
Clustering with Noisy Queries (Supplementary Material)

Arya Mazumdar and Barna Saha

A Proof of Lemma 1

Lemma (Restating Lemma 1). Suppose, there are k clusters. There exist at least 4k
5 clusters such

that for each element v from any of these clusters, v will be assigned to a wrong cluster by any
randomized algorithm with probability 0.29− 10/k unless the total number of queries involving v is
more than k

10∆(p‖q) .

Proof. Our first task is to cast the problem as a hypothesis testing problem.

Step 1: Setting up the hypotheses. Let us assume that the k clusters are already formed, and we can
moreover assume that all elements except for one element v has already been assigned to a cluster.
Note that, queries that do not involve the said element plays no role in this stage.

Now the problem reduces to a hypothesis testing problem where the ith hypothesisHi for i = 1, . . . , k,
denotes that the true cluster for v is Vi. We can also add a null-hypothesis H0 that stands for the
vertex belonging to none of the clusters (since k is unknown this is a hypothetical possibility for any
algorithm6). Let Pi denote the joint probability distribution of our observations (the answers to the
queries involving vertex v) when Hi is true, i = 1, . . . , k. That is for any event A we have

Pi(A) = Pr(A|Hi).

Suppose T denotes the total number of queries made by a (possibly randomized) algorithm at this
stage before assigning a cluster. Also let x be the T dimensional binary vector that is the result of
the queries. The assignment is based on x. Let the random variable Ti denote the number of queries
involving cluster Vi, i = 1, . . . , k. In the second phase, we need to identify a set of clusters that are
not being queried with enough by the algorithm.

Step 2: A set of “weak” clusters. We must have,
∑k
i=1 E0Ti = T. Let

J1 ≡ {i ∈ {1, . . . , k} : E0Ti ≤
10T

k
}.

Since, (k − |J1|) 10T
k ≤ T, we have |J1| ≥ 9k

10 . That is there exist at least 9k
10 clusters in each of

where less than 10T
k (on average under H0) queries were made before assignment.

Let Ei ≡ { the algorithm outputs cluster Vi}. Let

J2 = {i ∈ {1, . . . , k} : P0(Ei) ≤
10

k
}.

Moreover, since
∑k
i=1 P0(Ei) ≤ 1 we must have, (k − |J2|) 10

k ≤ 1, or |J2| ≥ 9k
10 . Therefore,

J = J1 ∩ J2 has size,

|J | ≥ 2 · 9k

10
− k =

4k

5
.

Now let us assume that we are given an element v ∈ Vj for some j ∈ J to cluster (Hj is the true
hypothesis). The probability of correct clustering is Pj(Ej). In the last step, we give an upper bound
on probability of correct assignment for this element.

Step 3: Bounding probability of correct assignment for weak cluster elements. We must have,

Pj(Ej) = P0(Ej) + Pj(Ej)− P0(Ej)

6This lower bound easily extends to the case even when k is known.

13

≤ 10

k
+ |P0(Ej)− Pj(Ej)|

≤ 10

k
+ ‖P0 − Pj‖TV ≤

10

k
+

√
1

2
D(P0‖Pj).

where we again used the definition of the total variation distance and in the last step we have used the
Pinsker’s inequality [20]. The task is now to bound the divergence D(P0‖Pj). Recall that P0 and Pj
are the joint distributions of the independent random variables (answers to queries) that are identical
to one of two Bernoulli random variables:Y , which is Bernoulli(p), or Z, which is Bernoulli(q). Let
X1, . . . , XT denote the outputs of the queries, all independent random variables. We must have, from
the chain rule [20],

D(P0‖Pj) =

T∑
i=1

D(P0(xi|x1, . . . , xi−1)‖Pj(xi|x1, . . . , xi−1))

=

T∑
i=1

∑
(x1,...,xi−1)∈{0,1}i−1

P0(x1, . . . , xi−1)D(P0(xi|x1, . . . , xi−1)‖Pj(xi|x1, . . . , xi−1)).

Note that, for the random variable Xi, the term D(P0(xi|x1, . . . , xi−1)‖Pj(xi|x1, . . . , xi−1)) will
contribute to D(q‖p) only when the query involves the cluster Vj . Otherwise the term will contribute
to 0. Hence,

D(P0‖Pj) =

T∑
i=1

∑
(x1,...,xi−1)∈{0,1}i−1:ith query involves Vj

P0(x1, . . . , xi−1)D(q‖p)

= D(q‖p)
T∑
i=1

∑
(x1,...,xi−1)∈{0,1}i−1:ith query involves Vj

P0(x1, . . . , xi−1)

= D(q‖p)
T∑
i=1

P0(ith query involves Vj) = D(q‖p)E0Tj ≤
10T

k
D(q‖p).

Now plugging this in,

Pj(Ej) ≤
10

k
+

√
1

2

10T

k
D(q‖p) ≤ 10

k
+

√
1

2
,

if T ≤ k
10D(q‖p) . Had we bounded the total variation distance with D(Pj‖P0) in the Pinsker’s

inequality then we would have D(p‖q) in the denominator. Obviously the smaller of D(p‖q) and
D(q‖p) would give the stronger lower bound.

B Algorithms

In this section, we first develop an information theoretically optimal algorithm for clustering with
faulty oracle within an O(log n) factor of the optimal query complexity. Next, we show how the ideas
can be extended to make it computationally efficient. We consider both the adaptive and non-adaptive
versions. All the missing proofs are presented here.

B.1 Information-Theoretic Optimal Algorithm

We restate the algorithm.

Let V = tki=1Vi be the true clustering and V = tki=1V̂i be the maximum likelihood (ML) estimate
of the clustering that can be found when all

(
n
2

)
queries have been made to the faulty oracle. Our first

result obtains a query complexity upper bound within an O(log n) factor of the information theoretic
optimal algorithm. The algorithm runs in quasi-polynomial time, and we show this is the optimal
possible assuming the famous planted clique hardness. In Section 3.2, we develop a computationally
efficient algorithm for clustering with noisy oracle.

14

Theorem (restated 2). There exists an algorithm with query complexity O(nk logn
(1−2p)2) for Query-

Cluster that returns the ML estimate with high probability when query answers are incorrect with
probability p < 1

2 . Moreover, the algorithm returns all true clusters of V of size at least C logn
(1−2p)2 for

a suitable constant C with probability 1− on(1).
Remark 2. Assuming p = 1

2 − λ, as λ− > 0, ∆(p‖1 − p) = O(λ2) = O((2p − 1)2). Thus our
upper bound is within a log n factor of the information theoretic optimum in this range.

Algorithm. 1 The algorithm that leads us to the above theorem has several phases. The main
idea is as follows. We start by selecting a small subset of vertices, and extract the heaviest weight
subgraph in it by suitably defining edge weight. If the subgraph extracted has ∼ log n size, we are
confident that it is part of an original cluster. We then grow it completely, where a decision to add a
new vertex to it happens by considering the query answers involving these different log n vertices and
the new vertex. Otherwise, if the subgraph extracted has size less than log n, we select more vertices.
We note that we would never have to select more than O(k log n) vertices, because by pigeonhole
principle, this will ensure that we have selected at least ∼ log n members from a cluster, and the
subgraph detected will have size at least log n. This helps us to bound the query complexity. We note
that our algorithm is completely deterministic.

Phase 1: Selecting a small subgraph. Let c = 16
(1−2p)2 .

1. Select c log n vertices arbitrarily from V . Let V ′ be the set of selected vertices. Create a
subgraph G′ = (V ′, E′) by querying for every (u, v) ∈ V ′ × V ′ and assigning a weight of
ω(u, v) = +1 if the query answer is “yes” and ω(u, v) = −1 otherwise .

2. Extract the heaviest weight subgraph S in G′. If |S| ≥ c log n, move to Phase 2.
3. Else we have |S| < c log n. Select a new vertex u, add it to V ′, and query u with every

vertex in V ′ \ {u}. Move to step (2).

Phase 2: Creating an Active List of Clusters. Initialize an empty list called active when Phase 2 is
executed for the first time.

1. Add S to the list active.
2. Update G′ by removing S from V ′ and every edge incident on S. For every vertex z ∈ V ′,

if
∑
u∈S ω(z, u) > 0, include z in S and remove z from G′ with all edges incident to it.

3. Extract the heaviest weight subgraph S in G′. If |S| ≥ c log n, Move to step(1). Else move
to Phase 3.

Phase 3: Growing the Active Clusters. We now have a set of clusters in active.
1. Select an unassigned vertex v not in V ′ (that is previously unexplored), and for every cluster
C ∈ active, pick c log n distinct vertices u1, u2,, ul in the cluster and query v with them.
If the majority of these answers are “yes”, then include v in C.

2. Else we have for every C ∈ active the majority answer is “no” for v. Include v ∈ V ′ and
query v with every node in V ′ \ v and update E′ accordingly. Extract the heaviest weight
subgraph S from G′ and if its size is at least c log n move to Phase 2 step (1). Else move to
Phase 3 step (1) by selecting another unexplored vertex.

Phase 4: Maximum Likelihood (ML) Estimate.
1. When there is no new vertex to query in Phase 3, extract the maximum likelihood clustering

of G′ and return them along with the active clusters, where the ML estimation is defined as,

max
S`,`=1,···:V=t`=1S`

∑
`

∑
i,j∈S`,i6=j

ωi,j , (see Lemma 8) (2)

Analysis. To establish the correctness of the algorithm, we show the following. Suppose all
(
n
2

)
queries on V × V have been made. If the ML estimate of the clustering with these

(
n
2

)
answers is

same as the true clustering of V that is, tki=1Vi ≡ tki=1V̂i then the algorithm for faulty oracle finds
the true clustering with high probability.

Let without loss of generality, |V̂1| ≥ ... ≥ |V̂l| ≥ 6c log n > |V̂l+1| ≥ ... ≥ |V̂k|. We will show that
Phase 1-3 recover V̂1, V̂2...V̂l with probability at least 1− 1

n . The remaining clusters are recovered in
Phase 4.

15

A subcluster is a subset of nodes in some cluster. Lemma 2 shows that any set S that is included in
active in Phase 2 of the algorithm is a subcluster of V . This establishes that all clusters in active
at any time are subclusters of some original cluster in V . Next, Lemma 3 shows that elements that
are added to a cluster in active are added correctly, and no two clusters in active can be merged.
Therefore, clusters obtained from active are the true clusters. Finally, the remaining of the clusters
can be retrieved from G′ by computing a ML estimate on G′ in Phase 4, leading to Theorem 5.

We will use the following version of the Hoeffding’s inequality heavily in our proof. We state it here
for the sake of completeness.

Hoeffding’s inequality for large deviation of sums of bounded independent random variables is well
known [35][Thm. 2].
Lemma 5 (Hoeffding). If X1, . . . , Xn are independent random variables and ai ≤ Xi ≤ bi for all
i ∈ [n]. Then

Pr(| 1
n

n∑
i=1

(Xi − EXi)| ≥ t) ≤ 2 exp(− 2n2t2∑n
i=1(bi − ai)2

).

This inequality can be used when the random variables are independently sampled with replacement
from a finite sample space. However due to a result in the same paper [35][Thm. 4], this inequality
also holds when the random variables are sampled without replacement from a finite population.
Lemma 6 (Hoeffding). If X1, . . . , Xn are random variables sampled without replacement from a
finite set X ⊂ R, and a ≤ x ≤ b for all x ∈ X . Then

Pr(| 1
n

n∑
i=1

(Xi − EXi)| ≥ t) ≤ 2 exp(− 2nt2

(b− a)2
).

Lemma (restated 2). Let c′ = 6c = 96
(2p−1)2 . Algorithm 1 in Phase 1 and 3 returns a subcluster

of V of size at least c log n with high probability if G′ contains a subcluster of V of size at least
c′ log n. Moreover, it does not return any set of vertices of size at least c log n if G′ does not contain
a subcluster of V of size at least c log n.

Proof. Let V ′ =
⋃
V ′i , i ∈ [1, k], V ′i ∩ V ′j = ∅ for i 6= j, and V ′i ⊆ Vi. Suppose without loss of

generality |V ′1 | ≥ |V ′2 | ≥ ≥ |V ′k|. The lemma is proved via a series of claims.

Claim 1. Let |V ′1 | ≥ c′ log n. Then a set S ⊆ Vi for some i ∈ [1, k] will be returned with high
probability when G′ is processed.

Proof. For an i : |V ′i | ≥ c′ log n, we have

E
∑

s,t∈V ′i ,s<t

ωs,t =

(
|V ′i |

2

)
((1− p)− p) = (1− 2p)

(
|V ′i |

2

)
.

Since ωs,t are independent binary random variables, using the Hoeffding’s inequality (Lemma 5),

Pr
(∑
s,t∈V ′i ,s<t

ωs,t ≤ E
∑

s,t∈V ′i ,s<t

ωs,t − u
)
≤ e
− u2

2(|V
′
i
|

2) .

Hence,

Pr
(∑
s,t∈V ′i ,s<t

ωs,t > (1− δ)E
∑

s,t∈V ′i ,s<t

ωs,t

)
≥ 1− e−

δ2(1−2p)2(|V
′
i |
2)

2 .

Therefore with high probability (here the success probability is even > 1− 1
nlogn)∑

s,t∈V ′i ,s<t

ωs,t > (1− δ)(1− 2p)

(
|V ′i |

2

)

≥ (1− δ)(1− 2p)

(
c′ log n

2

)
>
c′2

3
(1− 2p) log2 n,

16

for an appropriately chosen δ (say δ = 1
4).

So, when processing G′, the algorithm must return a set S such that |S| ≥ c′
√

2(1−2p)
3 log n =

c′′ log n (define c′′ = c′
√

2(1−2p)
3) with probability > 1− 1

nlogn - since otherwise

∑
i,j∈S,i<j

ωi,j <

(
c′
√

2(1−2p)
3 log n

2

)
<
c′2

3
(1− 2p) log2 n.

Now let S * Vi for any i. Then S must have intersection with at least 2 clusters. Let Vi ∩ S = Ci
and let j∗ = arg mini:Ci 6=∅ |Ci|. We claim that,∑

i,j∈S,i<j
ωi,j <

∑
i,j∈S\Cj∗ ,i<j

ωi,j , (3)

with high probability. Condition (3) is equivalent to,∑
i,j∈Cj∗ ,i<j

ωi,j +
∑

i∈Cj∗ ,j∈S\Cj∗

ωi,j < 0. (I)

However this is true because,

1. E
(∑

i,j∈Cj∗ ,i<j ωi,j

)
= (1 − 2p)

(|Cj∗ |
2

)
and E

(∑
i∈Cj∗ ,j∈S\Cj∗ ωi,j

)
= −(1 −

2p)|Cj∗ | · |S \Cj∗ |. Note that |S \Cj∗ | ≥ |Cj∗ |. Hence the expected value of the L.H.S. of
(I) is negative.

2. As long as |Cj∗ | ≥ 12
√

logn
(1−2p) , we have from Hoeffding’s inequality,

Pr
(∑
i,j∈Cj∗ ,i<j

ωi,j ≥ (1 + ν)(1− 2p)

(
|Cj∗ |

2

))

≤ e−
ν2(1−2p)2(|Cj∗ |2)

2 = n−36ν2

.

While at the same time,

Pr
(∑
i∈Cj∗ ,j∈S\Cj∗

ωi,j ≥ −(1− ν)(1− 2p)|Cj∗ | · |S \ Cj∗ |
)

≤ e−
ν2(1−2p)2|Cj∗ |·|S\Cj∗ |

2 = n−72ν2

.

Setting ν = 1
4 (say), of course with high probability (probability at least 1− 2

n2.25)∑
i,j∈Cj∗ ,i<j

ωi,j +
∑

i∈Cj∗ ,j∈S\Cj∗

ωi,j < 0.

3. When |Cj∗ | < 12
√

logn
(1−2p) , let |Cj∗ | = x. We have,

∑
i,j∈Cj∗ ,i<j

ωi,j ≤
(
|Cj∗ |

2

)
≤ x2

2
.

While at the same time,

Pr
(∑
i∈Cj∗ ,j∈S\Cj∗

ωi,j ≥ −(1− ν)(1− 2p)|Cj∗ | · |S \ Cj∗ |
)

≤ e−
ν2(1−2p)2|Cj∗ |·|S\Cj∗ |

2 ≤ e−
ν2(1−2p)2x(|S|−x)

2

17

If x ≥
√

3
2(1−2p) , then x(|S| − x) ≥ 2x|S|

3 = 2c′ logn
3 ≥ 64 logn

(1−2p)2 , where the second

inequality followed since x < S
3 . Hence, in this case, again setting ν = 1

4 and noting the
value of S and the fact |Cj∗ | < 12

√
logn

(1−2p) , with probability at least 1− 1
n2 ,∑

i,j∈Cj∗ ,i<j
ωi,j +

∑
i∈Cj∗ ,j∈S\Cj∗

ωi,j < 0.

If x <
√

3
2(1−2p) , then (S − x) > 48x logn

(1−2p) . Hence E[
∑
i∈Cj∗ ,j∈S\Cj∗ ωi,j] ≤ −(1 −

2p)x(S − x) < −48 log nx
2

2 .

Hence by Hoeffding’s inequality,

Pr
(∑
i∈Cj∗ ,j∈S\Cj∗

ωi,j ≥ −
x2

2

)
≤ e−

2∗47∗47x4 log2 n
|Cj∗ ||S\Cj∗ | ≤ e−

2∗47∗47x3 log2 n
|S| <<

1

n2

Hence (3) is true with probability at least 1− 4
n2 . But then the algorithm would not return S, but will

return S \ Cj∗ . Hence, we have run into a contradiction. This means S ⊆ Vi for some Vi.

Claim 2. Let |V ′1 | ≥ c′ log n. Then a set S ⊆ Vi for some i ∈ [1, k] with size at least c log n will be
returned with high probability when G′ is processed.

Proof. From Claim 1 with probability at least 1− 4
n2 , S ⊆ Vi and∑

i,j∈S,i<j
ωi,j ≥

c′2

3
(1− 2p) log2 n.

Consider the situation that |S| = x < c log n = c′ logn
6 . Then

E[
∑

i,j∈S,i<j
ωi,j] <

x2

2
(1− 2p)

Hence, by the Hoeffding’s inequality

Pr
(∑
i,j∈S,i<j

ωi,j ≥
c′2

3
(1− 2p) log2 n

)
≤ e−

(1−2p)2

(
c′2
3

log2 n− x
2

2

)2

x2

≤ e−
(1−2p)2

(
c′2
4

log2 n

)2

x2 <<
1

n2

Therefore, |S| ≥ c log n with probability at least 1− 5
n2 .

Claim 3. If |V ′1 | < c log n. then no subset of size > c log n will be returned by the algorithm for
faulty oracle when processing G′ with high probability.

Proof. If the algorithm returns a set S with |S| > c log n then S must have intersection with at least
2 clusters in V . Now following the same argument as in Claim 1 to establish Eq. (3), we arrive to a
contradiction, and S cannot be returned.

Since, the algorithm attempts to extract a heaviest weight subgraph at most n times, and each time
the probability of failure is at most O(1

n2). By union bound, all the calls succeed with probability at
least 1−O(1

n). This establishes the lemma.

Lemma (restated 3). The list active contains all the true clusters of V of size ≥ c′ log n at the end of
the algorithm with high probability.

18

Proof. From Lemma 2, any cluster that is added to active in Phase 2 is a subset of some original
cluster in V with high probability, and has size at least c log n. Moreover, whenever G′ contains a
subcluster of V of size at least c′ log n, it is retrieved by the algorithm and added to active.

When a vertex v is added to a cluster C in active, we have |C| ≥ c log n at that time, and there exist
l = c log n distinct members of C, say, u1, u2, .., ul such that majority of the queries of v with these
vertices returned +1. Consider the situation that v 6∈ C. Then the expected number of queries among
the l queries that had an answer “yes” (+1) is lp. We now use the following version of the Chernoff
bound.

Lemma 7 (Chernoff Bound). Let X1, X2, ..., Xn be independent binary random variables, and
X =

∑n
i=1Xi with E[X] = µ. Then for any ε > 0

Pr[X ≥ (1 + ε)µ] ≤ exp
(
− ε2

2 + ε
µ
)

and,

Pr[X ≤ (1− ε)µ] ≤ exp
(
− ε2

2
µ
)

Hence, by the application of the Chernoff bound, Pr(v added to C | v 6∈ C) ≤ e
−lp

(1
2p
−1)2

2+(1
2p
−1) ≤ 1

n3 .

On the other hand, if there exists a cluster C ∈ active such that v ∈ C, then while growing C, v will
be added to C (either v already belongs to G′, or is a newly considered vertex). This again follows by
the Chernoff bound. Here the expected number of queries to be answered “yes” is (1− p)l. Hence
the probability that less than l

2 queries will be answered yes is Pr(v not included in C | v ∈ C) ≤
exp(−c log n(1 − p) (1−2p)2

8(1−p)2) = exp(− 2
(1−p) log n) ≤ 1

n2 . Therefore, for all v, if v is included in
a cluster in active, the assignment is correct with probability at least 1 − 1

n . Also, the assignment
happens as soon as such a cluster is formed in active and v is explored (whichever happens first).

Furthermore, two clusters in active cannot be merged. Suppose, if possible there are two clusters C1
and C2 which ought to be subset of the same cluster in V . Let without loss of generality C2 is added
later in active. Consider the first vertex v ∈ C2 that is considered by our algorithm. If C1 is already
there in active at that time, then with high probability v will be added to C1 in Phase 3. Therefore, C1
must have been added to active after v has been considered by our algorithm and added to G′. Now,
at the time C1 is added to A in Phase 2, v ∈ V ′, and again v will be added to C1 with high probability
in Phase 2–thereby giving a contradiction.

This completes the proof of the lemma.

Theorem 5. If the ML estimate of the clustering of V with all possible
(
n
2

)
queries return the

true clustering, then the algorithm for faulty oracle returns the true clusters with high probability.
Moreover, it returns all the true clusters of V of size at least c′ log n with high probability.

Proof. From Lemma 2 and Lemma 3, active contains all the true clusters of V of size at least c′ log n
with high probability. Any vertex that is not included in the clusters in active at the end of the
algorithm, are in G′. Also G′ contains all possible pairwise queries among them. Clearly, then the
ML estimate of G′ will be the true ML estimate of the clustering restricted to these clusters.

Lemma (restated 4). The query complexity of the algorithm for faulty oracle is O
(
nk logn
(2p−1)2

)
.

Proof. Let there be k′ clusters in active when v is considered by the algorithm. k′ could be 0 in
which case v is considered in Phase 1, else v is considered in Phase 3. Therefore, v is queried with
at most ck′ log n members, c log n each from the k′ active clusters. If v is not included in one of
these clusters, then v is added to G′ and queried will all vertices V ′ in G′. We have seen in the
correctness proof (Lemma 5) that if G′ contains at least c′ log n vertices from any original cluster,
then ML estimate on G′ retrieves those vertices as a cluster with high probability. Hence, when v is
queried with the vertices in G′, |V ′| ≤ (k− k′)c′ log n. Thus the total number of queries made when
the algorithm considers v is at most c′k log n, where c′ = 6c = 96

(2p−1)2 when the error probability is

19

p. This gives the query complexity of the algorithm considering all the vertices, which matches the
lower bound computed in Section 2 within an O(log n) factor.

Now combining all these we get the statement of Theorem 2.

Running Time & Connection to Planted Clique While the algorithm described above is very
close to information theoretic optimal, the running time is not polynomial. Moreover, it is unlikely
that the algorithm can be made efficient.

A crucial step of our algorithm is to find a large cluster of size at least O(logn
(2p−1)2), which can of

course be computed in O(n
logn

(2p−1)2) time. However, since size of G′ is bounded by O(k logn
(2p−1)2), the

running time to compute such a heaviest weight subgraph is O([k logn
(2p−1)2]

logn

(2p−1)2). This running time
is unlikely to be improved to a polynomial. This follows from the planted clique conjecture.

Conjecture 1 (Planted Clique Hardness). Given an Erdős-Rényi random graph G(n, p), with p =
1
2 , the planted clique conjecture states that if we plant in G(n, p) a clique of size t where t =
[Ω(log n), o(

√
n)], then there exists no polynomial time algorithm to recover the largest clique in this

planted model.

Reduction. Given such a graph with a planted clique of size t = Θ(log n), we can construct a new
graph H by randomly deleting each edge with probability 1

3 . Then in H , there is one cluster of size
t where edge error probability is 1

3 and the remaining clusters are singleton with inter-cluster edge
error probability being 1

2 ∗
2
3 = 1

3 . So, if we can detect the heaviest weight subgraph in polynomial
time in the faulty oracle algorithm, then there will be a polynomial time algorithm for the planted
clique problem.

In fact, the reduction shows that if it is computationally hard to detect a planted clique of size t for
some value of t > 0, then it is also computationally hard to detect a cluster of size ≤ t in the faulty
oracle model. Note that t = o(

√
n). In the next section, we propose a computationally efficient

algorithm which recovers all clusters of size at least min (k,
√
n) logn

(1−2p)2 with high probability, which is
the best possible assuming the conjecture, and can potentially recover much smaller sized clusters if
k = o(

√
n).

Finding the Maximum Likelihood Clustering of V with faulty oracle In proving Theorem 2
and Theorem 5, we used the fact that the ML estimate of G′ is given by Equation 2. We here give a
proof.

We can view the clustering problem as following. We have an undirected graph G(V ≡ [n], E), such
that G is a union of k disjoint cliques Gi(Vi, Ei), i = 1, . . . , k. The subsets Vi ∈ [n] are unknown to
us; they are called the clusters of V . The adjacency matrix of G is a block-diagonal matrix. Let us
denote this matrix by A = (ai,j).

Now suppose, each edge of G is erased independently with probability p, and at the same time each
non-edge is replaced with an edge with probability p. Let the resultant adjacency matrix of the
modified graph be Z = (zi,j). The aim is to recover A from Z.

Lemma 8. The maximum likelihood recovery is given by the following:

max
S`,`=1,···:V=t`S`

∏
`

∏
i,j∈S`,i6=j

P+(zi,j)
∏

r,t,r 6=t

∏
i∈Sr,j∈St

P−(zi,j)

= max
S`,`=1,···:V=t`=1S`

∏
`

∏
i,j∈S`,i6=j

P+(zi,j)

P−(zi,j)

∏
i,j∈V,i 6=j

P−(zi,j).

where, P+(1) = 1− p, P+(0) = p, P−(1) = p, P−(0) = 1− p.

Hence, the ML recovery asks for,

max
S`,`=1,···:V=t`=1S`

∑
`

∑
i,j∈S`,i6=j

ln
P+(zi,j)

P−(zi,j)
.

20

Note that,

ln
P+(0)

P−(0)
= − ln

P+(1)

P−(1)
= ln

p

1− p
.

Hence the ML estimation is,

max
S`,`=1,···:V=t`=1S`

∑
`

∑
i,j∈S`,i6=j

ωi,j , (4)

where ωi,j = 2zi,j − 1, i 6= j, i.e., ωi,j = 1, when zi,j = 1 and ωi,j = −1 when zi,j = 0, i 6= j.
Further ωi,i = zi,i = 0, i = 1, . . . , n.

Note that (4) is equivalent to finding correlation clustering in G with the objective of maximizing the
consistency with the edge labels, that is we want to maximize the total number of positive intra-cluster
edges and total number of negative inter-cluster edges [6, 44, 43]. This can be seen as follows.

max
S`,`=1,···:V=t`=1S`

∑
`

∑
i,j∈S`,i6=j

ωi,j

≡ max
S`,`=1,···:V=t`=1S`

[∑
`

∑
i,j∈S`,i6=j

∣∣(i, j) : ωi,j = +1
∣∣− ∣∣(i, j) : ωi,j = −1

∣∣]+
∑

i,j∈V,i 6=j

∣∣(i, j) : ωi,j = −1
∣∣

= max
S`,`=1,···:V=t`=1S`

[∑
`

∑
i,j∈S`,i6=j

∣∣(i, j) : ωi,j = +1
∣∣+
[∑
r,t:r 6=t

∣∣(i, j) : i ∈ Sr, j ∈ St, ωi,j = −1
∣∣].

Therefore (4) is same as correlation clustering, however viewing it as obtaining clusters with maximum
intra-cluster weight helps us to obtain the desired running time of our algorithm. Also, note that, we
have a random instance of correlation clustering here, and not a worst case instance.

B.2 Computationally Efficient Algorithm

Known k We first design an algorithm when k, the number of clusters is known. Then we extend it
to the case of unknown k. The algorithm is completely deterministic.

Theorem 6. There exists a polynomial time algorithm with query complexity O(nk2

(2p−1)4) for Query-

Cluster with error probability p, which recovers all clusters of size at least Ω(k logn
(2p−1)4).

Algorithm 2. Let N = 64k2 logn
(1−2p)4 . We define two thresholds T (a) = pa + 6

(1−2p)

√
N log n and

θ(a) = 2p(1− p)a+ 2
√
N log n. The algorithm is as follows.

Phase 1-2C: Select a Small Subgraph. Initially we have an empty graph G′ = (V ′, E′), and all
vertices in V are unassigned to any cluster.

1. Select X new vertices arbitrarily from the unassigned vertices in V \ V ′ and add them to V ′ such
that the size of V ′ is N . If there are not enough vertices left in V \ V ′, select all of them in X .
Update G′ = (V ′, E′) by querying for every (u, v) such that u ∈ X and v ∈ V ′ and assigning a
weight of ω(u, v) = +1 if the query answer is “yes” and ω(u, v) = −1 otherwise .

2. Let N+(u) denote all the neighbors of u in G′ connected by +1-weighted edges. We now
cluster G′. Select every u and v such that u 6= v and |N+(u)|, |N+(v)| ≥ T (|V ′|). Then if
|N+(u)\N+(v)|+|N+(v)\N+(u)| ≤ θ(|V ′|) (the symmetric difference of these neighborhoods)
include u and v in the same cluster. Include in active all clusters formed in this step that have size
at least 64k logn

(1−2p)4 . If there is no such cluster, abort. Remove all vertices in such cluster from V ′ and
any edge incident on them from E′.

Phase 3C: Growing the Active Clusters.

1. For every unassigned vertex v ∈ V \ V ′, and for every cluster C ∈ active, pick 16logn
(1−2p)2 distinct

vertices, u1, u2,, ul in the cluster and query v with them. If the majority of these answers are
“yes”, then include v in C.

2. Output all the clusters in active and move to Phase 1 step (1) to obtain the remaining clusters.

21

Analysis. Note that at every iteration, we consider a set of X new vertices from V \ V ′ which have
not been previously included in any cluster considered in active, and query all pairs in X × V ′ \ V .
Let A denote the fixed n × n matrix, where if (i, j), i, j ∈ V is queried by the algorithm in any
iteration, we include the query result there (+1 or −1), else the entry is empty which indicates that
the pair was not queried by the entire run of the algorithm. This matrix A has the property that for
any entry (i, j), if i and j belong to the same cluster and queried then A(i, j) = +1 with probability
(1− p) and A(i, j) = −1 with probability p. On the other hand, if i and j belong to different clusters
and queried then A(i, j) = −1 with probability (1− p) and A(i, j) = +1 with probability p. Note
that the adjacency matrix of G′ in any iteration is a submatrix of A which has no empty entry.

We first look at Phase 1-2C. At every iteration, our algorithm selects a submatrix of A corresponding
to V ′ × V ′ after step 1. This submatrix of A has no empty entry. Let us call it A′. We show that if V ′

contains any subcluster of size ≥ 64k logn
(2p−1)4 , it is retrieved by step 2 with probability at least 1− 1

n2 .
In that case, the iteration succeeds. Now the submatrices from one iteration to the other iteration can
overlap, so we can only apply union bound to obtain the overall success probability, but that suffices.
The probability that in step 2, the algorithm fails to retrieve any cluster of size at least 64k logn

(2p−1)4 in
any iteration is at most 1

n2 . The number of iterations is at most k < n, since in every iteration except
possibly for the last one, V ′ contains at least one subcluster of that size by a simple pigeonhole
principle. This is because in every iteration except possibly for the last one |V ′| = 64k2 logn

(2p−1)4 , and
there are at most k clusters. Therefore, the probability that there exists at least one iteration which
fails to retrieve the “large” clusters is at most k

n2 ≤ 1
n by union bound. Thus all the iterations will be

successful in retrieving the large clusters with probability at least 1− 1
n .

Now, following the same argument as Lemma 3, each such cluster will be grown completely by Phase
3-C step (1), and will be output correctly in Phase 3-C step 2.

Lemma 9. Let c = 64
(1−2p)4 . Whenever G′ contains a subcluster of size ck log n, it is retrieved by

Algorithm 2 in Phase 1-2C with high probability.

Proof. Consider a particular iteration. Let N+(u) denote all the neighbors of u in G′ connected by
+1 edges. Let A′ denote the corresponding submatrix of A corresponding to G′. We have |V ′| ≤ N
(|V ′| = N except possibly for the last iteration). Assume, |V ′| = N ′. Also |V | = n.

Let Cu denote the cluster containing u. We have

E[|N+(u)|] = (1− p)|Cu|+ p(N ′ − |Cu|) = pN ′ + (1− 2p)|Cu|

By the Hoeffding’s inequality

Pr(|N+(u)| ∈ pN ′ + (1− 2p)|Cu| ± 2
√
N log n) ≥ 1− 1

n4

Therefore for all u such that |Cu| ≥ 8
√
N logn

(1−2p)2 , we have |N+(u)| > pN ′ + 6
(1−2p)

√
N log n =

T (|V ′|), and for all u such that |Cu| ≤ 4
√
N logn

(1−2p)2 , we have |N+(u)| < pN ′ + 6
(1−2p)

√
N log n with

probability at least 1− 1
n3 by union bound.

Consider all u such that |N+(u)| > T (|V ′|). Then with probability at least 1 − 1
n3 , we have

|Cu| > 4
√
N logn

(1−2p)2 . Let us call this set U . For every u, v ∈ U, u 6= v, the algorithm computes the
symmetric difference of N+(u) and N+(v) which is

1. 2p(1 − p)N ′ on expectation if u and v belong to the same cluster. And again applying
Hoeffding’s inequality, it is at most 2p(1 − p)N ′ + 2

√
N log n with probability at least

1− 1
n4 .

2. (p2 + (1 − p)2)(|Cu| + |Cv|) + 2p(1 − p)(N ′ − |Cu| − |Cv|) = 2p(1 − p)N ′ + (1 −
2p)2(|Cu|+ |Cv|) on expectation if u and v belong to different clusters. Again using the
Hoeffding’s inequality, it is at least 2p(1− p)N ′ + (1− 2p)2(|Cu|+ |Cv|)− 2

√
N log n

with probability at least 1− 1
n4 .

22

Therefore, for all u and v, either of the above two inequalities fail with probability at most 1
n2 .

Now, since for all u if |N+(u)| > T (|V ′|) then |Cu| > 4
√
N logn

(1−2p)2 with probability 1− 1
n3 , we get

for every u and v in U , if the symmetric difference of N+(u) and N+(v) is ≤ 2p(1 − p)N ′ +
2
√
N log n = θ(|V ′|), then u and v must belong to the same cluster with probability at least

1− 1
n2 − 1

n3 ≥ 1− 2
n2 .

Hence, all subclusters ofG′ that have size at least 8
√
N logn

(1−2p)2 will be retrieved correctly with probability

at least 1 − 2
n2 . Now since N ′ = N = 64k2 logn

(1−2p)4 for all but possibly the last iteration, we have
8
√
N logn

(1−2p)2 = 64k logn
(1−2p)4 . Moreover, since there are at most k clusters in G and hence in G′, there exists

at least one subcluster of size 64k logn
(1−2p)4 in G′ in every iteration except possibly the last one, which

will be retrieved.

Then, there could be at most k < n iterations. The probability that in one iteration, the algorithm will
fail to retrieve a large cluster by our analysis is at most 2

n2 . Hence, by union bound over the iterations,
the algorithm will successfully retrieve all clusters in Phase 1-2C with probability at least 1− 2

n .

Now, following the same argument as in Lemma 3, each subcluster of size 64k logn
(1−2p)4 will be grown

completely by Phase 3-C step (1).

Running time of the algorithm is dominated by the time required to run step 2 of Phase 1-2C.
Computing trivially, finding the symmetric differences of +1 neighborhoods all

(
N
2

)
pairs requires

time O(N3). We can keep a sorted list of +1 neighbors of every vertex is O(N2 log n) time. Then,
for every pair, it takes O(N) time to find the symmetric difference. This can be reduced to O(Nω)
using fast matrix multiplication to compute set intersection where ω ≤ 2.373. Moreover, since
each invocation of this step removes one cluster, there can be at most k calls to it and for every
vertex, time required in Phase 3C over all the rounds is O(k logn

(1−2p)2). This gives an overall running

time of O(nk logn
(1−2p)2 + kNω) = O(nk logn

(1−2p)2 + k1+2ω) = O(nk logn
(1−2p)2 + k5.746). Without fast matrix

multiplication, the running time is O(nk logn
(1−2p)2 + k7).

The query complexity of the algorithm is O(nk
2 logn

(2p−1)4) since each vertex is involved in at most

O(k
2 logn

(2p−1)4) queries within G′ and O(k logn
(2p−1)2) across the active clusters. In fact, in each iteration, the

number of queries within G′ is O(N2) and since there could be at most k rounds, the overall query
complexity is O(nk logn

(2p−1)2 + min (nk
2 logn

(2p−1)4 , kN
2)).Thus we get Theorem 6.

Remark 3. Readers familiar with the correlation clustering algorithm for noisy input from [6]
would recognize that the idea of looking into symmetric difference of positive neighborhoods is from
[6]. Like [6], we need to know the parameter p to design our algorithm. In fact, one can view our
algorithm as running the algorithm of [6] on carefully crafted subgraphs. Developing a parameter
free algorithm that works without knowing p remains an exciting future direction.

Unknown k Let c = 64
(1−2p)4 . When the number of clusters k is unknown, it is not possible exactly

to determine when the subgraph G′ = (V ′, E′) contains ck2 log n sampled vertices. To overcome
such difficulty, we propose the following approach of iteratively guessing and updating the estimate
of k based on the highest size of N+(v) for v ∈ V ′. Let ` be the guessed value of k. We start with
` = 2.

1. Randomly sample X vertices so that N = |V ′| = c`2 log n

2. For each v ∈ V ′, estimate Ĉv = 1
(1−2p) (|N+(v)| − pN)

3. If maxv Ĉv >
6` logn
(1−2p)4 then run step 2 of Phase 1-3C on G′ with k = `, and then move to

Phase 3C.

4. Else set ` = 2` and move to step (2).

23

Clearly, we will never guess ` > 2k, and hence the process converges after at most log k rounds.
When N = c`2 log n, we have

√
N log n ≤ c` log n (we must have `2 ≤ n, otherwise we sample the

entire graph). From Lemma 9 we get, whenever Ĉv > 6` logn
(1−2p)4 , the actual size of cluster containing v

is ≥ 4` logn
(1−2p)4 with high probability. We can then obtain the exact subcluster containing v in G′ and

grow it fully in Phase 3C with high probability. The query complexity remain the same within a
factor of 2 and running time increases only by a factor of log k.

Discussion: Correlation Clustering over Noisy Input. In a random noise model, also introduced by
[6] and studied further by [44], we start with a ground truth clustering, and then each edge label is
flipped with probability p. [6] gave an algorithm that recovers all true clusters of size ≥ c1

√
n log n

for some suitable constant c1 under this model. Moreover, if all the clusters have size ≥ c2
√
n,

[44] gave a semi-definite programming based algorithm to recover all of them. Using the algorithm
for unknown k verbatim, we can obtain a correlation clustering algorithm for random noise model
that recovers all clusters of size Ω(min(k,

√
n) logn

(2p−1)4). Since the maximum likelihood estimate of our
algorithm is correlation clustering, the true clusters (which is same as the ML clustering) of size
Ω(min(k,

√
n) logn

(2p−1)4) that the algorithm recovers is the correct correlation clustering output. Therefore,

when k <
√
n

logn , we can recover much smaller sized clusters than [6, 44].

Theorem 7. There exists a deterministic polynomial time algorithm for correlation clustering over
noisy input that recovers all the underlying true clusters of size at least c3 min (k,

√
n) log n for a

suitable constant c3 with high probability.

B.3 Non-adaptive Algorithm

In this section, we consider the case when all queries must be made upfront that is adaptive querying
is not allowed. We show how our adaptive algorithms can be modified to handle such setting.
Specifically, for k = 2, we show nonadaptive algorithms are as powerful as adaptive algorithms, but
for k ≥ 3, unless the maximum to minimum cluster size is bounded, there is a significant advantage
gained by using adaptive algorithm.

We prove the following theorem.
Theorem (restated 4). • For k = 2, there exists an O(n log n) time nonadaptive algorithm that
recovers the clusters with high probability with query complexity O(n logn

(1−2p)4).

• For k ≥ 3, if R is the ratio between maximum to minimum cluster size, then there exists a random-
ized nonadaptive algorithm that recovers all clusters with high probability with query complexity
O(Rnk logn

(1−2p)2). Moreover, there exists a computationally efficient algorithm for the same with query

complexity O(Rnk
2 logn

(1−2p)4).

• For k ≥ 3, if the minimum cluster size is r, then any deterministic non-adaptive algorithm must
make Ω(n

2

r) queries even when query answers are perfect to recover the clusters exactly. This shows
that adaptive algorithms are much more powerful than their nonadaptive counterparts.

Non-adaptive with k = 2: For k = 2, the algorithm is as follows. It constructs the graph
G′ = (V ′, E′) by randomly sampling N = 4c log n vertices where c = Θ(1

(1−2p)4) and querying all(|V ′|
2

)
pairs as well as all (u, v) where u ∈ V \ V ′ and v ∈ V ′. Note that this is quite different from

random querying.

G′ then contains at least one subcluster of size at least 2c log n = N
2 , which is recovered by running

the computationally efficient algorithm from Section 3.2. Using the query answers of (u, v) where
u ∈ V \ V ′ and v ∈ V ′, the subcluster is then grown fully. Finally, all the other vertices are put in a
separate cluster.

The algorithm running time is O(n log n) from the running time discussion of our computationally
efficient adaptive algorithm for known k. This improves upon [48, 16, 14].

Non-adaptive with k ≥ 3: Let R ≥ 1 be the ratio of the maximum to minimum cluster size.
When the minimum size cluster is small, in Appendix C, we provide a lower bound of Ω(n2) for

24

any deterministic algorithm. Our algorithm simply creates G′ by randomly and uniformly sampling
Θ(Rk

2 logn
(1−2p)4) vertices fromG. It then queries all (u, v) ∈ V ′×V ′. We here assume Θ(Rk

2 logn
(1−2p)4) < n,

otherwise G′ is the entire fully-queried graph G. The query complexity is therefore, O(Rnk
2 logn

(1−2p)4).

Since, we sample the vertices uniformly at random, the minimum number of vertices selected from
any cluster with high probability using the Chernoff bound is O(Rnk logn

(1−2p)4). Now, again following
the algorithm of Section 3.2, we can recover all these subclusters exactly with high probability–the
remaining queries are then used to grow them fully. The running time of the algorithm is same as the
running time of its adaptive version.

To obtain an information theoretic optimal result within an O(log n) factor, instead of sampling
Θ(Rk

2 logn
(1−2p)4) vertices, we sample Θ(Rk logn

(1−2p)2) vertices from G to construct G′ and then issue all
pairwise queries (u, v) ∈ V × V ′. Then, by the same argument, the minimum size of any subcluster
in G′ is at least Θ(logn

(1−2p)2) with high probability which can be recovered by using the algorithm for
detecting heaviest weight subgraph from Section 3.1.

C Lower Bound: Nonadaptive queries and the Stochastic Block Model

First, let us note that when there are only two clusters, and the oracle gives correct answers, then it is
possible to recover the clusters with only n− 1 queries. Indeed, just query every element with a fixed
element. It is also easy to see than Ω(n) queries are required (since our lower bound of Theorem 1 is
valid in this special case).

On the other hand, consider the case when there are k > 2 clusters, and the oracle is perfect. We
show that any deterministic algorithm would require Ω(n2) queries. This is in stark contrast with our
adaptive algorithms which are all deterministic and achieve significantly less query complexity.
Claim 4. Assume there are k ≥ 3 clusters and the minimum size of a cluster is r. Then any
deterministic nonadaptive algorithm must make Ω(n

2

r) queries, even when the oracle is perfect.

Proof. Consider a graph with n vertices and there will be an edge between two vertices if the
deterministic nonadaptive algorithm makes queries between them. Assume the number of queries
made is at most n

2

4r . Then, using Turán’s theorem, this graph must have an independent set of size at
least n

n/2r+1 ≈ 2r. We can create an closeting instance with three clusters: one large cluster with
n− 2r vertices, and two small clusters with size r each, where the union of the later two constitutes
the independent set. Since the algorithm makes no query within the later two cluster, there will be no
way to identify them. Hence the number of queries for any nonadaptive deterministic algorithm must
be more than n2

4r .

C.1 Stochastic Block Model

Our model of faulty oracle is closely related to the stochastic block model. Indeed, if all
(
n
2

)
queries

are performed with the faulty oracleOp,q , we exactly recover the adjacency matrix of usual stochastic
block model. When we are performing a fixed number Q <

(
n
2

)
of queries to the oracle, we can

think of that as a generalization of the stochastic block model, where only Q entries of the adjacency
matrix of the stochastic block model is being provided to us. One crucial point about our model is
that though, we can adaptively query to carefully select the entries of the adjacency matrix of the
stochastic block model to ensure recovery of the clustering.

Let us, consider the case when all of the Q queries are made nonadaptively. This is still a general-
ization of stochastic block model (in which case Q =

(
n
2

)
). Assume the prior probability of each

element being assigned to any cluster is uniform. Since each query involves two elements, this means
that the average number of queries an element is involved in is 2Q

n . Using Markov inequality, we can
say that there exists at least n2 elements U , each of which are involved in at most 4Q

n queries.

Now we can restrict ourselves to finding the clustering among only such n
2 elements each of which

are involved in at most 4Q
n queries. Now let us just take any two clusters V1 and V2 and a fixed

element v ∈ V1 ∩ U . We obtain K = n
2k different equiprobable clusterings by interchanging v with

25

the elements of V2 ∩ U . Let us consider the task of distinguishing between these K hypotheses, by
looking the query answers.

Now, we can use a generalized Fano’s inequality from [50][Thm. 4], where we consider Renyi
divergence of order 1

2 , to have,

−2 log
(√1− Pe

K
+

√
Pe(1−

1

K
)
)

≤ − log
∑
y

(
1

K

K∑
j=1

√
Qj(y))2

where Pe the probability of error of this hypothesis testing problem. This implies,(√1− Pe
K

+

√
Pe(1−

1

K
)
)2

≥ 1−H2(Qi‖Qj)

≥ 1−
(

1− (1−H2(p‖q))
8Q
nk

)
= (1−H2(p‖q))

8Q
nk ,

where we have used the fact that each element considered can influence at most 4Q
nk query answers on

average by this interchange. Again, if we assume p ∼ Bernoulli
(
a logn
n

)
and q ∼ Bernoulli

(
b logn
n

)
,

a particular regime of interest for stochastic block model, then,√
k

n
+
√
Pe

≥
(√ab log n

n
+

√
(1− a log n

n
)(1− b log n

n
)
) 4Q
nk

= n
−
(
a+b
2 −
√
ab− ab logn

n

)
4Q

n2k .

This implies,
√
Pe ≥ n

−
(
a+b
2 −
√
ab

)
4Q

n2k −
√
kn−1/2. In particular, if

(
a+b

2 −
√
ab
)

4Q
n2k <

1
2 , then

Pe > 0. Hence, Pe > 1
n if
√
a−
√
b < n

2

√
k
Q .

Note that when Q =
(
n
2

)
, the maximum possible value, we get

√
a−
√
b <

√
k
2 =⇒ Pe > 0,–this

is slightly suboptimal by a factor of
√

2 than what is known for the stochastic block model [2, 49].
Tightening the constant, and getting matching upper bound for arbitrary Q are interesting future work.
However, note that, our tools are not specialized for this regime of stochastic block models, and the
result works for general values of Q, not only the corner point of Q =

(
n
2

)
.

Now to extend this argument, to the case where adaptive querying is allowed, is difficult. Therefore
we have to rely on the general technique of Theorem 1.
Remark 4. There is another different version of Fano’s inequality that we can use here - form
[33][Thm. 7], that says the probability of error of this hypothesis testing problem is:

Pe ≥ 1−
4Q
nk (D(p‖q) +D(q‖p)) + ln 2

log n
2k

.

This says that the number of nonadaptive queries must be at least Ω(nk logn
D(p‖q)+D(q‖p)) to recover the

clustering with positive probability (this is indeed a lower bound for balanced clustering). As we
have seen from Section 3.3, this bound is tight.

26

	Proof of Lemma 1
	Algorithms
	Information-Theoretic Optimal Algorithm
	Computationally Efficient Algorithm
	Non-adaptive Algorithm

	Lower Bound: Nonadaptive queries and the Stochastic Block Model
	Stochastic Block Model

