
Supplementary material for NIPS 2017 paper titled “Stochastic Approximation for Canonical
Correlation Analysis”

A Matrix Stochastic Gradient for CCA

Throughout this section, we denote the error in the gradient at time t by Et = gt � @t. First, we
introduce the following structural results, which give a lower bound on the smallest eigenvalue of
the empirical auto-covariance matrices, which holds with high probability for any iterate (A.2), and
uniformly over all iterates (2.1). We will use Matrix Bernstein [20] inequality in proof of Lemma A.2.
Theorem A.1 (Matrix Bernstein [20]). consider a finite sequence {Xk} of independent, random,
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Using Theorem A.1 with ✏ = rx
2 we get that with probability at least 1��0, it holds that kCx�Cx,tk 

rx
2 . By Weyl’s inequality, we have that

|�min(Cx,⌧ )� rx| = |�min(Cx,⌧ )� �min(Cx)|  kCx � Cx,⌧k 
rx

2
.

A similar derivation for �min(Cy,⌧ ) completes the proof.

Proof of Lemma 2.1. We show the result for Cx,t with c = cx = 3r2x
6B2+Brx

. Proof for Cy,t is
symmetric. By Lemma A.2, we have that for every t:
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Remark A.3. Throughout the Appendix, � and ⌧ are as defined in statement of Lemma 2.1.

Next, we introduce a result on perturbations of matrix square roots which is used in proof of
Lemma 2.2.
Lemma A.4 (Perturbation Bounds for Matrix Square Roots [17]). Let Aj 2 Rn⇥n

with Aj ⌫ µ
2
jI
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1
2
j ⌫ µjI

and kA
1
2
1 �A

1
2
2 k2  1

µ1+µ2
kA1 �A2k2 .

Next, we present the following bound on convergence of the empirical covariance matrix to the
population covariance matrix.
Lemma A.5. Under the same assumptions as Lemma 2.2
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Proof. We bound the quantity by applying the Matrix Bernstein Inequality ([21], Theorem 6.6.1).
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t . By Matrix Bernstein’s Inequality we have
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which completes the proof.

Proof of lemma 2.2. Let A = Wxxt,B = Wyyt, bA = Wx,txt, bB = Wy,tyt. From the lower bound
assumption on the spectrum of the population auto-covariance matrices and Lemma 2.1 we have
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Let r := min{rx, ry} and d := max{dx, dy}. As long as t > 9 log(d)
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While Theorem 2.3 gives a bound on the objective of Problem 2, we can always bound the original
CCA objective as given in Problem 1. Note that after rounding, we get a rank-k factorization for
M̃ := UV>, such that U>U = Ik and V>V = Ik. As a result, for bU := C

� 1
2
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Proof of Theorem 2.4. First note that
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5



Moreover, we have that Tr(bU>Cxy
bV � Ũ>CxyṼ)  2kkbU>Cxy

bV � Ũ>CxyṼk2. We bound the
right hand side using the following equations
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Applying lemma A.8 allows us to bound E
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Setting � = 1
T finishes the proof of the second part. The third inequality of the theorem follows

similarly.

B Matrix Exponentiated Gradient for CCA

To make analysis easier, in this section we decide to analyze Algorithm 2 for solving a rescaled
version of problem 12. In particular, we rescale the constraints in 12 so that the feasible set becomes
the set of density matrices, {M : Tr (M) = 1 and 0 � M � 1

k I}. The results in section 3 are
recovered from the proofs presented here by rescaling all bounds by a factor of k. We denote the error
in the gradient at time t by Ēt = Ct � C̃t and Et = gt � @t. We will need the following lemmas
from [22].

6



Lemma B.1 (Golden-Thompson inequality [9]). For arbitrary symmetric matrices A and B, it holds:

Tr (exp (A + B))  Tr (exp (A) exp (B)) .

Lemma B.2. For any PSD matrix A and symmetric B,C, B � C implies Tr (AB)  Tr (AC).
Lemma B.3. For any symmetric A such that 0 � A � I and any ⇢1, ⇢2 2 R the following holds

exp (A⇢1 + (I�A) ⇢2) � Aexp (⇢1) + (I�A) exp (⇢2) .

We also need the following lemma.

Lemma B.4. For x = 1 +
q

R
L the following holds

�R+ log (x)L

x� 1
� L� 2

p
RL.

Proof. This is a simple consequence of the fact that log (x) � (x� 1)� (x� 1)2 for x � 1.

Algorithm 2 Matrix Exponentiated Gradient for CCA (MEG-CCA)

Input: Training data {(xt, yt)}Tt=1, step size ⌘, auxiliary training data {(x0i, y0i)}
⌧
t=i

Output: M̃
Initialize: M0  1

d I, Cx,0  1
⌧

P⌧
i=1 x

0
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✓

0 @t

@>
t 0

◆
= 1

2

✓
Wx,txt

Wy,tyt

◆✓
Wx,txt

Wy,tyt

◆>
� 1

2

✓
Wx,txt

�Wy,tyt

◆✓
Wx,txt

�Wy,tyt

◆>

bMt  
exp(log(Mt�1)+⌘C̃t)

Tr(exp(log(Mt�1)+⌘C̃t))

Mt  P
⇣
bMt

⌘
% projection is given by algorithm 4 in [27]

end for

M̄ = 1
T

TP
t=1

Mt�1

M̃ = rounding
�
M̄
�

Lemma B.5. Conditioned on the event AT occurring, after T iterations of Algorithm 2 with a step

size ⌘ = 1
G log

✓
1 +

q
log(d)
GT

◆
, where G = 2Bp

rxry
and M0 = 1

d I we have that,

TX

t=1

Tr
⇣
M⇤C̃t

⌘
�

TX

t=1

Tr
⇣
Mt�1C̃t

⌘
 2

p
G2T log (d), (18)

where M⇤ is an optimum of Problem (11).

Proof of Lemma B.5. The proof closely follows proof of Lemma 3.1 in [22], however, we provide it
for completeness. Lemma 2.1 implies that Wx,t �

q
2
rx

and Wy,t �
q

2
ry

with probability 1��. Let
F (W) = Tr (W log (W)�W) be the von Neumann entropy and denote by �(A,B), the von Neu-
mann divergence induced by F (·). More precisely, �(A,B) = Tr (A log (A)�A log (B)�A+ B).
First we note that the update step (13) (after substituting Ct with C̃t) is invariant under perturb-
ing the C̃t’s by a multiple of the identity [25], so we can assume that each C̃t ⌫ 0. Since
max

⇣
kxtk2 , kytk2

⌘
 B, Wx,t �

q
2
rx
I and Wy,t �

q
2
ry
I, we see that G = 2Bp

rxry
is such

that C̃t � �min

⇣
C̃t

⌘
I � GI. Also it holds that Tr

⇣
M⇤C̃t

⌘
 kM⇤k2

���C̃t

���
⇤
 2

���C̃t

���
2
 G,

7



where the second to last inequality holds because C̃t is a rank-2 matrix for all t. We begin by
considering the difference � (M,Mt�1)��

⇣
M, bMt

⌘
for any M in the feasible set of (12).

� (M,Mt�1)��
⇣
M, bMt

⌘
= Tr (M(log (M)� log (Mt�1)))� Tr

⇣
M

⇣
log (M)� log

⇣
bMt

⌘⌘⌘

= �Tr

0

@M

0

@log (Mt�1)� log

0

@
exp

⇣
log (Mt�1) + ⌘C̃t

⌘

Tr
⇣
exp

⇣
log (Mt�1) + ⌘C̃t

⌘⌘

1

A

1

A

1

A

= ⌘Tr
⇣
MC̃t

⌘
� log

⇣
Tr

⇣
exp

⇣
log (Mt�1) + ⌘C̃t

⌘⌘⌘
,

where the first equality holds by the fact Tr (M) = Tr (Mt�1) and the second inequality holds
by expanding bMt, according to (13). We now bound log

⇣
Tr
⇣
exp

⇣
log (Mt�1) + ⌘C̃t

⌘⌘⌘
. By

Golden-Thompson’s inequality B.1, we have

Tr
⇣
exp

⇣
log (Mt�1) + ⌘C̃t

⌘⌘
 Tr

⇣
Mt�1 exp

⇣
⌘C̃t

⌘⌘
.

Next, since 0 � C̃t
G � I, we use Lemma B.3 on exp

⇣
⌘C̃t

⌘
with ⇢0 = 0 and ⇢1 = G⌘ to get

exp
⇣
⌘C̃t

⌘
� C̃t

G (exp (G⌘)� 1) + I. By Lemma B.2, we now have

Tr
⇣
Mt�1 exp

⇣
⌘C̃t

⌘⌘
 Tr

✓
Mt�1 +Mt�1

C̃t

G
(exp (G⌘)� 1)

◆
,

which implies

log
⇣

Tr
⇣
Mt�1 exp

⇣
⌘C̃t

⌘⌘⌘
 log

0

@1 +
Tr

⇣
Mt�1C̃t

⌘

G
(exp (G⌘)� 1)

1

A 
Tr

⇣
Mt�1C̃t

⌘

G
(exp (G⌘)� 1),

where last inequality holds since log (1 + x)  x. Thus

� (M,Mt�1)��
⇣
M, bMt

⌘
� ⌘Tr

⇣
MC̃t

⌘
� (exp (G⌘)� 1)

Tr
⇣
Mt�1C̃t

⌘

G
.

Equivalently,

Tr
⇣
Mt�1C̃t

⌘
� G

�
⇣
M, bMt

⌘
�� (M,Mt�1) + ⌘Tr

⇣
MC̃t

⌘

exp (G⌘)� 1
.

By Generalized Pythagorean Theorem

Tr
⇣
Mt�1C̃t

⌘
� G

� (M,Mt)�� (M,Mt�1) + ⌘Tr
⇣
MC̃t

⌘

exp (G⌘)� 1
.

Summing from t = 1 to T and using the fact the Bregman divergence is positive we have

TX

t=1

Tr
⇣
Mt�1C̃t

⌘
� G

�� (M,M0) + ⌘
PT

t=1 Tr
⇣
M⇤C̃t

⌘

exp (G⌘)� 1
.

To complete the proof notice that � (M,M0)  log (d) and apply lemma B.4 with ⌘ =

1
G log

✓
1 +

q
G log(d)

GT

◆
.

Lemma B.6. Assume that the event At occurs and that Et has no repeated singular values. It holds

that

� p
t
I � Ext,yt

⇥
Ēt|At

⇤
� p

t
I.

Proof. By the properties of self-adjoint dilation, we have Ext,yt [kEtk2 |At] = Ext,yt

⇥��Ēt

��
2
|At

⇤
.

By Jensen’s inequality and Lemma 2.2 we have
��Ext,yt

⇥
Ēt|At

⇤��
2
 Ext,yt

⇥��Ēt

��
2
|At

⇤
=

Ext,yt [kEtk2 |At]  p
t

and thus � p
t
I � Ext,yt

⇥
Ēt|At

⇤
� p

t
I.

8



Proof of Lemma 3.1. Since Mt�1 is independent of (xt, yt) we have Ext,yt

⇥
Tr
�
Mt�1Ēt

�
|At

⇤

= Tr
�
Mt�1Ext,yt

⇥
Ēt|At

⇤�
. From Lemma B.6, we know that Ext,yt

⇥
Ēt|At

⇤
� p

t
I and since

Mt�1 ⌫ 0, Lemma B.2 implies Tr
�
Mt�1Ext,yt

⇥
Ēt|At

⇤�
 p

t
Tr (Mt�1) =

p
t
. Similarly using

that � p
t
I � Ext,yt

⇥
Ēt|At

⇤
, we have Ext,yt

⇥
Tr
�
M⇤Ēt

�
|At

⇤
� � p

t
and the result follows.

Proof of Theorem 3.2. By Lemma B.5, we have
TX

t=1

Tr
�
M⇤

�
Ct � Ēt

��
�

TX

t=1

Tr
�
Mt�1

�
Ct � Ēt

��
 2

p
G2T log (d). (19)

Let E⌧ [·] denote the expectation w.r.t. (xt, yt)⌧t=1. We now compute the expectations of the two
terms on the left hand side of (19)

TX

t=1

E
⇥
Tr
�
M⇤

�
Ct � Ēt

��
|At

⇤
= TTr (M⇤C)�

TX

t=1

E
⇥
Tr
�
M⇤Ēt

�
|At

⇤
(20)

The second term expands as follows
TX

t=1

E
⇥
Tr
�
Mt�1

�
Ct � Ēt

��
|At

⇤
=

TX

t=1

Tr
�
Et

⇥
Mt�1

�
Ct � Ēt

�
|At

⇤�

=
TX

t=1

Tr
�
Et�1

⇥
Et

⇥
Mt�1

�
Ct � Ēt

�
|(xi, yi)t�1

i=1,At

⇤⇤�

=
TX

t=1

Tr
�
Et�1 [Mt�1|At]Et

⇥�
Ct � Ēt

�
|At

⇤�

=
TX

t=1

E [Tr (Mt�1C) |At]�
TX

t=1

Tr
�
Et�1 [Mt�1|At]Et

⇥
Ēt|At

⇤�

=
TX

t=1

E [Tr (Mt�1C) |At]�
TX

t=1

Et�1

⇥
Ext,yt

⇥
Tr
�
Mt�1Ēt

�
|At

⇤⇤
,

(21)
where the second equality holds by smoothing property of expectation and the third equality holds
because Mt�1 is conditionally independent of Ct and Ēt. Putting together (19), (20), (21) we have

TTr (M⇤C)�
TX

t=1

E [Tr (Mt�1C) |At]

 2
p
G2T log (d) +

TX

t=1

⇥
Et�1

⇥
Ext,yt

⇥
Tr
�
Mt�1Ēt

�
|At

⇤⇤
� E

⇥
Tr
�
M⇤Ēt

�
|At

⇤⇤

= 2
p
G2T log (d) +

TX

t=1

Et�1

⇥
Ext,yt

⇥
Tr
�
Mt�1Ēt

�
� Tr

�
M⇤Ēt

�
|At

⇤⇤

 2
p
G2T log (d) +

TX

t=1

p
t
 2

p
G2T log (d) + 2

p
T

(22)

where the second inequality follows from Lemma 3.1 and the last inequality follows from Lemma A.6.
Next we bound:

TTr (M⇤C)�
TX

t=1

E [Tr (Mt�1C)] = TTr (M⇤C)�
TX

t=1

E [Tr (Mt�1C) |At] (1� �)�
TX

t=1

E
⇥
Tr (Mt�1C) |Āt

⇤
�

 TTr (M⇤C)�
TX

t=1

E [Tr (Mt�1C) |At]�
TX

t=1

E
⇥
Tr (Mt�1C) |Āt

⇤
�

 2
p
G2T log (d) + 2

p
T.

To finish the proof we only need to divide both sides by T .
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