Supplemental Material

Resurrecting the sigmoid in deep learning through
dynamical isometry: theory and practice

1 Theoretical results

Result 1. The S-transform for JJ7 is given by,
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Proof. First notice that, by eqn. (9), M (z) and thus S(z) depend only on the moments of the distribution. The
moments, in turn, can be defined in terms of traces, which are invariant to cyclic permutations, i.e.,

tr(A1As - Ap)F = tr(Ag - A A1)F (S2)

Therefore the S-transform is invariant to cyclic permutations. Define matrices () and Q,
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which are related by a cyclic permutation. Therefore the above argument shows that their S-transforms are equal,
ie. Sg, = Sp, - Then eqn. (11) implies that,
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where the last line follows since each weight matrix is identically distributed. O

Example 1. Products of Gaussian random matrices with variance o2, have the S transform,
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Proof. Itis well-known (see, e.g. [16]) that the moments of a Wishart are proportional to the Catalan numbers,
ie.,
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whose generating function is
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It is straightforward to invert this function,
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so that, using eqn. (10),
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as hypothesized. O

Example 2. The S-transform of the identity is given by St = 1.



Proof. The moments of the identity are all equal to one, so we have,
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whose inverse is,
1
M (z) = ;LZ (S17)
so that,
Sr=1. (S18)
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