Supplementary Material for “Fitting Low-Rank Tensors in Constant
Time”

A Proof of Lemma 3.1

Before proving Lemma 3.1, we need to establish several definitions. We say that a partition Q is a
refinement of another partition P = (V1,...,V,) if Q is obtained by splitting each set V; into one or
more parts. The partition P = (V4,...,V},) of the interval [0, 1] is called an equipartition if A\(V;) =

1/p for every i € [p]. For a dikernel W : [0,1]® — R and an equipartition P = (V4,...,V,) of

[0, 1], we define Wp : [0,1] — R as the dikernel obtained by averaging each V;, x --- x V;,. for
i1,...,ix € [p]. More formally, we define

1
przi/ Ww’dm’:pK/ W(z')dx',
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where 7y, is the unique index such that zj, € V;, for each k € [K].

The following lemma states that any dikernel WV : [0, 1]K — R can be well approximated by Wp for
an equipartition P into a small number of parts.
Lemma A.1 (Weak regularity lemma for dikernels [9]). Let P be an equipartition of [0, 1] into p
sets. Then, for any dikernel W : [0, 1]K — R and € > 0, there exists a refinement Q of P with
Q] < p2o(1/52K72) such that

W =Wellg < €[W]g.

Corollary A.2. Let Wt ... WT . |0, 1]K — R be dikernels. Then, for any € > 0, there exists an
equipartition P into |P| < 20(T/e* %) parts, such that for every t € [T,

WV = Whllg < el W .

Proof. Let PV be a trivial partition, that is, a partition consisting of a single part [0, 1]. Then, for each
t € [T, we iteratively apply Lemma A.1 with P~ W, and ¢, and we obtain the partition P¢ into

at most [P=120/< ) parts such that |W* — Wh. || < €[[W"||,. Because P is a refinement
of P!, we have |[W' — Wi |5 < W — Wi, .|| forevery i € [t — 1]. Then, P” satisfies the

o T B
desired property with |P7| < (20(1/E2K 2)) _ 90(T/eK %) N

Although the following lemma was originally proved for order-2 dikernels, the proof can easily be
extended to general orders:

Lemma A.3 ((4.15) of [5]). Let W : [0, I]K — [=L, L] be a dikernel, and let S, ...,Sk be
sequences of s elements uniformly and independently sampled from [0, 1]. Then, we have

L

L
e =g By IWsisicllo = IWla < g

1yeeesSE O (1)’
where Qi (1) hides a factor depending on K.

Finally, we need the following concentration inequality.

Lemma A.4 (Azuma’s inequality). Let (2, A, P) be a probability space, k be a positive integer, and
C >0. Let z = (z1,...,2k), where z1,. ..,z are independent random variables, and z; takes
values in some measure space (Q;, A;). Let f : Q1 x -+ X Qi — R be a function. Suppose that
|f(x) — f(y)| < C whenever x and y only differ in one coordinate. Then

Pr||f(2) — Elf(2)]| > AC| < 2¢~*/2F,
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Proof of Lemma 3.1. We first bound the expectations and then prove their concentrations. We apply
,Vp) be the obtained partition with

Corollary A.2 to W1,. ..,

p < 27/¢" 7 parts such that

' =

WT and ¢, and let P = (V7,...

Wpllg < eL.

for every t € [T']. According to Lemma A.3, for every ¢ € [T, we have

.....

Then, for any measure-preserving bijection 7 : [0, 1]

HWt —7(W's,...50)llg

1,

< - Whlin+ B Wh -

< 2eL + —l—S E ||Wp
1

.....

sk (1)

Thus, we are left with the problem of sampling from P. For each k € [K], let ZF be the number of

SKHI:’ - g

TWhls,

T(Wpls,....sx)

1yees

.....

E
s

O K

— [0,1] and ¢ € [T, we have

IOwp —

Wt)|51

sillp+, B

o-

177K

points in Sy, that fall into the set V;. It is easy to compute the following:

such that A(V¥)
dikernel W' [0, I]K
WE on V! x

for every t € [T'], we have

—t
IWh = 1Wpls,...si)lo = IWp =~ Wlo < [ IWhie) -

_2L(1— H me(f —)) :2L(1

K] i€(p]

§2L<1 - 11 (

ke[K]

ke[K]

Then, we have

E[Wp — 7(Wpls,....5x

Jlo=1vF Y E

ke[K]

<L\/p Z Z VarZF < Lyp > \/7 KL\/7

i€[p]
Inserted this into (5), we obtain

E[W —1(W'ls,...s

ke[K)]

11

L
Ol < 2eL+ (1)+KL\[<26L+

1
pQ)S

for every k € [K]. For each k € [K], the partition P* of [0, 1] into the sets V}*, . ..

----- SK)

<7

.....

(

.....

ircep](

.....

L
sullo < L+ g

Qr() "

, Vi is constructed
= ZF/s and \(V; N V*) = min(1/p, ZF/s). For each t € [T, we construct the
— R such that the value of W' on Vi} X
- x VX Then, W' agrees with W5 on the set Q = U,
(Vi NV;E). Then, there exists a bijection 7 such that 7(W5|s,

X Vif is the same as the value of
‘/;1 N ‘/i) X oo X
— W' foreacht € [T']. Then,

x)|de < 2L(1 - \(Q))

7---7SK)

(T/K-2).




Choosing e = O(T//(logy s+ (1)) VERT _ 0y (T/1og, 5) K= e obtain the upper bound

T \1/(2KE-2) I KL T \1/(QE-2)
) DOx(s)

t t . P Tl
E W =7Wils,,..s0) o < 2L OK<10g2 s SO 0D

log, s

Observing that [|[W' — 7(W'|s, ... s, )|l changes by at most O(L/s) if an element in one of

Si,..., Sk changes, we apply Azuma’s inequality with A = s - Qx (T'/log, s)l/(2K_2) and the
union bound to complete the proof. O

.....

B Proof of Lemma 3.2

We say that a vector-valued function f : [0, 1] — R is orthonormal if (f,., f.) = 1 forevery r € [R]
and (f,, fr) = 0if r # . First, we calculate the partial derivatives of the objective function:

Lemma B.l. Let X € [0,1]X — R be a dikernel, G € R *Ex pe q tensor, and
{f® 2 0,1] — RRk} ke(k) be a set of orthonormal vector-valued functions. Then, we have

Hx [G: f O, ... f(K)]|H2

f(ko) F
=9 Z Gn---m(/ . X(x) H fﬁf)(xk)dw
T4, TR T =T0 [0,1]% s =20 ke[K\{ko}
- 2 Z Grl4..7‘KG7’1~~~7'k0,17"0’r‘k0+1"'7"Kf?glljg)(IO)'
T1y..0,TK
Proof.
0 H 1 x)l12 0
[ X = GO | = — Gry.or £ (@) da
f5) (o) F oS (a0) Jous (e ZK : Kkgm )
k
:2/ (Y@~ Y G I M@0) X Gy, IT 1P Gw)da
[0,1]% 24, =0 P1yeTK kE[K] T4y T =T0 ke[K\{ko}

=2 Y G,,l...rk/[m]K X)) [ £P@n)de
s Ty =T0

T1se T K Tk =T0 ke[K)\{ko}

2 Y G Y G S (0) /H I @ [ Pede

T1ye0TK r’l,...ﬂ’}(:r;m:ro

o= ke[K]\{ko} ke[KN\{ko}

=2 3 Gh...,,K/[Ol]K @) ] fP@)de

Tlyees K Tl =T0 ke[K]\{ko}

—2 Z Gryoorge Z Gy rKfrf)(fo) H /01 (k) (z)f )(ﬂﬂk)déﬂk

T1yeensTK r’l,...,r}(:rﬁcozro €K\ {ko}

=2 ¥ G““'TK/[O”K_ - X(x) M /®@)de

T1ye s TK kg =T0 ke[K)\{ko}
_ E (o)
2 Grl~~-7“KGrl--<rko,1rork0+1'--m(frko ($0)
T1y..,TK

which completes the proof. O

Proof of Lemma 3.2. First, we show that (LHS) < (RHS). Consider a sequence of solutions for the
continuous problem (2) whose objective values attains the infimum. For Tucker decompositions,
it is well known that there exists a minimizer for which the factor matrices U, ... U®) are
orthonormal. By a similar reasoning, we can show that the vector-valued functions (1), ..., f(5) in
each solution of the sequence are orthonormal. As the objective function is coercive with respect
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to the tensor G, we can take a subsequence for which G converges. Let G* be the limit. Now, for
any 6 > 0, we can create a matrix G by perturbing G* so that (i) by fixing G to G in the continuous

problem, the infimum increases only by ¢, and (ii) a matrix constructed from G is invertible (the
detail is given later) and has a condition number at least ' = §(9).

Now, consider a sequence of solutions for the continuous problem (2) with G fixed to G whose
objective values attains the infimum. We can show that the partial derivatives converges to zeros

almost everywhere. Then, for any € > 0, there exists a solution (é, fO ..., £ in the sequence
such that the partial derivatives are at most € almost everywhere.

Then by Lemma B.1, for any ko € [K], o € [Ry], and almost all z € [0, 1], we have

Z éﬁ"'?";( érl"'7'k0—1"'07'k0+1 K fwgf(?) ('1:0) (6)

T1yesTK

= > GK/ X@) [ fPee)de£e(ko,ro,2), (D)
[O,I]K:ka:wo ke

Tl TK Tkg=T0 [K]\{kO}

where €(ko, 0, 2) = O(e). Now, we consider a system of linear equations consisting of (7) for ro =
1,...,7k,. We assume that the matrix involved in this system is invertible and has a condition number
at least ¢'. Then, for any k, r € [Ry] and almost every pair z, 2" € [0, 1] with iy, (z) = iy, (z), we
have £ (z) = £{¥) (2/) £ O(e/8"). For each k € [K], we can define a matrix U*) € RNVeXEx a5

Ui(f) = fﬁk) (x), where = € [0, 1] is an arbitrary value with i, (x) = ¢. Then, we have

1 . 2 1 - 2
iy 16 o anllF — L R ) ().
NHX [G:U®D, ..U ]|HF NZ (X“...ZK [G:UD, ..U }]“...”{)
~ 2
-y / (¥(@) — 16 £, (@) £ 0(e/)) da
vz I I XX LK

~ 2
X =[G, 9| 0N ()7

for N =] ke[K] Ny. As the choice of € and § are arbitrary, we obtain (LHS) < (RHS).

Second, we show that (RHS) < (LHS). Let U®) € RN+*%x (k € [K]) be matrices. We define a
vector-valued function f® : [0,1] — RF* as £{¥(z) = Uﬁjj) (a)r for each k € [K] and r € [Ry].
k

1
Then, we have

2

HX—|[G;f(1),...7f(K)]]H Z/[Ol]K<X(sc)—[G;f(l),...,,f(K)](a:))Qda:

F
n

11,0y

— i (Xil"'iK —[G; U(l),...,U(K)]Iil.--iK>2

o (H@ (GO @) da

ke[K] iy

2

X - [GUW, ... U(K)}H
b) ) b) F

C Proof of Lemma 3.3

The cut norm is useful to bound the absolute value of the inner product between a tensor and a tensor
product:

Lemma C.1. Lete > 0and W : [0,1]" — R be a dikernel with |W||o < e. Then, for any functions
FO 59 0,1) = [L, L), we have [(W, @ye i) f*))| < LK.
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Proof. For 7 € R and the function h : [0,1] = R, let L, (h) := {x € [0,1] | h(z) = 7} be the level
set of hat 7. For f) = () /I, we have

W®fk)|—LK|W ®f |LK‘/11]KHTk/ W(x)dzdr

ke[K] ke[K] kE[K] ke L K (F70)

<L® /[1 " 1T \Tk\‘/ (f/(k))W( dmdr’ <eLK/ H |reldT = eL®. O
) Tk

ke[K) LU" ek
Thus, we have the following:

Lemma C.2. Let X,y 2 10,115 = R be dikernels with | X — Y||q < € and ||X? = V?||5 < €

where X2(x) = X(x)? and Y*(x) = Y(x)? for every © € [0,1)%. Then, for any tensor G €
RFXXBx and a set of vector-valued functions F = {f*) : [0,1] — RE *}repr) we have

e 165 50, 0N = [ = 1650, Ok (14 2RI il Pl
where R = [Ty R
Proof. 'We have
’HXf [G; f D, )2 = v - [[G;f<1>,...,f<f<>ﬂ||§\

=|[ (@t @) e [ (5 (60 w) ae
- | /H (o) - y<a:>2)dsc 2 (K@) V@G W)

<Ix2-2g+2 > (Gl [ -V, Q) £

Tle[Rl],...,T‘kE[Rk] kG[K
< €+ 2eR| G lmax | Fllax
by Lemma C.1. O

Proof of Lemma 3.3. By Lemma C.2, we have

=169, A < [t

<o 16 10 O+ (24 2eRIG e P )
Similarly, we have
2 2
16 A o 1 0 SO e
1 K)q?
<[P =163 57 O+ (26 + 26RIGY sl Fl )
Hence, the claim follows. O

D Description of real datasets

movie_gray: One of the movies contained in a human activity video dataset [14]. It consists of 107
frames at 120 x 160 resolution. The original movie had RGB color information, but we
reduce it to monochrome.

EEM: A collection of samples measured using fluorescence spectroscopy forming Excitation-
Emission Matrices (EEMs)’ [2].

"http://www.models.life.ku.dk/joda/prototype
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fluorescence: A collection of EEM measurements of human blood plasma samples® [11]. We used
the variable X_UD in the dataset.

bonnie: HPLC-PDA profiles of 24 commercial preparations of St. John’s wort, originating from
several continents’ [1].

fluor: A fluorescence dataset'”.

wine: 3-way data contained in the Wine GC-MS FT-IR dataset''.

BCI_Berlin: Generated from electroencephalogram (EEG) data collected in Berlin'? [4]. It
records EEG signals with 59 channels for multiple trials and subjects. A signal
is recorded each millisecond. From matlab files BCICIV_calib_dsla_1000Hz.mat,
BCICIV_calib_ds1b_1000Hz.mat, ..., BCICIV_calib_dslg_1000Hz.mat, we ex-
tracted 4001 frames from each trial start-point and then concatenated them.

visor: Generated from video surveillance data!® [19]. We extracted each frame of the video and
converted it to a monochrome image. There were 16,818 frames at 288 x 384 resolution.

$http://www.models.life.ku.dk/anders-cancer
“http://www.models.life.ku.dk/Bonnie
Ohttp://www.models.life.ku.dk/Fluorescence
"http://www.models.life.ku.dk/Wine_GCMS_FTIR
Phttp://www.bbci.de/competition/iv/desc_1.html
Bhttp://www.openvisor.org/video_details.asp?idvideo=285
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