
Supplementary Material for “Fitting Low-Rank Tensors in Constant
Time”

A Proof of Lemma 3.1

Before proving Lemma 3.1, we need to establish several definitions. We say that a partition Q is a
refinement of another partition P = (V1, . . . , Vp) if Q is obtained by splitting each set Vi into one or
more parts. The partition P = (V1, . . . , Vp) of the interval [0, 1] is called an equipartition if λ(Vi) =

1/p for every i ∈ [p]. For a dikernelW : [0, 1]
K → R and an equipartition P = (V1, . . . , Vp) of

[0, 1], we defineWP : [0, 1]
K → R as the dikernel obtained by averaging each Vi1 × · · · × ViK for

i1, . . . , iK ∈ [p]. More formally, we define

WP(x) =
1∏

k∈[K] λ(Vik)

∫
Vi1×···×Vik

W(x′)dx′ = pK
∫
Vi1×···×ViK

W(x′)dx′,

where ik is the unique index such that xk ∈ Vik for each k ∈ [K].

The following lemma states that any dikernelW : [0, 1]
K → R can be well approximated byWP for

an equipartition P into a small number of parts.

Lemma A.1 (Weak regularity lemma for dikernels [9]). Let P be an equipartition of [0, 1] into p
sets. Then, for any dikernel W : [0, 1]

K → R and ε > 0, there exists a refinement Q of P with
|Q| ≤ p2O(1/ε2K−2) such that

‖W −WQ‖� ≤ ε‖W‖F .

Corollary A.2. LetW1, . . . ,WT : [0, 1]
K → R be dikernels. Then, for any ε > 0, there exists an

equipartition P into |P| ≤ 2O(T/ε2K−2) parts, such that for every t ∈ [T ],

‖Wt −Wt
P‖� ≤ ε‖W

t‖F .

Proof. Let P0 be a trivial partition, that is, a partition consisting of a single part [0, 1]. Then, for each
t ∈ [T ], we iteratively apply Lemma A.1 with Pt−1,Wt, and ε, and we obtain the partition Pt into
at most |Pt−1|2O(1/ε2K−2) parts such that ‖Wt −Wt

Pt‖� ≤ ε‖Wt‖2. Because Pt is a refinement
of Pt−1, we have ‖Wi −Wi

Pt‖� ≤ ‖W
i −Wi

Pt−1‖� for every i ∈ [t− 1]. Then, PT satisfies the

desired property with |PT | ≤ (2O(1/ε2K−2))
T

= 2O(T/ε2K−2).

Although the following lemma was originally proved for order-2 dikernels, the proof can easily be
extended to general orders:

Lemma A.3 ((4.15) of [5]). Let W : [0, 1]
K → [−L,L] be a dikernel, and let S1, . . . , SK be

sequences of s elements uniformly and independently sampled from [0, 1]. Then, we have

− L

sΩK(1)
≤ E
S1,...,SK

‖W|S1,...,SK‖� − ‖W‖� <
L

sΩK(1)
,

where ΩK(1) hides a factor depending on K.

Finally, we need the following concentration inequality.

Lemma A.4 (Azuma’s inequality). Let (Ω, A, P ) be a probability space, k be a positive integer, and
C > 0. Let z = (z1, . . . , zk), where z1, . . . , zk are independent random variables, and zi takes
values in some measure space (Ωi, Ai). Let f : Ω1 × · · · × Ωk → R be a function. Suppose that
|f(x)− f(y)| ≤ C whenever x and y only differ in one coordinate. Then

Pr
[
|f(z)−E

z
[f(z)]| > λC

]
< 2e−λ

2/2k.
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Proof of Lemma 3.1. We first bound the expectations and then prove their concentrations. We apply
Corollary A.2 to W1, . . . ,WT and ε, and let P = (V1, . . . , Vp) be the obtained partition with
p ≤ 2T/ε

2K−2

parts such that
‖Wt −Wt

P‖� ≤ εL.
for every t ∈ [T ]. According to Lemma A.3, for every t ∈ [T ], we have

E
S1,...,SK

‖Wt
P |S1,...,SK −Wt|S1,...,SK‖� = E

S1,...,SK
‖(Wt

P −Wt)|S1,...,SK‖� ≤ εL+
L

sΩK(1)
.

Then, for any measure-preserving bijection π : [0, 1]→ [0, 1] and t ∈ [T ], we have

E
S1,...,SK

‖Wt − π(Wt|S1,...,SK )‖� (4)

≤ ‖Wt −Wt
P‖� + E

S1,...,SK
‖Wt
P − π(Wt

P |S1,...,SK )‖� + E
S1,...,SK

‖π(Wt
P |S1,...,SK )− π(Wt|S1,...,SK )‖�

≤ 2εL+
L

sΩK(1)
+ E
S1,...,SK

‖W t
P − π(W t

P |S1,...,SK )‖�. (5)

Thus, we are left with the problem of sampling from P . For each k ∈ [K], let Zki be the number of
points in Sk that fall into the set Vi. It is easy to compute the following:

E[Zki ] =
s

p
and Var[Zki ] =

(1

p
− 1

p2

)
s <

s

p

for every k ∈ [K]. For each k ∈ [K], the partition Pk of [0, 1] into the sets V k1 , . . . , V
k
p is constructed

such that λ(V ki ) = Zki /s and λ(Vi ∩ V ki ) = min(1/p, Zki /s). For each t ∈ [T ], we construct the
dikernelWt

: [0, 1]
K → R such that the value ofWt

on V 1
i1
× · · ·V KiK is the same as the value of

Wt
P on V 1

i1
× · · · × V KiK . Then,Wt

agrees withWt
P on the set Q =

⋃
i1,...,iK∈[p](Vi1 ∩ V 1

i1
)× · · · ×

(ViK ∩V KiK ). Then, there exists a bijection π such that π(Wt
P |S1,...,SK ) =Wt

for each t ∈ [T ]. Then,
for every t ∈ [T ], we have

‖Wt
P − π(Wt

P |S1,...,SK )‖� = ‖Wt
P −W

t‖� ≤
∫ ∣∣Wt

P(x)−Wt
(x)
∣∣dx ≤ 2L(1− λ(Q))

=2L
(

1−
∏
k∈[K]

∑
i∈[p]

min
(1

p
,
Zki
s

))
= 2L

(
1−

∏
k∈[K]

(
1− 1

2

∑
i∈[p]

∣∣∣1
p
− Zki

s

∣∣∣))

≤2L
(

1−
∏
k∈[K]

(
1−
√
p

2

√√√√∑
i∈[p]

(1

p
− Zki

s

)2))

≤L√p
∑
k∈[K]

√√√√∑
i∈[p]

(1

p
− Zki

s

)2

.

Then, we have

E ‖Wt
P − π(Wt

P |S1,...,SK )‖� = L
√
p
∑
k∈[K]

E

√√√√∑
i∈[p]

(1

p
− Zki

s

)2

≤ L√p
∑
k∈[K]

√√√√E
∑
i∈[p]

(1

p
− Zki

s

)2

≤L√p
∑
k∈[K]

√√√√ 1

s2

∑
i∈[p]

VarZki ≤ L
√
p
∑
k∈[K]

√
1

ps
= KL

√
p

s
.

Inserted this into (5), we obtain

E ‖Wt − π(Wt|S1,...,SK )‖� ≤ 2εL+
L

sΩK(1)
+KL

√
p

s
≤ 2εL+

L

sΩK(1)
+
KL√
s

2O(T/ε2K−2).
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Choosing ε = O
(
T/(log2 s

ΩK(1))
)1/(2K−2)

= OK
(
T/ log2 s

)1/(2K−2)
, we obtain the upper bound

E ‖Wt − π(Wt|S1,...,SK )‖� ≤ 2L·OK
( T

log2 s

)1/(2K−2)

+
L

sΩK(1)
+

KL

sΩK(1)
= L·OK

( T

log2 s

)1/(2K−2)

.

Observing that ‖Wt − π(Wt|S1,...,SK )‖� changes by at most O(L/s) if an element in one of
S1, . . . , SK changes, we apply Azuma’s inequality with λ = s · ΩK(T/ log2 s)

1/(2K−2) and the
union bound to complete the proof.

B Proof of Lemma 3.2

We say that a vector-valued function f : [0, 1]→ RR is orthonormal if 〈fr, fr〉 = 1 for every r ∈ [R]
and 〈fr, fr′〉 = 0 if r 6= r′. First, we calculate the partial derivatives of the objective function:
Lemma B.1. Let X ∈ [0, 1]K → R be a dikernel, G ∈ RR1×···RK be a tensor, and
{f (k) : [0, 1]→ RRk}k∈[K] be a set of orthonormal vector-valued functions. Then, we have

∂

∂f
(k0)
r0 (x0)

∥∥∥X − [[G; f (1), . . . , f (K)]]
∥∥∥2

F

= 2
∑

r1,...,rK :rk0=r0

Gr1···rK

∫
[0,1]K :xk0=x0

X (x)
∏

k∈[K]\{k0}

f (k)
rk

(xk)dx

− 2
∑

r1,...,rK

Gr1···rKGr1···rk0−1r0rk0+1···rKf
(k0)
rk0

(x0).

Proof.

∂

∂f
(k0)
r0 (x0)

∥∥∥X − [[G; f (1), . . . , f (K)]]
∥∥∥2

F
=

∂

∂f
(k0)
r0 (x0)

∫
[0,1]K

(
X (x)−

∑
r1,...,rK

Gr1···rK
∏
k∈[K]

f (k)
rk

(xk)
)2

dx

= 2

∫
[0,1]K :xk0=x0

(
X (x)−

∑
r1,...,rK

Gr1···rK
∏
k∈[K]

f (k)
rk

(xk)
) ∑
r′1,...,r

′
K :r′k0

=r0

Gr′1···r′K

∏
k∈[K]\{k0}

f
(k)
r′k

(xk)dx

= 2
∑

r1,...,rK :rk0=r0

Gr1···rK

∫
[0,1]K :xk0=x0

X (x)
∏

k∈[K]\{k0}

f (k)
rk

(xk)dx

− 2
∑

r1,...,rK

Gr1···rK
∑

r′1,...,r
′
K :r′k0

=r0

Gr′1···r′Kf
(k0)
rk0

(x0)

∫
[0,1]K :xk0=x0

∏
k∈[K]\{k0}

f (k)
rk

(xk)
∏

k∈[K]\{k0}

f
(k)
r′k

(xk)dx

= 2
∑

r1,...,rK :rk0=r0

Gr1···rK

∫
[0,1]K :xk0=x0

X (x)
∏

k∈[K]\{k0}

f (k)
rk

(xk)dx

− 2
∑

r1,...,rK

Gr1···rK
∑

r′1,...,r
′
K :r′k0

=r0

Gr′1···r′Kf
(k0)
rk0

(x0)
∏

k∈[K]\{k0}

∫
[0,1]

f (k)
rk

(xk)f
(k)
r′k

(xk)dxk

= 2
∑

r1,...,rK :rk0=r0

Gr1···rK

∫
[0,1]K :xk0=x0

X (x)
∏

k∈[K]\{k0}

f (k)
rk

(xk)dx

− 2
∑

r1,...,rK

Gr1···rKGr1···rk0−1r0rk0+1···rKf
(k0)
rk0

(x0).

which completes the proof.

Proof of Lemma 3.2. First, we show that (LHS) ≤ (RHS). Consider a sequence of solutions for the
continuous problem (2) whose objective values attains the infimum. For Tucker decompositions,
it is well known that there exists a minimizer for which the factor matrices U (1), . . . , U (K) are
orthonormal. By a similar reasoning, we can show that the vector-valued functions f (1), . . . , f (K) in
each solution of the sequence are orthonormal. As the objective function is coercive with respect
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to the tensor G, we can take a subsequence for which G converges. Let G∗ be the limit. Now, for
any δ > 0, we can create a matrix G̃ by perturbing G∗ so that (i) by fixing G to G̃ in the continuous
problem, the infimum increases only by δ, and (ii) a matrix constructed from G̃ is invertible (the
detail is given later) and has a condition number at least δ′ = δ′(δ).

Now, consider a sequence of solutions for the continuous problem (2) with G fixed to G̃ whose
objective values attains the infimum. We can show that the partial derivatives converges to zeros
almost everywhere. Then, for any ε > 0, there exists a solution (G̃, f (1), . . . , f (K)) in the sequence
such that the partial derivatives are at most ε almost everywhere.

Then by Lemma B.1, for any k0 ∈ [K], r0 ∈ [Rk], and almost all x ∈ [0, 1], we have∑
r1,...,rK

G̃r1···rK G̃r1···rk0−1r0rk0+1···rKf
(k0)
rk0

(x0) (6)

=
∑

r1,...,rK :rk0=r0

G̃r1···rK

∫
[0,1]K :xk0=x0

X (x)
∏

k∈[K]\{k0}

f (k)
rk

(xk)dx± ε(k0, r0, x), (7)

where ε(k0, r0, x) = O(ε). Now, we consider a system of linear equations consisting of (7) for r0 =
1, . . . , rk0 . We assume that the matrix involved in this system is invertible and has a condition number
at least δ′. Then, for any k, r ∈ [Rk] and almost every pair x, x′ ∈ [0, 1] with iNk(x) = iNk(x′), we
have f (k0)

r0 (x) = f
(k0)
r0 (x′)±O(ε/δ′). For each k ∈ [K], we can define a matrix U (k) ∈ RNk×Rk as

U
(k)
ir = f

(k)
r (x), where x ∈ [0, 1] is an arbitrary value with iNk(x) = i. Then, we have

1

N

∥∥∥X − [[G̃;U (1), . . . , U (K)]]
∥∥∥2

F
=

1

N

∑
i1,...,iK

(
Xi1···iK − [[G̃;U (1), . . . , U (K)]]i1···iK

)2

=
∑

i1,...,iK

∫
I
N1
i1
×···×INKiK

(
X (x)− [[G̃; f (1), . . . , f (K)]](x)±O(ε/δ′)

)2

dx

=
∥∥∥X − [[G̃; f (1), . . . , f (K)]]

∥∥∥2

F
±O(ε2N/(δ′)2)

for N =
∏
k∈[K]Nk. As the choice of ε and δ are arbitrary, we obtain (LHS) ≤ (RHS).

Second, we show that (RHS) ≤ (LHS). Let U (k) ∈ RNk×Rk (k ∈ [K]) be matrices. We define a
vector-valued function f (k) : [0, 1] → RRk as f (k)

r (x) = U
(k)
iNk (x)r for each k ∈ [K] and r ∈ [Rk].

Then, we have∥∥∥X − [[G; f (1), . . . , f (K)]]
∥∥∥2

F
=

∫
[0,1]K

(
X (x)− [[G; f (1), . . . , , f (K)]](x)

)2

dx

=
∑

i1,...,iK

∫
∏
k∈[K] I

Nk
ik

(
X (x)− [[G; f (1), . . . , f (K)]](x)

)2

dx

=
1

N

∑
i1,...,iK

(
Xi1···iK − [[G;U (1), . . . , U (K)]]i1···iK

)2

=
1

N

∥∥∥X − [G;U (1), . . . , U (K)]
∥∥∥2

F
.

C Proof of Lemma 3.3

The cut norm is useful to bound the absolute value of the inner product between a tensor and a tensor
product:

Lemma C.1. Let ε ≥ 0 andW : [0, 1]
K → R be a dikernel with ‖W‖� ≤ ε. Then, for any functions

f (1), . . . , f (K) : [0, 1]→ [−L,L], we have |〈W,
⊗

k∈[K] f
(k)〉| ≤ εLK .
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Proof. For τ ∈ R and the function h : [0, 1]→ R, let Lτ (h) := {x ∈ [0, 1] | h(x) = τ} be the level
set of h at τ . For f ′(i) = f (i)/L, we have

|〈W,
⊗
k∈[K]

f (k)〉| = LK |〈W,
⊗
k∈[K]

f ′(k)〉| = LK
∣∣∣∫

[−1,1]K

∏
k∈[K]

τk

∫
∏
k∈[K] Lτk (f ′(k))

W(x)dxdτ
∣∣∣

≤ LK
∫

[−1,1]K

∏
k∈[K]

|τk|
∣∣∣∫∏

k∈[K] Lτk (f ′(k))

W(x)dxdτ
∣∣∣ ≤ εLK ∫

[−1,1]K

∏
k∈[K]

|τk|dτ = εLK .

Thus, we have the following:

Lemma C.2. Let X ,Y : [0, 1]
K → R be dikernels with ‖X − Y‖� ≤ ε and ‖X 2 − Y2‖� ≤ ε,

where X 2(x) = X (x)
2 and Y2(x) = Y(x)

2 for every x ∈ [0, 1]
K . Then, for any tensor G ∈

RR1×···×RK and a set of vector-valued functions F = {f (k) : [0, 1]→ RRk}k∈[K], we have∥∥∥X − [[G; f (1), . . . , f (K)]]
∥∥∥2

F
=
∥∥∥Y − [[G; f (1), . . . , f (K)]]

∥∥∥2

F
± ε
(

1 + 2R‖G‖max‖F‖Kmax

)
,

where R =
∏
k∈[K]RK .

Proof. We have∣∣∣∥∥X − [[G; f (1), . . . , f (K)]]
∥∥2

F
−
∥∥Y − [[G; f (1), . . . , f (K)]]

∥∥2

F

∣∣∣
=
∣∣∣∫

[0,1]K

(
X (x)− [[G; f (1), . . . , f (K)]](x)

)2

dx−
∫

[0,1]K

(
Y(x)− [[G; f (1), . . . , f (K)]](x)

)2

dx
∣∣∣

=
∣∣∣∫

[0,1]K

(
X (x)

2 − Y(x)
2
)

dx− 2

∫
[0,1]K

(X (x)− Y(x))[[G; f (1), . . . , f (K)]](x)dx
∣∣∣

≤ ‖X 2 − Y2‖� + 2
∑

r1∈[R1],...,rk∈[Rk]

|Gr1···rK | ·
∣∣∣〈X − Y, ⊗

k∈[K]

f (k)
rk
〉
∣∣∣

≤ ε+ 2εR‖G‖max‖F‖Kmax

by Lemma C.1.

Proof of Lemma 3.3. By Lemma C.2, we have∥∥∥Y − [[GY ; f
(1)
Y , . . . , f

(K)
Y ]]

∥∥∥2

F
≤
∥∥∥Y − [[GX ; f

(1)
X , . . . , f

(K)
X ]]

∥∥∥2

F
+ ε

≤
∥∥∥X − [[GX ; f

(1)
X , . . . , f

(K)
X ]]

∥∥∥2

F
+
(

2ε+ 2εR‖GX ‖max‖FX ‖Kmax

)
.

Similarly, we have∥∥∥X − [[GX ; f
(1)
X , . . . , f

(K)
X ]]

∥∥∥2

F
≤
∥∥∥X − [[GY ; f

(1)
Y , . . . , f

(K)
Y ]]

∥∥∥2

F
+ ε

≤
∥∥∥Y − [[GY ; f

(1)
Y , . . . , f

(K)
Y ]]

∥∥∥2

F
+
(

2ε+ 2εR‖GY‖max‖FY‖Kmax

)
.

Hence, the claim follows.

D Description of real datasets

movie_gray: One of the movies contained in a human activity video dataset [14]. It consists of 107
frames at 120 × 160 resolution. The original movie had RGB color information, but we
reduce it to monochrome.

EEM: A collection of samples measured using fluorescence spectroscopy forming Excitation-
Emission Matrices (EEMs)7 [2].

7http://www.models.life.ku.dk/joda/prototype
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fluorescence: A collection of EEM measurements of human blood plasma samples8 [11]. We used
the variable X_UD in the dataset.

bonnie: HPLC-PDA profiles of 24 commercial preparations of St. John’s wort, originating from
several continents9 [1].

fluor: A fluorescence dataset10.
wine: 3-way data contained in the Wine GC-MS FT-IR dataset11.
BCI_Berlin: Generated from electroencephalogram (EEG) data collected in Berlin12 [4]. It

records EEG signals with 59 channels for multiple trials and subjects. A signal
is recorded each millisecond. From matlab files BCICIV_calib_ds1a_1000Hz.mat,
BCICIV_calib_ds1b_1000Hz.mat, ..., BCICIV_calib_ds1g_1000Hz.mat, we ex-
tracted 4001 frames from each trial start-point and then concatenated them.

visor: Generated from video surveillance data13 [19]. We extracted each frame of the video and
converted it to a monochrome image. There were 16,818 frames at 288× 384 resolution.

8http://www.models.life.ku.dk/anders-cancer
9http://www.models.life.ku.dk/Bonnie

10http://www.models.life.ku.dk/Fluorescence
11http://www.models.life.ku.dk/Wine_GCMS_FTIR
12http://www.bbci.de/competition/iv/desc_1.html
13http://www.openvisor.org/video_details.asp?idvideo=285
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