
∑

t=1

max
g∈G

µ(θ, g)− µ(θ, g(t)).

The chosen control law at time t solely depends on the observed states Y1, ..., Yt and the past chosen
control laws g(1), ..., g(t−1). It should be noted that this framework, and the corresponding results,
can be straightforwardly extended to a case where the mapping (θ, g) 7→ µ(θ, g) is arbitrary, as long
as this mapping is known to the decision maker. Of course θ remains unknown.

We now apply the above framework to our structured bandit problem, and we consider θ ∈ Θ,
the compact metric space encoding the structural properties of the average reward function (as intro-
duced in Section 1). The Markov chain has values in Y = R. The set of control laws is G = U = X ,
the set of available arms. These laws are constant, in the sense that the control applied by control
law x does not depend on the state of the Markov chain, and corresponds to selecting arm x. The
state of the Markov chain at time t is given by the observation Yt = Y (x(t − 1), t− 1). The transi-
tion probabilities are chosen such that when control law x is chosen, Yt+1 is distributed as ν(θ(x)),
independently of Yt.

Therefore the Kullback-Leibler information number in the framework of [2] is simply the Kullback-
Leibler divergence between the distributions ν(θ(x)) and ν(λ(x)), that is Ix(θ, λ) = D(θ, λ, x).

Now consider θ ∈ Θ and define the set Λ(θ) consisting of all confusing parameters λ ∈ Θ such that
x⋆(θ) is not optimal under parameter λ, but which are statistically indistinguishable from θ when
playing only x⋆(θ):

Λ(θ) = {λ ∈ Θ : D(θ, λ, x⋆(θ)) = 0, x⋆(θ) 6= x⋆(λ)}

By applying Theorem 1 in [2], we know that for all uniformly good decision policies π we have
lim infT→∞Rπ(T, θ)/ln T ≤ C(θ), whereC(θ) is the minimal value of the following optimization
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problem:

minimize
η(x)≥0 , x∈X

∑

x∈X

η(x)(µ⋆(θ)− µ(x, θ))

subject to
∑

x∈X

η(x)D(θ, λ, x) ≥ 1 , ∀λ ∈ Λ(θ).

which concludes the proof. �

2 Finite Time Analysis of OSSB

For completeness, we restate the assumptions on which the theorem relies:

Assumption 1 The optimal arm x⋆(θ) is unique.

Assumption 2 (Bernoulli observations) θ(x) ∈ [0, 1] and ν(θ(x)) =Ber(θ(x)) for all x ∈ X .

Assumption 3 (Gaussian observations) θ(x) ∈ R and ν(θ(x)) = N (θ(x), 1) for all x ∈ X .

Assumption 4 For all x, the mapping (θ, λ) 7→ D(x, θ, λ) is continuous at all points where it is
not infinite.

Assumption 5 For all x, the mapping θ → µ(x, θ) is continuous.

Assumption 6 The solution to problem (2)-(3) in Theorem 1 is unique.

We now prove Theorem 2 and give a finite time analysis of OSSB.

2.1 Concentration results

We first state two technical results which are instrumental to our analysis.

Lemma 1 [3] Consider either Assumption 2 or 3. Then there exists a function G such that for all
t ≥ 1:

∑

t≥1

P[
∑

x∈X

N(x, t)D(m(t), θ, x) ≥ (1 + γ)ln t] ≤ G(γ, |X |).

Lemma 2 [1] Let x ∈ X and ǫ > 0. Define Ft the σ-algebra generated by (Y (x(s), s))1≤s≤t. Let
S ⊂ N be a (random) set of rounds. Assume that there exists a sequence of (random) sets (S(s))s≥1

such that (i) S ⊂ ∪s≥1S(s), (ii) for all s ≥ 1 and all t ∈ S(s), N(x, t) ≥ ǫs, (iii) |S(s)| ≤ 1, and
(iv) the event t ∈ S(s) is Ft-measurable. Then for all δ > 0:

∑

t≥1

P(t ∈ S, |m(x, t) − θ(x)| > δ) ≤
1

ǫδ2
.

Lemma 1 was first proven in [3] to analyze Lipshitz bandits, but it is useful for generic bandit
problems as well, and allows to bound the expected number of times that the optimal arm is not
correctly identified if arms have been sampled enough to meet the constraints of the optimization
problem (2)-(3). Lemma 2 was proven in [1] in the context of unimodal bandits. However it is
versatile and allows to upper bound the expected cardinality of any set of rounds where x is selected
and θ(x) is not accurately estimated. As shown by this lemma, such sets of rounds only cause finite
regret.

2.2 Continuity of the optimization problem (2)-(3) in Theorem 1

Lemma 3 states that the optimization problem (2)-(3) in Theorem 1 (henceforth referred to as only
(2)-(3)) is continuous with respect to θ. This fact is the cornerstone of our analysis. Since all
bandit problems feature optimization problems such as the one we consider here, Lemma 3 seems
interesting in its own right. The main difficulty to prove Lemma 3 comes from the fact that the set
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Λ(θ) is not finite, so that the optimization problem (2)-(3) is not a linear program. The proof strategy
is similar to that used to prove Berge’s maximal theorem, the added difficulty being that the feasible
set is not compact, so that Berge’s theorem cannot be applied directly.

Lemma 3 The optimal value of (2)-(3), θ 7→ C(θ) is continuous. If (2)-(3) admits a unique solution
c(θ) = (c(x, θ))x∈X at θ, then θ 7→ c(θ) is continuous at θ.

Proof. Define ∆(θ, x) = µ⋆(θ) − µ(x, θ). To ease notation, we use a vector notation so that

c(θ), D(θ, λ) and ∆(θ) denote vectors in R
|X | whose respective components are c(θ, x), D(θ, λ, x)

and ∆(θ, x). For any v ∈ R
|X | we define ||v||∞ = maxx∈X |v(x)|.

Now define the set:

Λ′(θ) = {λ ∈ Θ : max
x 6=x⋆(θ)

µ(x, λ) > µ(x⋆(θ), λ)}.

and the feasible sets:

F(θ) = {c ∈ (R+)|X | : inf
λ∈Λ(θ)

〈c,D(θ, λ)〉 ≥ 1},

F ′(θ) = {c ∈ (R+)|X | : inf
λ∈Λ′(θ)

〈c,D(θ, λ)〉 ≥ 1}

So C(θ) is the minimum of c 7→ 〈c,∆(θ)〉 over F(θ). Define C′(θ) the minimum of c 7→ 〈c,∆(θ)〉
over F ′(θ). We have C(θ) ≤ C′(θ) from F ′(θ) ⊂ F(θ) since Λ(θ) ⊂ Λ′(θ). Now consider
c ∈ F(θ) such that C(θ) = 〈c,∆(θ)〉, and define c′ with c′(x) = ∞ if x = x⋆(θ) and c′(x) = c(x)
otherwise. Then we have c′ ∈ F(θ) and 〈c′,∆(θ)〉 = 〈c,∆(θ)〉 so that C′(θ) ≤ C(θ). Therefore
C′(θ) = C(θ).

Consider θ fixed and consider (θk)k≥0 a sequence in Θ converging to θ. We will prove

that C(θk) →k→∞ C(θ). It is sufficient to prove that lim supk→∞ C(θk) ≤ C(θ) ≤
lim infk→∞ C(θk).

We first prove that lim supk→∞ C(θk) ≤ C(θ). By Assumption 1 and 5, there exists k0 such that

x⋆(θk) = x⋆(θ) ∀k ≥ k0. If k ≥ k0 then Λ′(θ) = Λ′(θk) by definition of Λ′. Consider c⋆ an

optimal solution, that is c⋆ ∈ F ′(θ) and C(θ) = 〈c⋆,∆(θ)〉. Define the sequence ck:

ck =
c⋆

infλ∈Λ′(θ)〈c⋆, D(θk, λ)〉

We have ck ∈ F ′(θk) since Λ′(θ) = Λ′(θk) and:

inf
λ∈Λ′(θk)

〈ck, D(θk, λ)〉 =
infλ∈Λ′(θk)〈c

⋆, D(θk, λ)〉

infλ∈Λ′(θ)〈c⋆, D(θk, λ)〉
= 1.

We have that (θk, λ) 7→ D(θk, λ) is continuous and

inf
λ∈Λ′(θ)

〈c⋆, D(θk, λ)〉 = min
λ∈Λ′(θ)

〈c⋆, D(θk, λ)〉.

Also, since Λ′(θ) ⊂ Θ, and Θ is compact, we have that Λ′(θ) is compact. Therefore, by Berge’s
maximal theorem:

min
λ∈Λ′(θ)

〈c⋆, D(θk, λ)〉 →k→∞ min
λ∈Λ′(θ)

〈c⋆, D(θ, λ)〉 ≥ 1,

since c⋆ ∈ F ′(θ). Now ck ∈ F ′(θk) for all k so that

lim sup
k→∞

C(θk) ≤ lim sup
k→∞

〈ck,∆(θk)〉 ≤ 〈c⋆,∆(θ)〉

We have proven that lim supk→∞ C(θk) ≤ C(θ).

We now prove that lim infk→∞ C(θk) ≥ C(θ). There exists a sequence ck ∈ F ′(θk) such

that C(θk) = 〈ck,∆(θk)〉 ∀k. We prove that (ck)k is bounded by contradiction. If (ck)k is
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unbounded, then it admits a subsequence (ckm)m with ||ckm || →m→∞ ∞. This readily im-

plies that 〈ckm ,∆(θkm )〉 →m→∞ ∞ since ∆(θkm ) →m→∞ ∆(θ), and all components of ∆(θ)
are strictly positive. Therefore lim supk→∞ C(θk) = ∞, a contradiction since we have proven

lim supk→∞ C(θk) ≤ C(θ) <∞.

Hence (ck)k is bounded. Consider c one of its accumulation points and (ckm)m a subsequence

converging to c. Since ckm ∈ F ′(θkm), for any λ ∈ Λ′(θ) = Λ′(θkm) we have 〈ckm , D(θkm , λ)〉 ≥
1. By continuity ofD this implies 〈c,D(θ, λ)〉 ≥ 1 for all λ ∈ Λ′(θ) and c ∈ F ′(θ). NowC(θkm) =
〈ckm ,∆(θkm)〉 →m→∞ 〈c,∆(θ)〉 ≥ C(θ) since c ∈ F ′(θ). This holds for all accumulation points

so we have proven lim infk→∞ C(θk) ≥ C(θ) which concludes the proof of the first statement. The
second statement follows directly. �

2.3 Proof of Theorem 2

The proof is articulated around upper bounding the number of times a suboptimal arm x 6= x⋆ may
be selected in one of the 3 phases of OSSB. We recall the definition of ∆(θ, x) = µ⋆(θ) − µ(x, θ)
and further define:

ψ(θ) = |X |||c(θ)||∞
∑

x∈X

∆(θ, x).

Consider κ > 0, and δ(κ) > 0 such that for all λ ∈ Θ verifying ||θ − λ||∞ ≤ δ(κ) the following
holds:

(i) C(λ) ≤ C(θ)(1 + κ),

(ii) ψ(λ) ≤ 2ψ(θ) ,

(iii) x⋆(θ) = x⋆(λ).

From Assumptions 1, 5 and 6 and Lemma 3, the mappings θ 7→ c(θ), θ 7→ C(θ) and θ 7→ x⋆(θ)
are continuous, so that such a δ(κ) exists.

Exploitation Phase. In this phase, we select arm x∗(m(t)), and N(x, t) ≥ c(m(t), t)(1 + γ)ln t
for all x, so:

∑

x∈X

N(x, t)D(m(t), λ, x) ≥ (1 + γ)ln t, ∀λ ∈ Λ(m(t)).

If a suboptimal arm is selected x∗(m(t)) 6= x⋆(θ), then we must have θ ∈ Λ(m(t)) so that event
A(t) defined as:

∑

x∈X

N(x, t)D(m(t), θ, x) ≥ (1 + γ)ln t.

occurs. From Lemma 1 we have
∑

t≥1

P(A(t)) ≤ G(γ, |X |).

Certainty equivalence. We now upper bound the number of times a suboptimal arm is chosen
and θ is not estimated with sufficient accuracy. Define B(t) the event that x(t) 6= x⋆(θ), that
we are not in the exploitation phase and that ||θ − m(t)||∞ > δ(κ). Define B(x, t) the event
that B(t) occurs and |θ(x) − m(x, t)| > δ(κ) so that B(t) = ∪x∈XB(x, t). We prove that if

B(t) occurs then minxN(x, t) ≥ εs(t)
2 . Assume that this is false, then there exists s(t)/2 rounds

{t1, ..., ts(t)/2} ⊂ {1, ..., t} where minxN(x, t) ≤ εs(t). After |X | such rounds minxN(x, t) is

incremented by at least 1, so that minxN(x, t) ≥ s(t)
2|X | . Since ε < 1

|X | this is a contradiction.

Therefore, if B(t) occurs, then we have both minxN(x, t) ≥ εs(t)
2 , and ||θ −m(t)||∞ > δ(κ). By

Lemma 2 and a union bound we conclude that:

∑

t≥1

P(B(x, t)) ≤
∑

t≥1

∑

x∈X

P(B(x, t)) ≤
2|X |

εδ2(κ)
.

Estimation and Exploration Phase. We are now left with the regret caused by rounds at which θ
is estimated accurately, and we are not in the exploitation phase. Define C(t) the event that x(t) ∈
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X(t) ∪X(t) and that B(t) does not occur. Define the regret caused by such events:

W (T ) =

T
∑

t=1

∑

x∈X

∆(x, θ)1{x(t) = x, C(t)}.

Assume that C(t) occurs and that x(t) = x. We first upper bound s(t). If x = X(t), then N(x, t) ≤
minx∈X N(x, t). Since we are not in the exploitation phase, there exists x′ such that N(x′, t) ≤
c(x′,m(t))(1 + γ)ln t ≤ ||c(m(t))||∞(1 + γ)ln T . Hence N(x, t) ≤ ||c(m(t))||∞(1 + γ)ln T .

If x = X(t), then N(x, t) ≤ c(x,m(t))(1 + γ)ln t ≤ ||c(m(t))||∞(1 + γ)ln T . In both cases
N(x, t) ≤ ||c(m(t))||∞(1 + γ)ln T . Since s(t) is incremented whenever C(t) occurs, we deduce
that s(t) ≤ |X |||c(m(t))||∞(1 + γ)ln T .

We can now bound the number of times x is selected. If x = X(t), we have N(x, t) ≤ εs(t) ≤
ε|X |||c(m(t))||∞(1 + γ)ln T , and if x = X(t) we have c(x,m(t))(1 + γ)ln T . We deduce that
∑T

t=1 1{x(t) = x, C(t)} is upper bounded by:

(c(x,m(t)) + ε|X |||c(m(t))||∞)(1 + γ)ln T.

Summing over x and using the fact that if C(t) occurs then ||m(t)− θ||∞ ≤ δ(κ), so that

∑

x∈X

∆(x, θ)c(m(t)) ≤ C(θ)(1 + κ),

ε|X |||c(m(t))||∞
∑

x∈X

∆(x, θ) ≤ 2εψ(θ),

we get:

W (T ) ≤ (C(θ)(1 + κ) + 2εψ(θ))(1 + γ)ln T.

Putting everything together we obtain the finite-time regret upper bound:

Rπ(T ) ≤ E(W (T )) + µ⋆(θ)
(

∑

t≥1

P(A(t)) + P(B(t))
)

≤ µ⋆(θ)

(

G(γ, |X |) +
2|X |

εδ2(κ)

)

+ (C(θ)(1 + κ) + 2εψ(θ))(1 + γ)ln T.

This implies that:

lim sup
T→∞

Rπ(T )

ln T
≤ (C(θ)(1 + κ) + 2εψ(θ))(1 + γ).

The above holds for all κ > 0, which yields the result:

lim sup
T→∞

Rπ(T )

ln T
≤ (C(θ) + 2εψ(θ))(1 + γ).
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