Supplementary material for NIPS 2017 paper titled “Stochastic Approximation for Canonical
Correlation Analysis”

A Matrix Stochastic Gradient for CCA

Throughout this section, we denote the error in the gradient at time ¢ by E; = g; — 0;. First, we
introduce the following structural results, which give a lower bound on the smallest eigenvalue of
the empirical auto-covariance matrices, which holds with high probability for any iterate (A.2), and
uniformly over all iterates (2.1). We will use Matrix Bernstein [20] inequality in proof of Lemma[A-2]

Theorem A.1 (Matrix Bernstein [20]). consider a finite sequence {X} of independent, random,
self-adjoint matrices with dimension d. Assume that each random matrix satisfies E[Xy] = 0 and
Amax(Xk) < R almost surely. Then, for all € > 0,

p {Amax (Z Xk> > e} < dexp <02_f21§/3>
p

where 0% := || >k ]E[Xﬁ]H

Lemma A.2. With probability at least 1 — 0’ with respect to training data drawn i.i.d. from 9, it
holds that Auin(Cyz,7) > % and Apin(Cy ) > %’ whenever
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Proof of LemmalA.2] Set X = % (kakT - Cz), so that E {
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Using Theorem|A.1 with € = %= we get that with probability at least 1—¢, it holds that ||C, —C, ¢ <
% . By Weyl’s inequality, we have that

Tx
|>\min(cx,7) - Tac| - |>\min(cx,7) - Amin(cac)‘ S ||C’E - Cx,T” S ?

A similar derivation for Apmin (C,,~) completes the proof. O
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Proof of Lemma[2.1, We show the result for C,; with ¢ = ¢, = #TB”' Proof for C, ; is
symmetric. By Lemma[A.2] we have that for every ¢:

P{[|C — Co]l < %} >1—dye

Probability that Ain (Cyr) > % uniformly for all ¢ > 7 + 1 1is HtT:tT_H (1 — d e~ ). Taking the
logarithm, we have

T4T1 T+1
log ( H (1-— dIe_Ct)) = Z log (1 — dye™ )
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where we require dye™ < %, which holds for 7 > % log (2d, ). We want exp (—2alm e;:j”) >
1 — 4, which gives the following
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1—-e7¢
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= —e¢ 5 log (1 —9)
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c log (ﬁ)

so that the algorithm succeeds whenever 7 > max{2 log (15570 log (ﬁ)) —1,1log (2d,)}. O

Remark A.3. Throughout the Appendix, § and T are as defined in statement of Lemma (2.1

Next, we introduce a result on perturbations of matrix square roots which is used in proof of

Lemma[2.2

Lemma A.4 (Perturbation Bounds for Matrix Square Roots [17]). Let A; € R™*" with A; > ,u?I
1

in the positive semi-definite order where j = 1,2. Then A; has a square root satisfying Aj2 = il

1 1
and |A7 — A3 |2 < = 1AL — Az,

Next, we present the following bound on convergence of the empirical covariance matrix to the
population covariance matrix.

Lemma A.5. Under the same assumptions as Lemma

B
log (dz) + - log (dz) -

2B?
Eo [ICas — Cull,) < =
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Proof. We bound the quantity by applying the Matrix Bernstein Inequality ([21], Theorem 6.6.1).
t
Set X, = ¢ (xix, — Cy), so that E [H 3 Xg
k=1

} =E [||Cqs,t — Call,]. To apply the inequality we
2

need to verify that E [X;] = 0 and [|Xg||, < R and bound 0% := ||}, E [X3]||,. It follows from
the definition that [E [X;,] = 0. To bound || X}||,, note that

1 1 1 2B
Xl = 1 [l = Call, < 3 (bsasT l, + B eT]ll) < 7 (B +E [T ])) < 22
Finally, we bound o2 by observing that
t 1 B t

SR < Y {E (Bt ] - €2} < BB [ ] |

k=1 k k=1
which implies 02 < BT2. By Matrix Bernstein’s Inequality we have

t
2B? B
E ;Xk , :E[”CIJ_CIHQ} < TIOg(dm)'i_glog(dz)

which completes the proof. O

Proof of lemma2.2] Let A = W,x;, B = Wy, A = W, ix;, B = W, ,y,. From the lower bound
assumption on the spectrum of the population auto-covariance matrices and Lemma we have



\/1771, = Wa, .t \%I = Wy, \/TEI = W, +. Therefore,
E([[Elly [o:] = Elllge — Olly [o4:] = [HW xeyi Wy — Waixey, ythz Jst:]
—E [HABT - ABTH ]
2
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< 5], - 5], ]
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where the inequality is due to the triangle inequality and sub-multiplicativity of the operator norm.
We first bound ||A||, and H]?)H
2
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This implies that (T4) is bounded by
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where the last inequality follows from Lemma By Lemma E[[|Ceyt — Cally] <
g log (d,) + 2:,)—? log (d,) and thus by equation 1i
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Finally (I5) together with implies that

2B? 1 2log (d,) 3 1 2log (dz)
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Let 7 := min{ry, 7, } and d := max{d,, d,}. Aslongast > glog(d) , we have that E [||[E¢ ||, [] <

8B2/2log(d)

, Where k := 7208(
\/ r
Lemma A.6. Assume that the event dd1 occurs. Let k be a constant such that for all iterates

Eg [|lg: — Oll2|e4t] < 27+ Then, we have that ZtT:1 E[||E¢l|2]4:] < 26VT.
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Proof. We note that Z? 1 %/ f dt + 1. Substituting z = /¢ and noting dt = 2z dz we get

T VT

1 1
dt+1—/ ~2zdz+1=2VT—1<2VT.

t=1 \/ z=1 %
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Lemma A.7. With the same assumptions as in Lemma we have ||0¢]| p < \/%
Proof. |0l = [[Woxey! Wyl = IWauxelly [Wyavelly < BlWaell2|Wyall2 < 22
O

Proof of Theorem Analysis is done by conditioning on the events that Apin(Cy ) > %’3 and
Amin(Cy 1) > %y By Lernma we know that this event occurs with probability at least 1 —

S log (1 *5)) — 1, - log (2d,), 5 log (155; log (1 — 5)) -
i log (2d,)}. The expectations are taken by cond1t10n1ng on the above events and for ease of

5, where 7 > max{ci log(

notatlon wesetr, = &1, = We start the analysis by measuring the distance between the ¢-th
iterate and the optimum, Dt = |TM,5 M, || F-

D7,y = [Myy1 — M7 = |20 (M; +10;) — M. |7
< |IMy + 10; — M. |17
= [IMy = M ||% + 0?1017 + 21
< D} +n°G? 4+ 2n(M; — M., g
< D} +n°G? 4 2n(M; — M., g
< D} +n*G? + 2n(M; — M., g

M; — My, g + E¢)

+ 2n(M; — M., E)
+2n[|My — Mo[[][E |2
+ 4kn|[Exll2,

L~ —

where the first inequality follows since projection onto a convex set in a Hilbert space is contractive,
the second inequality follows since G = 2B/, /r,7, is an upper bound on ||0;||r as given in
Lemma- IA.77] the third inequality follows using Holder’s inequality, and the last inequality follows
since [|[M; — M|« < ||Mells + [[Mi|l« < 2k. Rearranging, dividing both sides by 27, and taking
expectation on both sides, we get

D? — D?

E[(M. — My, g} o] <= =+ SG% + 2HB B o]

where M, and gt are conditionally independent given ¢f;. We average over 7' iterates, and note that
Zthl D? — D? +1 = D? - D2 11 < D?, where the initial distance is bounded as follows:

Df = My — M5 = [IMa || + ML 5 — 2(M1, M) < b+ k + 2] My || ML 2 < 4k

We get:
. 1 1 2k nG? 2krT
_ 2 2
E[(M, — M, C, 2C,,Cy 2)|dr] < ’I7T+ 5 + T

where we used Lemmato bound Zle E[|E¢||2|#4] < 26+/T. Finally write

E[(M, — M, C; *CyyyCy 2)|sdr](1 — §) + E[(M, — M, C; ?Cyy Cy 2)|sdr]d
<E[(M, - M c*%cxyc*%ﬂgm 4 SE[(M, — M, Cy * Cyy Cy #)|sh]
- 2k nT 2/mf

E[(M, — M, C; ? C,,y Cy )] =

nT + T o
_1 _1
where the last inequality holds because (M., C; 2C;,Cy 2) < %. To finish the proof we can set
6 < ﬁ and choose optimal learning rate n = (2;\/\/% [
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While Theorem [2.3]gives a bound on the objective of Problem 2, we can always bound the original
CCA objective as given in Problem|l. Note that after rounding, we get a rank-k factorization for

M := UV, suchthat UTU = I, and VTV = ;. As aresult, for U := C; Uand V := C; ?V it
holds that UTC,U = V' C,V = 1. Furthermore, it holds that:

WG + 2kk

Tr(U; Cpy Vi — UTC,, V) < T

- 1 - _1

Let’s denote U := C, U and V := C, 7 V. We first give the following structural lemma which is
used in Theorem for giving generalization error bounds for U and V with respect to the original
CCA problem as in ]

Lemma A.8. Assume the event A occurs, then:

~ ~ _1 1
E[|0 — Ollalstr] = E [0z - 7}

€T

1 2B2 2B
MT} < 7 < Tlog (de) + 3—Tlog (dx)>

B[V - Viblstr) =E [[|cy * - ¢, 4

1 2B2 2B
) MT} < @T < TIOg (dy) + ﬁlOg (dy)>

Proof. First observe that

SN 1 _1 1 1 1 _;
E[U = Ull2lsdr] = E[I|C, 7U — Cz * Ulla|str] < E[||C, 7 — Co *[l2[|Ull2|sdr] = E[|C, 7 — C ®
E(|[V = V|slstr] = E[|C, 4V — C, *Vs|sdr] < E[|C, 3 — Cy * |12 Valstr] = E[|C, 5 — Cy *
The proof simply follows from the following equations:
_1 _1 _1 1 1 _1
B [Jlex* - Cu lr] =& [ (i - 02) ] b
— _1 1 1
<effest], oat ], oze - ez ]
V2Tl ok
< R [elr - el b ]
V2 1
= E ||C:6,T*CmH |5ﬂT < —5zE ||Cm,T*Cm|| |9¢T
T p1o47) < 5 Joir]
(by Lemma[A.4)
and the fact that by Lemma]E [|Ca,r — Cally I97] < 1/ 222 1og (dy) + 22 log (d.). O

Proof of Theorem First note that

Tr(U] C,, V. — U7 C,, V) = Tr(U] C,y Vi — UTC, V) + Tr(UTC,y V — U1 C,y V)

ll2|s4]
ll2|s47]



Moreover, we have that Tr(UT C,.,V — UTC,,, V) < 2k||[UTC,,V — UTC,, V|2. We bound the
right hand side using the following equations
E[|UTCayV — U Coy V|a|str] = E[||[UT Cpy V= UTCoy V + U Cpy V — UT Cy Vo |4 7]

<E[J(U = 0)"Cay V2 + |07 Cay(V = V)| f2]st7]
(triangle inequality)

< E[|T ~ OllaCoayll2 V2 + [Tll2llCay 2]V — Vilalstz]
(sub-multiplicativity of the operator norm)

= ~ _1 _1 ~ ~
< BE[||[U = Ull2[|Cy 2 Vll2 + B|IC, £ Ull2[[V = Vl|2|sd7]

S B B .
<E[U - UHﬂ“T]ﬁ + \fTE[”V — V||2|sd1]
y xT

<£ 2—BQIO (dy) + == log (dy) (by Lemma[Ag)
=22 7 08\ T gy 08 Y

B 2B2

— ——log (d — log (d
+2r§< T (y)+3T og ( y))

which completes the first part of the proof. For the second part of the proof it holds:
|oTe.0-1| = [oTc.0-0TC. |
< |[07C.0-07C,0|| +|0TC,0-0Te,0|
)[o-9]
2 2

< B (||cz32| vt + ||ez 2| o) o - 9],
2B

VT

< (Je., + [o7e.

<

ﬁfGHQ.

Applying 1emma allows us to bound E [HGT C,U— IH2 |&¢T} . Using Law of Total Expectation
we get:

8[07cn0 1] =3[0 1w a0 5 [JoTc0 o] ]

<E {HINJTCZINJ - IHQ MT} + ok H‘ﬁTCzﬁ - IHz ‘dT}
< TEQ < 27B2 log (d;) + %log (dT)> +0(B+1).

Setting § = % finishes the proof of the second part. The third inequality of the theorem follows
similarly. O

B Matrix Exponentiated Gradient for CCA

To make analysis easier, in this section we decide to analyze Algorithm 2 for solving a rescaled
version of problem[I2] In particular, we rescale the constraints in[T2]so that the feasible set becomes
the set of density matrices, {M : Tr(M) = 1and 0 < M =< £I}. The results in section [3 are
recovered from the proofs presented here by rescaling all bounds by a factor of k. We denote the error
in the gradient at time ¢ by E, =C, — Ct and E; = g — 9,. We will need the following lemmas
from [22]].



Lemma B.1 (Golden-Thompson inequality [O]). For arbitrary symmetric matrices A and B, it holds:
Tr(exp (A + B)) < Tr(exp (A) exp (B)) .

Lemma B.2. For any PSD matrix A and symmetric B,C, B < C implies Tr (AB) < Tr (AC).

Lemma B.3. For any symmetric A such that 0 < A < T and any p1, p2 € R the following holds

exp (Ap1 + (T —A) p2) < Aexp (p1) + (I— A)exp (p2) -
We also need the following lemma.

Lemma B4. Forxz =1+ \/g the following holds

Log(x)lz > L —2VRL.

rz—1

Proof. This is a simple consequence of the fact that log (v) > (z — 1) — (z — 1)%forz > 1. O

Algorithm 2 Matrix Exponentiated Gradient for CCA (MEG-CCA)

Input: Training data {(x, yt)}thl, step size 7, auxiliary training data {(x}, y;)}/_,
Output: M

Initialize: Mg < i1, Cpo = ZZ 1 X xiT, Cyo+ = ZZ 1y;y;T
fort=1toT do

1

t 1 T 2

Cx,t < J{—IT Cx t—1 + t+7—XtXt N Wx7t < vatz
1

t-‘r 1 -2
Cyt% T— Cyt—1+7t+7—yth>Wyt<;Cyt2

N|—=

T T
é “ 0 O _1 Wz,th Wz,tXt o Wz,txt Wz,tXt
t 8y 0) 2 Wy, eyt Wy tye —Wy tye —Wy ¢ye

~ exp(log(Mt71)+T}ét)
My Tr(exp(log(Mt_1)+nét))
M, <& (Mt) % projection is given by algorithm 4 in [27]
end for
Lz
=72 M,
t=1

M = rounding (1\71)

Lemma B.5. Conditioned on the event s occurring, after T iterations of Algorithm 2| with a step
sizen = & lo (1 + log(d)), where G =

\/E,Bir and My = él we have that,
zTy

ZT:Tr (M*Ct) - zT:Tr (Mt,lét) < 2¢/G2Tlog (d), (18)
t=1 t=1

where M, is an optimum of Problem .

Proof of Lemma|B.3] The proof closely follows proof of Lemma 3.1 in [22], however, we provide it
for completeness. Lemma[2.1 implies that W, ; < / % and W, ; =, /% with probability 1 —4. Let

F(W) = Tr (W log (W) — W) be the von Neumann entropy and denote by A(A, B), the von Neu-
mann divergence induced by F'(-). More precisely, A(A, B) = Tr (Alog (A) — Alog (B) — A + B).
First we note that the update step d:) (after substituting C; with C,) is invariant under perturb-
ing the Ct s by a multiple of the identity [25], so we can assume that each Ct > 0. Since

max (||:1ct|\ el ) < B, Wy < (/Zland W, ; < 1/—I we see that G = \/iir is such
< @G,

<2‘

that Oy — Amin (ét)l < GL Also it holds that Tr (M ) < ML, Hct




where the second to last inequality holds because C, is a rank-2 matrix for all £. We begin by

considering the difference A (M, M;_1) — A (M7 I\A/It) for any M in the feasible set of (12).
exp (log (M¢—1) + nét) )) )

A(M,M,_1) — A (M Mt) = Tr (M(log (M) — log (M¢_1))) — Tr (M (log (M) — log (1\7&)))

= —Tr (M (log (M¢—1) — log ( =
Tr (exp (log (M¢—1) + nCt))
=nTr (MCO —log (Tr (exp (log (M—1) + nét)))7
(log (My—1) + 77@))) By

where the first equality holds by the fact Tr (M) = Tr(M;_;) and the second inequality holds
o (13). We now bound log (Tr (exp

by expanding I\A/It, according t
, we have
Tr (exp (log (Mg_q) + Uét)) <Tr (Mt—l exp (nét)) .

Golden-Thompson’s inequality [B.
Next, since 0 < % =< I, we use Lemmaon exp (nét) with pg = 0 and p; = Gn to get

%(exp (Gn)—1)+1. By LemmaE, we now have
C
GG -),

G

0
exp (n@) =<
Tr (Mt71 exp (T]ét)) S Tr (Mt71 -+ Mtfl
which implies
Tr (Mtflét> Tr (Mtflét)
(exp(Gn) —1) | < (exp (G) — 1),
G G
Mt—lct)

log (Tr (Mt,1 exp (nét))) < log (1 +
G

where last inequality holds since log (1 + ) < x. Thus
R - Tr (
AM M 1) = A (ML) > T (MCy) = (exp (G) = 1)

A (M Mt) A (M, M,_1) +5Tr (Mét)
exp (Gn) — 1 '

Equivalently,
Tr (Mt,lét) > G
By Generalized Pythagorean Theorem
) A (M, M,) — A (M, M;_,) + 5Tr (Mét)
Tr (M1 Cy) = @ :
P = exp (G) — 1
Summing from ¢ = 1 to 7" and using the fact the Bregman divergence is positive we have
—AM,Mo) + 7L T (M*Ct)
exp (Gn) —1 ‘
O

t=1

T
ST (MeaCi) 2 G
To complete the proof notice that A (M,My) < log(d) and apply lemma [B.4 with 7

élog (1 +
_ K
tI = By, y, [Eelsts] 2 \%I.
< By, [||Et||2|gjt] =
O

N
7
Proof. By the properties of self-adjoint dilation, we have Ey, y, [[|E¢ll, |s:] = Ex, y, [||Et], |54
I, <

that
By Jensen’s inequality and Lemma [2.2| we have ||Ey, y, [E¢|s¢]
Byl ] < =

Ex,.y. [IIE¢]l5 |#4¢] < 2= and thus —%I = By, y, [Eelsts] 2 -1

G log(d)
GT '
Lemma B.6. Assume that the event o, occurs and that E; has no repeated singular values. It holds

Vi
8



Proof of Lemma[3.1} Since M;_ is independent of (x;,y;) we have Ey, v, [Tr (M;—1E;) |s4,]
= Tr (M;—1Ex, .y, [E¢|4]). From Lemma we know that Ey, v, [Ei|d;] =< 271 and since

M;_; = 0, Lemmal?implies Tr (Mt,lExt,yt [Et|g¢t]) < ETr(Mi_q) = % Similarly using

~ NG
that — 21 < Ky, o, |E¢|st;], we have Ey, y, [Tr (MLE,) |4;] > — and the result follows.  [J

Vit
Proof of Theorem[3.2] By Lemma|B.5| we have

T T
> T (M. (Cr—Ep)) = > Tr(My_y (G — Ey)) < 2¢/G?Tlog (d). (19)

= t=1
Let E, [-] denote the expectation w.r.t. (x¢,y:)7_,. We now compute the expectations of the two
terms on the left hand side of

T T
> E[Tr (M. (C; — Ey)) |ofe] = TTr (M.C) = > E [Tr (M.Ey) |s,] (20)
t=1
The second term expands as follows

Zf:]E [Tr (M¢—1 (Ct — Ey)) || = iTr (Bt [My—1 (Cy — Ey) |sty])

Tr (Et_l [Et [Mt—l (Ct - Et) |(X17Yz)z 1,911&]])

I
[M]=

~
I
—

Il
[M]=

Tr (Eemy My |t By [(Cy — Be) [ste])

~
Il
-

E [Tr (M;—1C) |d¢] —

[M]=

Tr (Be—y [My—a]sty] By [Ee|od,])

Il
[M]=

~
Il
-
~
Il
-

E [Tr (Mtflc) |Q¢t] —

M=

Eio1 [Exy, [Tr (M1 Ey) [o44]]

I
[M]=

1

il
-
]

I

21
where the second equality holds by smoothing property of expectation and the th1rd ahty holds
because M,_; is condltlonally independent of C; and E,. Putting together (19 we have

TTr (M,C) — ZE [Tr (M;_1C) | ]
t=1

T log (d) + 3 [Eroi [Exy, [Tr (Me—1Ey) [s8:]] — E [Tr (M.E,) |st,]]
t;l (22)
G?Tlog (d) + > Eio1 [Ex,y, [Tr (Me_1Ey) — Tr (M.E) [o4,]]

t=1

G2T'log (d Z - < 2v/G2T log (d) + 2VTk

where the second inequality follows from Lemma[3.T and the last inequality follows from Lemmal[A.6]
Next we bound:

E

T T
TTr (M.C) = Y E[Tr (M;_1C)] = TTr (M.C) = Y E[Tr (M;_1C) [sdy] (1 — 8) = > E [Tr (M;_1C) ;] 6
t=1 t=1

~
Il
-

[M]=

T
< TTr(M.C) = Y E[Tr (M;_1C) |st,] = Y E [Tr (M;_1C) [sd;] 6
t=1 t=1
< 2¢/G?Tlog (d) + 2V Tk.
To finish the proof we only need to divide both sides by 7T'. O
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