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Abstract

Generative Adversarial Networks (GAN) are an effective method for training
generative models of complex data such as natural images. However, they are
notoriously hard to train and can suffer from the problem of missing modes where
the model is not able to produce examples in certain regions of the space. We
propose an iterative procedure, called AdaGAN, where at every step we add a new
component into a mixture model by running a GAN algorithm on a re-weighted
sample. This is inspired by boosting algorithms, where many potentially weak
individual predictors are greedily aggregated to form a strong composite predictor.
We prove analytically that such an incremental procedure leads to convergence
to the true distribution in a finite number of steps if each step is optimal, and
convergence at an exponential rate otherwise. We also illustrate experimentally
that this procedure addresses the problem of missing modes.

1 Introduction

Imagine we have a large corpus, containing unlabeled pictures of animals, and our task is to build a
generative probabilistic model of the data. We run a recently proposed algorithm and end up with a
model which produces impressive pictures of cats and dogs, but not a single giraffe. A natural way to
fix this would be to manually remove all cats and dogs from the training set and run the algorithm on
the updated corpus. The algorithm would then have no choice but to produce new animals and, by
iterating this process until there’s only giraffes left in the training set, we would arrive at a model
generating giraffes (assuming sufficient sample size). At the end, we aggregate the models obtained
by building a mixture model. Unfortunately, the described meta-algorithm requires manual work for
removing certain pictures from the unlabeled training set at every iteration.

Let us turn this into an automatic approach, and rather than including or excluding a picture, put
continuous weights on them. To this end, we train a binary classifier to separate “true” pictures of
the original corpus from the set of “synthetic” pictures generated by the mixture of all the models
trained so far. We would expect the classifier to make confident predictions for the true pictures of
animals missed by the model (giraffes), because there are no synthetic pictures nearby to be confused
with them. By a similar argument, the classifier should make less confident predictions for the true
pictures containing animals already generated by one of the trained models (cats and dogs). For each
picture in the corpus, we can thus use the classifier’s confidence to compute a weight which we use
for that picture in the next iteration, to be performed on the re-weighted dataset.
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The present work provides a principled way to perform this re-weighting, with theoretical guarantees
showing that the resulting mixture models indeed approach the true data distribution.1

ALGORITHM 1 AdaGAN, a meta-algorithm to con-
struct a “strong” mixture of T individual generative
models (f.ex. GANs), trained sequentially.

Input: Training sample SN := {X1, . . . , XN}.
Output: Mixture generative model G = GT .

Train vanilla GAN G1 = GAN(SN ,W1) with a
uniform weight W1 = (1/N, . . . , 1/N) over the
training points
for t = 2, . . . , T do

#Choose the overall weight of the next mixture
component
βt = ChooseMixtureWeight(t)
#Update the weight of each training example
Wt = UpdateTrainingWeights(Gt−1, SN , βt)
#Train t-th “weak” component generator Gc

t

Gc
t = GAN(SN ,Wt)

#Update the overall generative model:
#Form a mixture of Gt−1 and Gc

t .
Gt = (1− βt)Gt−1 + βtG

c
t

end for

Before discussing how to build the mixture, let
us consider the question of building a single
generative model. A recent trend in modelling
high dimensional data such as natural images
is to use neural networks [1, 2]. One popu-
lar approach are Generative Adversarial Net-
works (GAN) [2], where the generator is trained
adversarially against a classifier, which tries to
differentiate the true from the generated data.
While the original GAN algorithm often pro-
duces realistically looking data, several issues
were reported in the literature, among which
the missing modes problem, where the generator
converges to only one or a few modes of the data
distribution, thus not providing enough variabil-
ity in the generated data. This seems to match
the situation described earlier, which is why we
will most often illustrate our algorithm with a
GAN as the underlying base generator. We call
it AdaGAN, for Adaptive GAN, but we could ac-
tually use any other generator: a Gaussian mix-
ture model, a VAE [1], a WGAN [3], or even
an unrolled [4] or mode-regularized GAN [5],
which were both already specifically developed
to tackle the missing mode problem. Thus, we do not aim at improving the original GAN or any
other generative algorithm. We rather propose and analyse a meta-algorithm that can be used on top
of any of them. This meta-algorithm is similar in spirit to AdaBoost in the sense that each iteration
corresponds to learning a “weak” generative model (e.g., GAN) with respect to a re-weighted data
distribution. The weights change over time to focus on the “hard” examples, i.e. those that the mixture
has not been able to properly generate so far.

Related Work Several authors [6, 7, 8] have proposed to use boosting techniques in the context of
density estimation by incrementally adding components in the log domain. This idea was applied
to GANs in [8]. A major downside of these approaches is that the resulting mixture is a product of
components and sampling from such a model is nontrivial (at least when applied to GANs where the
model density is not expressed analytically) and requires techniques such as Annealed Importance
Sampling [9] for the normalization.

When the log likelihood can be computed, [10] proposed to use an additive mixture model. They
derived the update rule via computing the steepest descent direction when adding a component with
infinitesimal weight. However, their results do not apply once the weight β becomes non-infinitesimal.
In contrast, for any fixed weight of the new component our approach gives the overall optimal update
(rather than just the best direction) for a specified f -divergence. In both theories, improvements of the
mixture are guaranteed only if the new “weak” learner is still good enough (see Conditions 10&11)

Similarly, [11] studied the construction of mixtures minimizing the Kullback divergence and proposed
a greedy procedure for doing so. They also proved that under certain conditions, finite mixtures can
approximate arbitrary mixtures at a rate 1/k where k is the number of components in the mixture
when the weight of each newly added component is 1/k. These results are specific to the Kullback
divergence but are consistent with our more general results.

An additive procedure similar to ours was proposed in [12] but with a different re-weighting scheme,
which is not motivated by a theoretical analysis of optimality conditions. On every new iteration the
authors run GAN on the k training examples with maximal values of the discriminator from the last
iteration.

1Note that the term “mixture” should not be interpreted to imply that each component models only one mode:
the models to be combined into a mixture can themselves cover multiple modes.
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Finally, many papers investigate completely different approaches for addressing the same issue by
directly modifying the training objective of an individual GAN. For instance, [5] add an autoencoding
cost to the training objective of GAN, while [4] allow the generator to “look few steps ahead” when
making a gradient step.

The paper is organized as follows. In Section 2 we present our main theoretical results regarding
iterative optimization of mixture models under general f -divergences. In Section 2.4 we show that if
optimization at each step is perfect, the process converges to the true data distribution at exponential
rate (or even in a finite number of steps, for which we provide a necessary and sufficient condition).
Then we show in Section 2.5 that imperfect solutions still lead to the exponential rate of convergence
under certain “weak learnability” conditions. These results naturally lead to a new boosting-style
iterative procedure for constructing generative models. When used with GANs, it results in our
AdaGAN algorithm, detailed in Section 3 . Finally, we report initial empirical results in Section 4,
where we compare AdaGAN with several benchmarks, including original GAN and uniform mixture
of multiple independently trained GANs. Part of new theoretical results are reported without proofs,
which can be found in appendices.

2 Minimizing f -divergence with Mixtures

2.1 Preliminaries and notations

Generative Density Estimation In density estimation, one tries to approximate a real data distribu-
tion Pd, defined over the data space X , by a model distribution Pmodel. In the generative approach
one builds a function G : Z → X that transforms a fixed probability distribution PZ (often called the
noise distribution) over a latent space Z into a distribution over X . Hence Pmodel is the pushforward
of PZ , i.e. Pmodel(A) = PZ(G−1(A)). With this approach it is in general impossible to compute the
density dPmodel(x) and the log-likelihood of the training data under the model, but one can easily
sample from Pmodel by sampling from PZ and applying G. Thus, to construct G, instead of compar-
ing Pmodel directly with Pd, one compares their samples. To do so, one uses a similarity measure
D(Pmodel‖Pd) which can be estimated from samples of those distributions, and thus approximately
minimized over a class G of functions.

f -Divergences In order to measure the agreement between the model distribution and the true
distribution we will use an f -divergence defined in the following way:

Df (Q‖P ) :=

∫
f

(
dQ

dP
(x)

)
dP (x) (1)

for any pair of distributions P,Q with densities dP , dQ with respect to some dominating reference
measure µ (we refer to Appendix D for more details about such divergences and their domain of
definition). Here we assume that f is convex, defined on (0,∞), and satisfies f(1) = 0. We will
denote by F the set of such functions. 2

As demonstrated in [16, 17], several commonly used symmetric f -divergences are Hilbertian metrics,
which in particular means that their square root satisfies the triangle inequality. This is true for the
Jensen-Shannon divergence3, the Hellinger distance and the Total Variation among others. We will
denote by FH the set of functions f such that Df is a Hilbertian metric.

GAN and f -divergences The original GAN algorithm [2] optimizes the following criterion:

min
G

max
D

EPd
[logD(X)] + EPZ

[log(1−D(G(Z)))] , (2)

where D and G are two functions represented by neural networks. This optimization is performed on
a pair of samples (a training sample from Pd and a “fake” sample from PZ), which corresponds to
approximating the above criterion by using the empirical distributions. In the non-parametric limit
for D, this is equivalent to minimizing the Jensen-Shannon divergence [2]. This point of view can be
generalized to any other f -divergence [13]. Because of this strong connection between adversarial

2Examples of f -divergences include the Kullback-Leibler divergence (obtained for f(x) = x log x) and
Jensen-Shannon divergence (f(x) = −(x+ 1) log x+1

2
+ x log x). Other examples can be found in [13]. For

further details we refer to Section 1.3 of [14] and [15].
3which means such a property can be used in the context of the original GAN algorithm.
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training of generative models and minimization of f -divergences, we cast the results of this section
into the context of general f -divergences.

Generative Mixture Models In order to model complex data distributions, it can be convenient to
use a mixture model of the following form: PTmodel :=

∑T
i=1 αiPi, where αi ≥ 0,

∑
i αi = 1, and

each of the T components is a generative density model. This is natural in the generative context,
since sampling from a mixture corresponds to a two-step sampling, where one first picks the mixture
component (according to the multinomial distribution with parameters αi) and then samples from it.
Also, this allows to construct complex models from simpler ones.

2.2 Incremental Mixture Building

We restrict ourselves to the case of f -divergences and assume that, given an i.i.d. sample from any
unknown distribution P , we can construct a simple model Q ∈ G which approximately minimizes4

min
Q∈G

Df (Q ‖P ). (3)

Instead of modelling the data with a single distribution, we now want to model it with a mixture of
distributions Pi,where each Pi is obtained by a training procedure of the form (3) with (possibly)
different target distributions P for each i. A natural way to build a mixture is to do it incrementally:
we train the first model P1 to minimize Df (P1 ‖Pd) and set the corresponding weight to α1 = 1,
leading to P 1

model = P1. Then after having trained t components P1, . . . , Pt ∈ G we can form the
(t+ 1)-st mixture model by adding a new component Q with weight β as follows:

P t+1
model :=

t∑
i=1

(1− β)αiPi + βQ. (4)

where β ∈ [0, 1] and Q ∈ G is computed by minimizing:

min
Q

Df ((1− β)Pg + βQ ‖Pd), (5)

where we denoted Pg := P tmodel the current generative mixture model before adding the new
component. We do not expect to find the optimal Q that minimizes (5) at each step, but we aim at
constructing some Q that slightly improves our current approximation of Pd, i.e. such that for c < 1

Df ((1− β)Pg + βQ ‖Pd) ≤ c ·Df (Pg ‖Pd) . (6)

This greedy approach has a significant drawback in practice. As we build up the mixture, we need to
make β decrease (as P tmodel approximates Pd better and better, one should make the correction at
each step smaller and smaller). Since we are approximating (5) using samples from both distributions,
this means that the sample from the mixture will only contain a fraction β of examples from Q. So,
as t increases, getting meaningful information from a sample so as to tune Q becomes harder and
harder (the information is “diluted”). To address this issue, we propose to optimize an upper bound
on (5) which involves a term of the form Df (Q ‖R) for some distribution R, which can be computed
as a re-weighting of the original data distribution Pd. This procedure is reminiscent of the AdaBoost
algorithm [18], which combines multiple weak predictors into one strong composition. On each step
AdaBoost adds new predictor to the current composition, which is trained to minimize the binary loss
on the re-weighted training set. The weights are constantly updated to bias the next weak learner
towards “hard” examples, which were incorrectly classified during previous stages.

In the following we will analyze the properties of (5) and derive upper bounds that provide practical
optimization criteria for building the mixture. We will also show that under certain assumptions, the
minimization of the upper bound leads to the optimum of the original criterion.

2.3 Upper Bounds

We provide two upper bounds on the divergence of the mixture in terms of the divergence of the
additive component Q with respect to some reference distribution R.

4One example of such a setting is running GANs.
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Lemma 1 Given two distributions Pd, Pg and some β ∈ [0, 1], then, for any Q and R, and f ∈ FH :√
Df ((1− β)Pg + βQ ‖Pd) ≤

√
βDf (Q ‖R) +

√
Df ((1− β)Pg + βR ‖Pd) . (7)

If, more generally, f ∈ F , but βdR ≤ dPd, then:

Df ((1− β)Pg + βQ ‖Pd) ≤ βDf (Q ‖R) + (1− β)Df

(
Pg ‖

Pd − βR
1− β

)
. (8)

We can thus exploit those bounds by introducing some well-chosen distributionR and then minimizing
them with respect to Q. A natural choice for R is a distribution that minimizes the last term of the
upper bound (which does not depend on Q). Our main result indicates the shape of the distributions
minimizing the right-most terms in those bounds.

Theorem 1 For any f -divergence Df , with f ∈ F and f differentiable, any fixed distributions
Pd, Pg , and any β ∈ (0, 1], the minimizer of (5) over all probability distributions P has density

dQ∗β(x) =
1

β
(λ∗dPd(x)− (1− β)dPg(x))+ =

dPd
β

(
λ∗ − (1− β)

dPg
dPd

)
+

. (9)

for the unique λ∗ ∈ [β, 1] satisfying
∫
dQ∗β = 1. Also, λ∗ = 1 if and only if

Pd((1− β)dPg > dPd) = 0, which is equivalent to βdQ∗β = dPd − (1− β)dPg .

Theorem 2 Given two distributions Pd, Pg and some β ∈ (0, 1], assume Pd (dPg = 0) < β. Let
f ∈ F . The problem

min
Q:βdQ≤dPd

Df

(
Pg ‖

Pd − βQ
1− β

)
has a solution with the density dQ†β(x) = 1

β

(
dPd(x)− λ†(1− β)dPg(x)

)
+

for the unique λ† ≥ 1

that satisfies
∫
dQ†β = 1.

Surprisingly, in both Theorems 1 and 2, the solutions do not depend on the choice of the function f ,
which means that the solution is the same for any f -divergence5. Note that λ∗ is implicitly defined
by a fixed-point equation. In Section 3 we will show how it can be computed efficiently in the case of
empirical distributions.

2.4 Convergence Analysis for Optimal Updates

In previous section we derived analytical expressions for the distributions R minimizing last terms
in upper bounds (8) and (7). Assuming Q can perfectly match R, i.e.Df (Q ‖R) = 0, we are now
interested in the convergence of the mixture (4) to the true data distribution Pd when Q = Q∗β or
Q = Q†β . We start with simple results showing that adding Q∗β or Q†β to the current mixture would
yield a strict improvement of the divergence.

Lemma 2 (Property 6: exponential improvements) Under the conditions of Theorem 1, we have

Df

(
(1− β)Pg + βQ∗β

∥∥Pd) ≤ Df

(
(1− β)Pg + βPd

∥∥Pd) ≤ (1− β)Df (Pg ‖Pd).

Under the conditions of Theorem 2, we have

Df

(
Pg
∥∥ Pd − βQ†β

1− β

)
≤ Df (Pg ‖Pd) and Df

(
(1− β)Pg + βQ†β

∥∥Pd) ≤ (1− β)Df (Pg ‖Pd).

Imagine repeatedly adding T new components to the current mixture Pg , where on every step we use
the same weight β and choose the components described in Theorem 1. In this case Lemma 2 guaran-
tees that the original objective value Df (Pg ‖Pd) would be reduced at least to (1− β)TDf (Pg ‖Pd).

5in particular, by replacing f with f◦(x) := xf(1/x), we get the same solution for the criterion written in
the other direction. Hence the order in which we write the divergence does not matter and the optimal solution is
optimal for both orders.
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This exponential rate of convergence, which at first may look surprisingly good, is simply explained
by the fact that Q∗β depends on the true distribution Pd, which is of course unknown.

Lemma 2 also suggests setting β as large as possible since we assume we can compute the optimal
mixture component (which for β = 1 is Pd). However, in practice we may prefer to keep β relatively
small, preserving what we learned so far through Pg: for instance, when Pg already covered part
of the modes of Pd and we want Q to cover the remaining ones. We provide further discussions on
choosing β in Section 3.

2.5 Weak to Strong Learnability

In practice the component Q that we add to the mixture is not exactly Q∗β or Q†β , but rather an
approximation to them. In this section we show that if this approximation is good enough, then we
retain the property (6) (exponential improvements).

Looking again at Lemma 1 we notice that the first upper bound is less tight than the second one.
Indeed, take the optimal distributions provided by Theorems 1 and 2 and plug them back as R into
the upper bounds of Lemma 1. Also assume that Q can match R exactly, i.e.Df (Q ‖R) = 0. In
this case both sides of (7) are equal to Df ((1− β)Pg + βQ∗β ‖Pd), which is the optimal value for
the original objective (5). On the other hand, (8) does not become an equality and the r.h.s. is not
the optimal one for (5). However, earlier we agreed that our aim is to reach the modest goal (6) and
next we show that this is indeed possible.Corollaries 1 and 2 provide sufficient conditions for strict
improvements when we use the upper bounds (8) and (7) respectively.

Corollary 1 Given Pd, Pg, and some β ∈ (0, 1], assume Pd
(
dPg

dPd
= 0
)
< β. Let Q†β be as defined

in Theorem 2. If Q is such that

Df (Q ‖Q†β) ≤ γDf (Pg ‖Pd) (10)

for γ ∈ [0, 1], then Df ((1− β)Pg + βQ ‖Pd) ≤ (1− β(1− γ))Df (Pg ‖Pd).

Corollary 2 Let f ∈ FH . Take any β ∈ (0, 1], Pd, Pg , and let Q∗β be as defined in Theorem 1. If Q
is such that

Df (Q ‖Q∗β) ≤ γDf (Pg ‖Pd) (11)

for some γ ∈ [0, 1], then Df ((1− β)Pg + βQ ‖Pd) ≤ Cγ,β · Df (Pg ‖Pd) , where Cγ,β =(√
γβ +

√
1− β

)2
is strictly smaller than 1 as soon as γ < β/4 (and β > 0).

Conditions 10 and 11 may be compared to the “weak learnability” condition of AdaBoost. As long
as our weak learner is able to solve the surrogate problem (3) of matching respectively Q†β or Q∗β
accurately enough, the original objective (5) is guaranteed to decrease as well. It should be however
noted that Condition 11 with γ < β/4 is perhaps too strong to call it “weak learnability”. Indeed, as
already mentioned before, the weight β is expected to decrease to zero as the number of components
in the mixture distribution Pg increases. This leads to γ → 0, making it harder to meet Condition 11.
This obstacle may be partially resolved by the fact that we will use a GAN to fit Q, which corresponds
to a relatively rich6 class of models G in (3). In other words, our weak learner is not so weak. On
the other hand, Condition 10 of Corollary 1 is milder. No matter what γ ∈ [0, 1] and β ∈ (0, 1] are,
the new component Q is guaranteed to strictly improve the objective functional. This comes at the
price of the additional condition Pd(dPg/dPd = 0) < β, which asserts that β should be larger than
the mass of true data Pd missed by the current model Pg. We argue that this is a rather reasonable
condition: if Pg misses many modes of Pd we would prefer assigning a relatively large weight β to
the new component Q. However, in practice, both Conditions 10 and 11 are difficult to check. A
rigorous analysis of situations when they are guaranteed is a direction for future research.

6The hardness of meeting Condition 11 of course largely depends on the class of models G used to fit Q in
(3). For now we ignore this question and leave it for future research.
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3 AdaGAN

We now describe the functions ChooseMixtureWeight and UpdateTrainingWeights of Algorithm 1.
The complete AdaGAN meta-algorithm with the details of UpdateTrainingWeight and ChooseMix-
tureWeight, is summarized in Algorithm 3 of Appendix A.

UpdateTrainingWeights At each iteration we add a new component Q to the current mixture Pg
with weight β. The component Q should approach the “optimal target” Q∗β provided by (9) in Theo-
rem 1. This distribution depends on the density ratio dPg/dPd, which is not directly accessible, but it
can be estimated using adversarial training. Indeed, we can train a separate mixture discriminator DM

to distinguish between samples from Pd and samples from the current mixture Pg. It is known [13]
that for an arbitrary f -divergence, there exists a corresponding function h such that the values of the
optimal discriminator DM are related to the density ratio by

dPg
dPd

(x) = h
(
DM (x)

)
. (12)

We can replace dPg(x)/dPd(x) in (9) with h
(
DM (x)

)
. For the Jensen-Shannon divergence, used by

the original GAN algorithm, h(z) = 1−z
z . In practice, when we compute dQ∗β on the training sample

SN = (X1, . . . , XN ), each example Xi receives weight

wi =
1

βN

(
λ∗ − (1− β)h(di)

)
+
, where di = DM (Xi) . (13)

The only remaining task is to determine λ∗. As the weights wi in (13) must sum to 1, we get:

λ∗ =
β∑

i∈I(λ∗) pi

1 +
(1− β)

β

∑
i∈I(λ∗)

pih(di)

 (14)

where I(λ) := {i : λ > (1− β)h(di)}. To find I(λ∗), we sort h(di) in increasing order: h(d1) ≤
. . . ≤ h(dN ). Then I(λ∗) is a set consisting of the first k indices. We then successively test all k-s
until the λ given by (14) verifies (1−β)h(dk) < λ ≤ (1−β)h(dk+1) . This procedure is guaranteed
to converge by Theorem 1. It is summarized in Algorithm 2 of Appendix A

ChooseMixtureWeight For every β there is an optimal re-weighting scheme with weights given
by (13). If the GAN could perfectly approximate its target Q∗β , then choosing β = 1 would be
optimal, because Q∗1 = Pd. But in practice, GANs cannot do that. So we propose to choose β
heuristically by imposing that each generator of the final mixture model has same weight. This yields
βt = 1/t, where t is the iteration index. Other heuristics are proposed in Appendix B, but did not
lead to any significant difference.

The optimal discriminator In practice it is of course hard to find the optimal discriminator DM

achieving the global maximum of the variational representation for the f-divergence and verifying (12).
For the JS-divergence this would mean that DM is the classifier achieving minimal expected cross-
entropy loss in the binary classification between Pg and Pd. In practice, we observed that the
reweighting (13) leads to the desired property of emphasizing at least some of the missing modes
as long as DM distinguishes reasonably between data points already covered by the current model
Pg and those which are still missing. We found an early stopping (while training DM ) sufficient
to achieve this. In the worst case, when DM overfits and returns 1 for all true data points, the
reweighting simply leads to the uniform distribution over the training set.

4 Experiments

We ran AdaGAN7 on toy datasets, for which we can interpret the missing modes in a clear and
reproducible way, and on MNIST, which is a high-dimensional dataset. The goal of these experiments
was not to evaluate the visual quality of individual sample points, but to demonstrate that the
re-weighting scheme of AdaGAN promotes diversity and effectively covers the missing modes.

7Code available online at https://github.com/tolstikhin/adagan
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Toy Datasets Our target distribution is a mixture of isotropic Gaussians over R2. The distances
between the means are large enough to roughly avoid overlaps between different Gaussian components.
We vary the number of modes to test how well each algorithm performs when there are fewer or more
expected modes. We compare the baseline GAN algorithm with AdaGAN variations, and with other
meta-algorithms that all use the same underlying GAN procedure. For details on these algorithms
and on the architectures of the underlying generator and discriminator, see Appendix B.

To evaluate how well the generated distribution matches the target distribution, we use a coverage
metric C. We compute the probability mass of the true data “covered” by the model Pmodel.
More precisely, we compute C := Pd(dPmodel > t) with t such that Pmodel(dPmodel > t) = 0.95.
This metric is more interpretable than the likelihood, making it easier to assess the difference in
performance of the algorithms. To approximate the density of Pmodel we use a kernel density
estimation, where the bandwidth is chosen by cross validation. We repeat the run 35 times with the
same parameters (but different random seeds). For each run, the learning rate is optimized using
a grid search on a validation set. We report the median over those multiple runs, and the interval
corresponding to the 5% and 95% percentiles.

Figure 2 summarizes the performance of algorithms as a function of the number of iterations T . Both
the ensemble and the boosting approaches significantly outperform the vanilla GAN and the “best of
T ” algorithm. Interestingly, the improvements are significant even after just one or two additional
iterations (T = 2 or 3). Our boosting approach converges much faster. In addition, its variance is
much lower, improving the likelihood that a given run gives good results. On this setup, the vanilla
GAN approach has a significant number of catastrophic failures (visible in the lower bounds of the
intervals). Further empirical results are available in Appendix B, where we compared AdaGAN
variations to several other baseline meta-algorithms in more details (Table 1) and combined AdaGAN
with the unrolled GANs (UGAN) [4] (Figure 3). Interestingly, Figure 3 shows that AdaGAN ran with
UGAN outperforms the vanilla UGAN on the toy datasets, demonstrating the advantage of using
AdaGAN as a way to further improve the mode coverage of any existing GAN implementations.

Figure 1: Coverage C of the true data by the model distribution PTmodel, as a function of iterations T .
Experiments correspond to the data distribution with 5 modes. Each blue point is the median over
35 runs. Green intervals are defined by the 5% and 95% percentiles (see Section 4). Iteration 0 is
equivalent to one vanilla GAN. The left plot corresponds to taking the best generator out of T runs.
The middle plot is an “ensemble” GAN, simply taking a uniform mixture of T independently trained
GAN generators. The right plot corresponds to our boosting approach (AdaGAN), with βt = 1/t.

MNIST and MNIST3 We ran experiments both on the original MNIST and on the 3-digit MNIST
(MNIST3) [5, 4] dataset, obtained by concatenating 3 randomly chosen MNIST images to form a
3-digit number between 0 and 999. According to [5, 4], MNIST contains 10 modes, while MNIST3
contains 1000 modes, and these modes can be detected using the pre-trained MNIST classifier. We
combined AdaGAN both with simple MLP GANs and DCGANs [19]. We used T ∈ {5, 10}, tried
models of various sizes and performed a reasonable amount of hyperparameter search.

Similarly to [4, Sec 3.3.1] we failed to reproduce the missing modes problem for MNIST3 reported in
[5] and found that simple GAN architectures are capable of generating all 1000 numbers. The authors
of [4] proposed to artificially introduce the missing modes again by limiting the generators’ flexibility.
In our experiments, GANs trained with the architectures reported in [4] were often generating poorly
looking digits. As a result, the pre-trained MNIST classifier was outputting random labels, which
again led to full coverage of the 1000 numbers. We tried to threshold the confidence of the pre-trained
classifier, but decided that this metric was too ad-hoc.
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Figure 2: Digits from the MNIST dataset cor-
responding to the smallest (left) and largest
(right) weights, obtained by the AdaGAN
procedure (see Section 3) in one of the runs.
Bold digits (left) are already covered and next
GAN will concentrate on thin (right) digits.

For MNIST we noticed that the re-weighted distribu-
tion was often concentrating its mass on digits having
very specific strokes: on different rounds it could
highlight thick, thin, vertical, or diagonal digits, indi-
cating that these traits were underrepresented in the
generated samples (see Figure 2). This suggests that
AdaGAN does a reasonable job at picking up differ-
ent modes of the dataset, but also that there are more
than 10 modes in MNIST (and more than 1000 in
MNIST3). It is not clear how to evaluate the quality
of generative models in this context.

We also tried to use the “inversion” metric discussed
in Section 3.4.1 of [4]. For MNIST3 we noticed that
a single GAN was capable of reconstructing most
of the training points very accurately both visually
and in the `2-reconstruction sense. The “inversion”
metric tests whether the trained model can generate
certain examples or not, but unfortunately it does not
take into account the probabilities of doing so.

5 Conclusion

We studied the problem of minimizing general f -divergences with additive mixtures of distributions.
The main contribution of this work is a detailed theoretical analysis, which naturally leads to an
iterative greedy procedure. On every iteration the mixture is updated with a new component, which
minimizes f -divergence with a re-weighted target distribution. We provided conditions under which
this procedure is guaranteed to converge to the target distribution at an exponential rate. While
our results can be combined with any generative modelling techniques, we focused on GANs
and provided a boosting-style algorithm AdaGAN. Preliminary experiments show that AdaGAN
successfully produces a mixture which iteratively covers the missing modes.
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A Algorithms

ALGORITHM 2 Determining λ∗

Sort the values h(di) in increasing order

Initialize λ← β
p1

(
1 + 1−β

β p1h(d1)
)

and k ← 1

while (1− β)h(dk) ≥ λ do
k ← k + 1

λ← β∑k
i=1 pi

(
1 + (1−β)

β

∑k
i=1 pih(di)

)
end while

ALGORITHM 3
AdaGAN, a meta-algorithm to construct a “strong” mixture of T individual GANs, trained sequen-
tially. The mixture weight schedule ChooseMixtureWeight should be provided by the user (see 3).
This is an instance of the high level Algorithm 1, instantiating UpdateTrainingWeights.

Input: Training sample SN := {X1, . . . , XN}.
Output: Mixture generative model G = GT .

Train vanilla GAN: G1 = GAN(SN )
for t = 2, . . . , T do

#Choose a mixture weight for the next component
βt = ChooseMixtureWeight(t)
#Compute the new weights of the training examples (UpdateTrainingWeights)
#Compute the discriminator between the original (unweighted) data and the current mixture
Gt−1
D ← DGAN(SN , Gt−1)
#Compute λ∗ using Algorithm 2
λ∗ ← λ(βt, D)
#Compute the new weight for each example
for i = 1, . . . , N do
W i
t = 1

Nβt
(λ∗ − (1− βt)h(D(Xi)))+

end for
#Train t-th “weak” component generator Gct
Gct = GAN(SN ,Wt)
#Update the overall generative model
#Notation below means forming a mixture of Gt−1 and Gct .
Gt = (1− βt)Gt−1 + βtG

c
t

end for

B Details on the Toy Experiments

GAN architectures In all our experiments, the GAN’s generator uses the latent space Z = R5, and
two ReLU hidden layers, of size 10 and 5 respectively. The corresponding discriminator has two
ReLU hidden layers of size 20 and 10 respectively. We use 64k training examples, and 15 epochs,
which is enough compared to the small scale of the problem. The optimizer is a simple SGD: Adam
was also tried but gave slightly less stable results. All networks converge properly and overfitting is
never an issue.

Details on the tested algorithms and more tests In our experiments, we compared the following
algorithms:

– The baseline GAN algorithm, called Vanilla GAN in the results.
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Modes : 1 Modes : 2 Modes : 3 Modes : 5 Modes : 10

Vanilla 0.97 (0.9; 1.0) 0.88 (0.4; 1.0) 0.63 (0.5; 1.0) 0.72 (0.5; 0.8) 0.59 (0.2; 0.7)

Best of T (T=3) 0.99 (1.0; 1.0) 0.96 (0.9; 1.0) 0.91 (0.7; 1.0) 0.80 (0.7; 0.9) 0.70 (0.6; 0.8)

Best of T (T=10) 0.99 (1.0; 1.0) 0.99 (1.0; 1.0) 0.98 (0.8; 1.0) 0.80 (0.8; 0.9) 0.71 (0.7; 0.8)

Ensemble (T=3) 0.99 (1.0; 1.0) 0.98 (0.9; 1.0) 0.93 (0.8; 1.0) 0.78 (0.6; 1.0) 0.80 (0.6; 1.0)

Ensemble (T=10) 1.00 (1.0; 1.0) 0.99 (1.0; 1.0) 1.00 (1.0; 1.0) 0.91 (0.8; 1.0) 0.89 (0.7; 1.0)

TopKLast0.5 (T=3) 0.98 (0.9; 1.0) 0.98 (0.9; 1.0) 0.95 (0.9; 1.0) 0.95 (0.8; 1.0) 0.86 (0.6; 0.9)

TopKLast0.5 (T=10) 0.99 (1.0; 1.0) 0.98 (0.9; 1.0) 0.98 (1.0; 1.0) 0.99 (0.8; 1.0) 1.00 (0.8; 1.0)

Boosted (T=3) 0.99 (1.0; 1.0) 0.99 (0.9; 1.0) 0.98 (0.9; 1.0) 0.91 (0.8; 1.0) 0.86 (0.7; 1.0)

Boosted (T=10) 1.00 (1.0; 1.0) 1.00 (1.0; 1.0) 1.00 (1.0; 1.0) 1.00 (1.0; 1.0) 1.00 (1.0; 1.0)

Table 1: Performance of the different algorithms on varying number of mixtures of Gaussians. The
reported score is the coverage C, probability mass of Pd covered by the 5th percentile of Pg defined
in Section 4. The reported scores are the median and interval defined by the 5% and 95% percentile
(in parenthesis) (see Section 4), over 35 runs for each setting. Both the ensemble and the boosting
approaches significantly outperform the vanilla GAN even with just three iterations (i.e. just two
additional components). The boosting approach converges faster to the optimal coverage and with
smaller variance.

(a) The best model out of T runs of GAN, that is: run T GAN instances independently, then
take the run that performs best on a validation set. This gives an additional baseline with
similar computational complexity as the ensemble approaches. Note that the selection of the
best run is done on the reported target metric (see below), rather than on the internal metric.
As a result this baseline is slightly overestimated. This procedure is called Best of T in the
results.

(b) A mixture of T GAN generators, trained independently, and combined with equal weights
(the “bagging” approach). This procedure is called Ensemble in the results.

– A mixture of GAN generators, trained sequentially with different choices of data re-
weighting:
(c) The AdaGAN algorithm (Algorithm 1), with β = 1/t. Thus each component will have

the same weight in the resulting mixture (see Equation 3). This procedure is called
Boosted in the results.

– The AdaGAN algorithm (Algorithm 1), but with a constant β, exploring several values.
This procedure is called for example Beta0.3 for β = 0.3 in the results. Note that in
this setting, not all components of the mixture have the same weight.

– Reweighting similar to “Cascade GAN” from [12], i.e. keeping the top r fraction of
examples, based on the discriminator corresponding to the previous generator. This
procedure is called for example TopKLast0.3 for r = 0.3.

– Keep the top r fraction of examples, based on the discriminator corresponding to the
mixture of all previous generators. This procedure is called for example TopK0.3 for
r = 0.3.

The left, middle, and right panels in Figure 2 of Section 4 respectively correspond to the settings (a),
(b) and (c).

Experiments with unrolled GAN To illustrate the ’meta-algorithm aspect’ of AdaGAN, we also
performed experiments with an unrolled GAN (UGAN) [4] instead of a GAN as the base generator.
We trained the GANs both with the Jensen-Shannon objective (2), and with its modified version
proposed in [2] (and often considered as the baseline GAN), where log(1−D(G(Z))) is replaced
by − log(D(G(Z))). We use the same network architecture as in the other toy experiments. Figure 3
illustrates our results. We find that AdaGAN works with all UGAN algorithms. Note that, where
the usual GAN updates the generator and the discriminator once, an UGAN with 5 unrolling steps
updates the generator once and the discriminator 1 + 5, i.e. 6 times (and then rolls back 5 steps).
Thus, in terms of computation time, training 1 single UGAN roughly corresponds to doing 3 steps
of AdaGAN with a usual GAN. In that sense, Figure 3 shows that AdaGAN (with a usual GAN)
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Figure 3: Comparison of AdaGAN ran with a GAN (top row) and with an unrolled GAN with 5
unrolling steps [4] (bottom). Coverage C of the true data by the model distribution PTmodel, as a
function of iterations T . Experiments are similar to those of Figure 2, but with 10 modes. Left figures
used the Jensen-Shannon objective (2), while right figures used the modified objective originally
proposed by [2]. In terms of computation time, one step of AdaGAN with unrolled GAN corresponds
to roughly 3 steps of AdaGAN with a usual GAN.

significantly outperforms a single unrolled GAN (T = 1 on bottom pictures). Also note that AdaGAN
ran with UGAN outperforms a single UGAN and keeps improving its performance as we increase
the number of iterations. Additionally, we note that using the Jensen-Shannon objective (rather than
the modified version) seems to have some mode-regularizing effect.

C Details for AdaGAN on MNIST

GAN Architecture We ran AdaGAN on MNIST (28x28 pixel images) using (de)convolutional
networks with batch normalizations and leaky ReLu. The latent space has dimension 100. We used
the following architectures:

Generator: 100 x 1 x 1 –> fully connected –> 7 x 7 x 16 –> deconv –> 14 x 14 x 8 –>
–> deconv –> 28 x 28 x 4 –> deconv –> 28 x 28 x 1

Discriminator: 28 x 28 x 1 –> conv –> 14 x 14 x 16 –> conv –> 7 x 7 x 32 –>
–> fully connected –> 1

where each arrow consists of a leaky ReLu (with 0.3 leak) followed by a batch normalization, conv
and deconv are convolutions and transposed convolutions with 5x5 filters, and fully connected are
linear layers with bias. The distribution over Z is uniform over the unit box. We use the Adam
optimizer with β1 = 0.5, with 2 G steps for 1 D step and learning rates 0.005 for G, 0.001 for D,
and 0.0001 for the classifier C that does the reweighting of digits. We optimized D and G over 200
epochs and C over 5 epochs, using the original Jensen-Shannon objective (2), without the log trick,
with no unrolling and with minibatches of size 128.

Empirical observations Although we could not find any appropriate metric to measure the increase
of diversity promoted by AdaGAN, we observed that the re-weighting scheme indeed focuses on
digits with very specific strokes. In Figure 4 for example, we see that after 1 AdaGAN step, the
generator produces overly thick digits (top left image). Thus AdaGAN puts small weights on the
thick digits of the dataset (bottom left) and high weights on the thin ones (bottom right). After the
next step, the new GAN produces both thick and thin digits.
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Figure 4: AdaGAN on MNIST. Bottom row are true MNIST digits with smallest (left) and highest
(right) weights after re-weighting at the end of the first AdaGAN step. Those with small weight are
thick and resemble those generated by the GAN after the first AdaGAN step (top left). After training
with the re-weighted dataset during the second iteration of AdaGAN, the new mixture produces more
thin digits (top right).

D Details on f -divergences

The integral in (1) is well defined (but may take infinite values) even if P (dQ = 0) > 0 or
Q(dP = 0) > 0. In this case the integral is understood as

Df (Q‖P ) =

∫
f(dQ/dP )1[dP (x)>0,dQ(x)>0]dP (x)

+ f(0)P (dQ = 0) + f◦(0)Q(dP = 0),

where both f(0) and f◦(0) may take value∞ [14]. This is especially important in case of GAN,
where it is impossible to constrain Pmodel to be absolutely continuous with respect to Pd or vice
versa.

E Refinement of Lemma 2

If the ratio dPg/dPd is almost surely bounded, the first inequality of Lemma 2 can be refined as
follows.

Lemma 3 Under the conditions of Theorem 1

Df

(
(1− β)Pg + βQ∗β

∥∥Pd) ≤ f(λ∗) +
f(M)(1− λ∗)

M − 1

given there exists M > 1 such that Pd((1− β)dPg > MdPd) = 0.
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This upper bound can be tighter than that of Lemma 2 when λ∗ gets close to 1. Indeed, for λ∗ = 1
the upper bound is exactly 0 and is thus tight, while the upper bound of Lemma 2 will not be zero in
this case.

Proof We use Inequality (18) of Lemma 6 with X = β, Y = (1 − β)dPg/dPd, and c = λ∗. We
easily verify thatX+Y = ((1−β)dPg+βdPd)/dPd and max(c, Y ) = ((1−β)dPg+βdQ∗β)/dPd
and both have expectation 1 with respect to Pd. We thus obtain:

Df ((1− β)Pg + βQ∗β ‖Pd) ≤ f(λ∗) +
f(M)− f(λ∗)

M − λ∗
(1− λ∗) . (15)

Since λ∗ ≤ 1 and f is non-increasing on (0, 1) we get

Df ((1− β)Pg + βQ∗β ‖Pd) ≤ f(λ∗) +
f(M)(1− λ∗)

M − 1
.

F Conditions for finite steps convergence

Here we study the convergence of (5) to 0 in the case where, while performing the iterations, we use
the upper bound (7) and the weight β is fixed (i.e. the same value at each iteration). We will provide
necessary and sufficient conditions for the iterative process to converge to the data distribution Pd
in finite number of steps. The analysis can easily be extended to a non-constant (variable) weight
scheduling β. We start with the following result.

Lemma 4 For any f ∈ F such that f(x) 6= 0 for x 6= 1, the following conditions are equivalent:

(i) Pd((1− β)dPg > dPd) = 0;
(ii) Df ((1− β)Pg + βQ∗β ‖Pd) = 0.

Proof The first condition is equivalent to λ∗ = 1 according to Theorem 1. In this case,
(1 − β)Pg + βQ∗β = Pd, hence the divergence is 0. In the other direction, when the divergence
is 0, since f is strictly positive for x 6= 1 (keep in mind that we can always replace f by f0 to
get a non-negative function which will be strictly positive if f(x) 6= 0 for x 6= 1), this means
that with Pd probability 1 we have the equality dPd = (1 − β)dPg + βdQ∗β , which implies that
(1− β)dPg > dPd with Pd probability 1 and also λ∗ = 1.

This result tells that we cannot perfectly match Pd by adding a new mixture component to Pg as long
as there are points in the space where our current model Pg severely over-samples. As an example,
consider an extreme case where Pg puts a positive mass in a region outside of the support of Pd.
Clearly, unless β = 1, we will not be able to match Pd.

We now provide the conditions for the convergence of the iterative process in a finite number of steps.
The criterion is based on the ratio dP1/dPd, where P1 is the first component of our mixture model.

Corollary 3 Take any f ∈ F such that f(x) 6= 0 for x 6= 1. Starting from P 1
model = P1, update the

model iteratively according to P t+1
model = (1−β)P tmodel+βQ∗β , where on every step Q∗β is as defined

in Theorem 1 with Pg := P tmodel. In this case Df (P tmodel ‖Pd) will reach 0 in a finite number of
steps if and only if there exists M > 0 such that

Pd((1− β)dP1 > MdPd) = 0 . (16)

When the finite convergence happens, it takes at most − ln max(M, 1)/ ln(1− β) steps.

Proof From Lemma 4, it is clear that if M ≤ 1 the convergence happens after the first update. So let
us assumeM > 1. Notice that dP t+1

model = (1−β)dP tmodel+βdQ
∗
β = max(λ∗dPd, (1−β)dP tmodel)

so that if Pd((1− β)dP tmodel > MdPd) = 0, then Pd((1− β)dP t+1
model > M(1− β)dPd) = 0. This

proves that (16) is a sufficient condition.
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Now assume the process converged in a finite number of steps. Let P tmodel be a mixture right
before the final step. Note that P tmodel is represented by (1 − β)t−1P1 + (1 − (1 − β)t−1)P for
certain probability distribution P . According to Lemma 4 we have Pd((1− β)dP tmodel > dPd) = 0.
Together these two facts immediately imply (16).

It is also important to keep in mind that even if (16) is not satisfied the process still converges to the
true distribution at exponential rate (see Lemma 2 as well as Corollaries 1 and 2 below)

G Proofs

G.1 Proof of Lemma 1

For the first inequality, we use the fact that Df is jointly convex. We write Pd = (1−β)Pd−βR
1−β +βR

which is a convex combination of two distributions when the assumptions are satisfied. The second
inequality follows from using the triangle inequality for

√
Df and using convexity of Df in its first

argument.

G.2 Proof of Theorem 1

Before proving Theorem 1, we introduce two lemmas. The first one is about the determination of the
constant λ, the second one is about comparing the divergences of mixtures.

Lemma 5 Let P and Q be two distributions, γ ∈ [0, 1] and λ ∈ R. The function

g(λ) :=

∫ (
λ− γ dQ

dP

)
+

dP

is nonnegative, convex, nondecreasing, satisfies g(λ) ≤ λ, and its right derivative is given by

g′+(λ) = P (λ · dP ≥ γ · dQ).

The equation g(λ) = 1− γ has a solution λ∗ (unique when γ < 1) with λ∗ ∈ [1− γ, 1]. Finally, if
P (dQ = 0) ≥ δ for a strictly positive constant δ then λ∗ ≤ (1− γ)δ−1.

Proof The convexity of g follows immediately from the convexity of x 7→ (x)+ and the linearity of
the integral. Similarly, since x 7→ (x)+ is non-decreasing, g is non-decreasing.

We define the set I(λ) as follows:

I(λ) := {x ∈ X : λ · dP (x) ≥ γ · dQ(x)}.

Now let us consider g(λ+ ε)− g(λ) for some small ε > 0. This can also be written:

g(λ+ ε)− g(λ) =

∫
I(λ)

εdP +

∫
I(λ+ε)\I(λ)

(λ+ ε)dP −
∫
I(λ+ε)\I(λ)

γdQ

= εP (I(λ)) +

∫
I(λ+ε)\I(λ)

(λ+ ε)dP −
∫
I(λ+ε)\I(λ)

γdQ.

On the set I(λ+ ε)\I(λ), we have

(λ+ ε)dP − γdQ ∈ [0, ε].

So that

εP (I(γ)) ≤ g(λ+ ε)− g(λ) ≤ εP (I(γ)) + εP
(
I(λ+ ε)\I(λ)

)
= εP (I(λ+ ε))

and thus

lim
ε→0+

g(λ+ ε)− g(λ)

ε
= lim
ε→0+

P (I(λ+ ε)) = P (I(λ)).

This gives the expression of the right derivative of g. Moreover, notice that for λ, γ > 0

g′+(λ) = P (λ · dP ≥ γ · dQ) = P

(
dQ

dP
≤ λ

γ

)
= 1− P

(
dQ

dP
>
λ

γ

)
≥ 1− γ/λ
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by Markov’s inequality.

It is obvious that g(0) = 0. By Jensen’s inequality applied to the convex function x 7→ (x)+, we have
g(λ) ≥ (λ− γ)+. So g(1) ≥ 1− γ. Also, g = 0 onR− and g ≤ λ. This means g is continuous on
R and thus reaches the value 1− γ on the interval (0, 1] which shows the existence of λ∗ ∈ (0, 1].
To show that λ∗ is unique we notice that since g(x) = 0 onR−, g is convex and non-decreasing, g
cannot be constant on an interval not containing 0, and thus g(x) = 1− γ has a unique solution for
γ < 1.

Also by convexity of g,
g(0)− g(λ∗) ≥ −λ∗g′+(λ∗),

which gives λ∗ ≥ (1 − γ)/g′+(λ∗) ≥ 1 − γ since g′+ ≤ 1. If P (dQ = 0) ≥ δ > 0 then also
g′+(0) ≥ δ > 0. Using the fact that g′+ is increasing we conclude that λ∗ ≤ (1− γ)δ−1.

Next we introduce some simple convenience lemma for comparing convex functions of random
variables.

Lemma 6 Let f be a convex function, X,Y be real-valued random variables and c ∈ R be a
constant such that

E [max(c, Y )] = E [X + Y ] .

Then we have the following bound:

E [f(max(c, Y ))] ≤ E [f(X + Y )]− E [X(f ′(Y )− f ′(c))+] ≤ E [f(X + Y )] . (17)

If in addition, Y ≤M a.s. for M ≥ c, then

E [f(max(c, Y ))] ≤ f(c) +
f(M)− f(c)

M − c
(E [X + Y ]− c). (18)

Proof We decompose the expectation with respect to the value of the max and use the convexity of
f :

f(X + Y )− f(max(c, Y ))

= 1[Y≤c](f(X + Y )− f(c))

+ 1[Y >c](f(X + Y )− f(Y ))

≥ 1[Y≤c]f
′(c)(X + Y − c) + 1[Y >c]Xf

′(Y )

= (1− 1[Y >c])Xf
′(c) + f ′(c)(Y −max(c, Y ))

+ 1[Y >c]Xf
′(Y )

= f ′(c)(X + Y −max(c, Y ))

+ 1[Y >c]X(f ′(Y )− f ′(c))
= f ′(c)(X + Y −max(c, Y )) +X(f ′(Y )− f ′(c))+,

where we used that f ′ is non-decreasing in the last step. Taking the expectation gives the first
inequality.

For the second inequality, we use the convexity of f on the interval [c,M ]:

f(max(c, Y )) ≤ f(c) +
f(M)− f(c)

M − c
(max(c, Y )− c).

Taking an expectation on both sides gives the second inequality.

Proof [Theorem 1] We first apply Lemma 5 with γ = 1− β and this proves the existence of λ∗ in
the interval (β, 1], which shows that Q∗β is indeed well-defined as a distribution.

Then we use Inequality (17) of Lemma 6 with X = βdQ/dPd, Y = (1− β)dPg/dPd, and c = λ∗.
We easily verify thatX+Y = ((1−β)dPg+βdQ)/dPd and max(c, Y ) = ((1−β)dPg+βdQ

∗
β)/dPd

and both have expectation 1 with respect to Pd. We thus obtain for any distribution Q,

Df ((1− β)Pg + βQ∗β ‖Pd) ≤ Df ((1− β)Pg + βQ ‖Pd) .
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This proves the optimality of Q∗β .

G.3 Proof of Theorem 2

Lemma 7 Let P and Q be two distributions, γ ∈ (0, 1), and λ ≥ 0. The function

h(λ) :=

∫ (
1

γ
− λdQ

dP

)
+

dP

is convex, non-increasing, and its right derivative is given by h′+(λ) = −Q(1/γ ≥
λdQ(X)/dP (X)). Denote ∆ := P (dQ(X)/dP (X) = 0). Then the equation

h(λ) =
1− γ
γ

has no solutions if ∆ > 1− γ, has a single solution λ† ≥ 1 if ∆ < 1− γ, and has infinitely many or
no solutions when ∆ = 1− γ.

Proof The convexity of h follows immediately from the convexity of x 7→ (a−x)+ and the linearity
of the integral. Similarly, since x 7→ (a− x)+ is non-increasing, h is non-increasing as well.

We define the set J (λ) as follows:

J (λ) :=

{
x ∈ X :

1

γ
≥ λdQ

dP
(x)

}
.

Now let us consider h(λ)− h(λ+ ε) for any ε > 0. Note that J (λ+ ε) ⊆ J (λ). We can write:

h(λ)− h(λ+ ε)

=

∫
J (λ)

(
1

γ
− λdQ

dP

)
dP −

∫
J (λ+ε)

(
1

γ
− (λ+ ε)

dQ

dP

)
dP

=

∫
J (λ)\J (λ+ε)

(
1

γ
− λdQ

dP

)
dP +

∫
J (λ+ε)

(
ε
dQ

dP

)
dP

=

∫
J (λ)\J (λ+ε)

(
1

γ
− λdQ

dP

)
dP + ε ·Q(J (λ+ ε)).

Note that for x ∈ J (λ) \ J (λ+ ε) we have

0 ≤ 1

γ
− λdQ

dP
(x) < ε

dQ

dP
(x).

This gives the following:

ε ·Q(J (λ+ ε)) ≤ h(λ)− h(λ+ ε)

≤ ε ·Q(J (λ+ ε)) + ε ·Q(J (λ) \ J (λ+ ε))

= ε ·Q(J (λ)),

which shows that h is continuous. Also

lim
ε→0+

h(λ+ ε)− h(λ)

ε
= lim
ε→0+

−Q(J (λ+ ε))

= −Q(J (λ)).

It is obvious that h(0) = 1/γ and h ≤ γ−1 for λ ≥ 0. By Jensen’s inequality applied to the convex
function x 7→ (a − x)+, we have h(λ) ≥

(
γ−1 − λ

)
+

. So h(1) ≥ γ−1 − 1. We conclude that h
may reach the value (1− γ)/γ = γ−1 − 1 only on [1,+∞). Note that

h(λ)→ 1

γ
P

(
dQ

dP
(X) = 0

)
=

∆

γ
≥ 0 as λ→∞.
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Thus if ∆/γ > γ−1 − 1 the equation h(λ) = γ−1 − 1 has no solutions, as h is non-increasing. If
∆/γ = γ−1 − 1 then either h(λ) > γ−1 − 1 for all λ ≥ 0 and we have no solutions or there is
a finite λ′ ≥ 1 such that h(λ′) = γ−1 − 1, which means that the equation is also satisfied by all
λ ≥ λ′, as h is continuous and non-increasing. Finally, if ∆/γ < γ−1 − 1 then there is a unique λ†

such that h(λ†) = γ−1 − 1, which follows from the convexity of h.

Next we introduce some simple convenience lemma for comparing convex functions of random
variables.

Lemma 8 Let f be a convex function, X,Y be real-valued random variables such that X ≤ Y a.s.,
and c ∈ R be a constant such that8

E [min(c, Y )] = E [X] .

Then we have the following lower bound:

E [f(X)− f(min(c, Y ))] ≥ 0.

Proof We decompose the expectation with respect to the value of the min, and use the convexity of
f :

f(X)− f(min(c, Y ))

= 1[Y≤c](f(X)− f(Y )) + 1[Y >c](f(X)− f(c))

≥ 1[Y≤c]f
′(Y )(X − Y ) + 1[Y >c](X − c)f ′(c)

≥ 1[Y≤c]f
′(c)(X − Y ) + 1[Y >c](X − c)f ′(c)

= Xf ′(c)−min(Y, c)f ′(c),

where we used the fact that f ′ is non-decreasing in the previous to last step. Taking the expectation
we get the result.

Lemma 9 Let Pg, Pd be two fixed distributions and β ∈ (0, 1). Assume

Pd

(
dPg
dPd

= 0

)
< β.

LetM(Pd, β) be the set of all probability distributions T such that (1 − β)dT ≤ dPd. Then the
following minimization problem:

min
T∈M(Pd,β)

Df (T ‖Pg)

has the solution T ∗ with density

dT ∗ := min(dPd/(1− β), λ†dPg),

where λ† is the unique value in [1,∞) such that
∫
dT ∗ = 1.

Proof We will use Lemma 8 with X = dT (Z)/dPg(Z), Y = dPd(Z)/
(
(1 − β)dPg(Z)

)
, and

c = λ∗, Z ∼ Pg. We need to verify that assumptions of Lemma 8 are satisfied. Obviously, Y ≥ X .
We need to show that there is a constant c such that∫

min

(
c,

dPd
(1− β)dPg

)
dPg = 1.

Rewriting this equation we get the following equivalent one:

β =

∫
(dPd −min (c(1− β)Pg, dPd))

= (1− β)

∫ (
1

1− β
− cdPg

dPd

)
+

dPd.
(19)

8Generally it is not guaranteed that such a constant c always exists. In this result we assume this is the case.
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Using the fact that

Pd

(
dPg
dPd

= 0

)
< β

we may apply Lemma 7 and conclude that there is a unique c ∈ [1,∞) satisfying (19), which we
denote λ†.

To conclude the proof of Theorem 2, observe that from Lemma 9, by making the change of variable
T = (Pd − βQ)/(1− β) we can rewrite the minimization problem as follows:

min
Q: βdQ≤dPd

Df◦

(
Pg ‖

Pd − βQ
1− β

)
and we verify that the solution has the form dQ†β = 1

β

(
dPd − λ†(1− β)dPg

)
+

. Since this solution
does not depend on f , the fact that we optimized Df◦ is irrelevant and we get the same solution for
Df .

G.4 Proof of Lemma 2

The first inequality follows from the optimality of Q∗β (hence the value of the objective at Q∗β is
smaller than at Pd), and the fact that Df is convex in its first argument. The second inequality follows
from the optimality of Q†β (hence the objective at Q†β is smaller than its value at Pd which itself
satisfies the condition βdPd ≤ dPd). For the third inequality, we combine the second inequality with
the first inequality of Lemma 1 (with Q = R = Q†β).

G.5 Proof of Corollaries 1 and 2

For Corrollay 1, combine Lemma 1, Theorem 1, and Lemma 2. Corollary 2 immediately follows
from Lemma 1, Theorem 2, and Lemma 2. It is easy to verify that for γ < β/4, the coefficient is less
than (β/2 +

√
1− β)2 < 1 (for β > 0).
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