
Integration Methods and Optimization Algorithms
Supplementary Material

Overview

This Supplementary Material is organized as follows. We start in Section 6 by detailing the consistency
condition, its motivation, proof and interpretation. Then in Section 7 we analyze the integration
properties of Euler’s scheme, in particular its stability. We extend then the intuitive explanation
for acceleration (longer steps of the integration method) to the weakly convex case in Section 8.
Sections 9,10 and 11 explore further links between integration methods and optimization algorithms.
Finally missing proofs can be found in Section 12.

6 Consistency

We defined quickly consistency by looking at the stability of an integration method, we detail here a
formal definition. The truncation error of a linear multi-step method is a measure of the local error
�loc(xk) made by the method, normalized by h. More precisely it is defined using the difference
between the step performed by the algorithm and the step which reaches exactly x(tk+s), with

T (h) � x(tk+s)− xk+s

h
assuming xk+i = x(tk+i), i = 0, . . . , s− 1. (18)

This definition does not depend on k but on the recurrence of the linear s-step method and on the
(ODE) defined by g and x0. We can use this truncation error to define formally consistency.
Definition 6.1. An integration method for an (ODE) defined by g, x0 is consistent if and only if, for
any initial condition x0,

lim
h→0

�T (h)� = 0.

Proposition 2.3 gave then simple conditions to check consistency. We recall it here and give its proof.
Proposition. A linear multi-step method defined by polynomials (ρ,σ) is consistent if and only if

ρ(1) = 0 and ρ�(1) = σ(1). (19)

Proof. Assume tk = kh. If we expand g(x(tk)) we have

g(x(tk)) = g(x0) +O(h).

If we do the same thing with x(tk), we have

x(tk) = x0 + khẋ(t0) +O(h2) = x0 + khg(x0) +O(h2).

If we plug these results in the linear multi-step method,

T (h) =
1

h


x(tk+s) +

s−1�

i=0

ρix(tk+i)− h

s�

i=0

σig(x(tk+i))




=
1

h
ρ(1)x0 + (ρ�(1)− σ(1))g(x0) +O(h).

The limit is equal to zero if and only if we satisfy (19).

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Consistency is crucial for integration methods, we give some intuition about how important are
conditions defined in (19).

First condition, ρ(1) = 0. If the condition is not satisfied, then the method exhibits an artificial
gain or damping. Assume we start at some equilibrium x∗ of ODE (i.e. ∇f(x∗) = 0), so xi = x∗

for the first s− 1 steps. The next iterate becomes

xs = −
s−1�

i=0

ρix
∗ + hσ(E) g(x∗)� �� �

=0

,

and if 1 +
�s

i=0 ρi = ρ(1) �= 0, we have that the next iterate xs is different from x∗.

Second condition, ρ�(1) = σ(1). If this relation is not satisfied, we actually are integrating another
equation than (ODE). Assuming the first condition satisfied, 1 is a root of ρ. Consider then the
factorization

ρ(z) = (z − 1)ρ̃(z)

where ρ̃ is a polynomial of degree s− 1, and ρ�(1) = ρ̃(1). The linear multi-step method becomes

ρ̃(E)(yk+1 − yk) = hσ(E)g(yk).

If we sum up the above equation from the initial point, we get

ρ̃(E)(yk − y0) = σ(E)Gk,

where Gk =
�k

i=0 hg(yi). If h goes to zero, our iterates yk converge to some continuous curve c(t),
and Gk →

� t

0
g(c(τ)) dτ ,

s�

i=0

ρ̃i(c(t)− x(0)) =

s−1�

i=0

σi

� t

0

g(c(τ)) dτ.

If we take the derivative over time, we get

ρ̃(1)ċ(t) = σ(1)g(c(t)) ⇔ ρ�(1)ċ(t) = σ(1)g(c(t)).

which is different from the ODE we wanted to discretize, unless ρ�(1) = σ(1)

7 Analysis and design of Euler’s method

In Section 2.1 we introduced Euler’s method. In fact, we can view it as an explicit linear “multi-step”
method with s = 1 defined by the polynomials

ρ(z) = −1 + z, σ(z) = 1.

We can check easily that it is consistent (using Proposition 2.3) and zero-stable since ρ(z) has only
one root which lies on the unit circle (Theorems 2.4 and 2.5). We need to determine the region of
absolute stability in order to have an idea about the maximum value that h > 0 can take before
the method becomes unstable. Assume we want to integrate any µ-strongly convex and L-smooth
function f , with 0 ≤ µ < L with any starting value x0. Then using Proposition 2.7, we need to find
the set of value of h such that the roots of the polynomial

πλh(z) = [ρ+ λhσ](z) = −1 + λh+ z, λ ∈ [µ, L]

are small. The unique root is 1− λh and we need to solve the following minimax problem

min
h

max
λ∈[µ,L]

|1− λh| ,

in the variable h > 0. The solution of this optimization problem is h∗ = 2
L+µ , its optimal value is

(L− µ)/(L+ µ) and its rate of convergence is then

�xk − x∗� = O

��1− µ/L

1 + µ/L

�k
�
.

We recover the optimal step size and the rate of convergence of the gradient method for a general
smooth and strongly convex function [Nesterov, 2013].

2

8 Acceleration of weakly convex functions

By matching the coefficients of Nesterov’s method, we deduced the value of the step-size used for
the integration of (Gradient Flow). Then, using the rate of convergence of x(t) to x∗, we estimated
the rate of convergence of Nesterov’s method assuming xk ≈ x(tk). Here, we will do the same but
without assuming strong convexity. However, the estimation of the rate of convergence in discrete
time needs the one in continuous time, described by the following proposition whose proof can be
found in Section 12.3.
Proposition 8.1. Let f be L-smooth convex function, x∗ one of its minimizers and x(t) be the
solution of (Gradient Flow). Then

f(x(t))− f(x∗) ≤ �x0 − x∗�2
t+ (2/L)

. (20)

Assume we use Euler’s method with step size h = 1
L , the estimated rate of convergence will be

f(xk)− f(x∗) ≈ f(x(kh))− f(x∗) ≤ L�x0 − x∗�2
k + 2

,

which is close to the rate of convergence of the classical gradient method for convex function. Now,
consider Nesterov’s method for minimizing a smooth and convex function f :

yk+1 = xk − 1

L
∇f(xk)

xk+1 = −βkxk + (1 + βk)xk+1,

where βk ≈ k−2
k+1 . If we expand everything, we get after rearrangement,

βkxk−1 − (1 + βk)xk + xk+1 =
1

L

�
βk(−∇f(xk−1))− (1 + βk)(−∇f(xk))

�
.

In other terms, we have an expression of the form ρk(E)xk = hkσk(E)(−∇f(xk)). We can identify
h if we assume the method consistent, which means

ρ(1) = 0 Always satisfied

hkρ
�
k(1) = hkσk(1) ⇒ hk =

1

L(1− βk+1)
=

(k + 2)

3L
.

We can estimate, using (20), the rate of convergence of Nesterov’s method. Since xk ≈ x(tk),

xk ≈ x
��k

i=0 hi

�
≈ x

�
k2

6L

�
.

In terms of convergence to the optimal value,

f(xk)− f(x∗) ≈ f(x(tk)− f(x∗) ≤ 6L�x0 − x∗�2
k2 + 12

,

which is close to the bound from Nesterov [2013]. Again, because the step-size of Nesterov’s
algorithm is larger (while keeping a stable sequence), we converge faster than the Euler’s method.

9 Proximal algorithms and implicit integration methods

We present here links between proximal algorithms and implicit numerical methods that integrate the
gradient flow equation. We begin with Euler’s implicit method that corresponds to the proximal point
algorithm.

9.1 Euler’s implicit method and proximal point algorithm

We saw in Section 2.1 that Euler’s explicit method used the Taylor expansion of the solution x(t)
of the (ODE) at the current point. The implicit version uses the Taylor expansion at the next point
which reads

x(t) = x(t+ h)− hẋ(t+ h) +O(h2).

3

If t = kh, by neglecting the second order term we get implicit Euler’s method,

xk+1 = xk + hg(xk+1). (21)

This recurrent equation requires to solve an implicit equation at each step that may be costly. However
it provides better stability than the explicit version. This is generally the case for implicit methods
(see Süli and Mayers [2003] for further details on implicit methods).

Now assume that g comes from a potential −f such that we are integrating (Gradient Flow). Solving
the implicit equation (21) is equivalent to compute the proximal operator of f defined as

proxf,h(x) = argmin
z

1

2
�z − x�22 + hf(z). (22)

This can be easily verified by checking the first-order optimality conditions of the minimization
problem. Euler’s implicit method applied to (Gradient Flow) reads then

xk+1 = proxf,h(xk),

where we recognize the proximal point algorithm [Rockafellar, 1976].

We present now Mixed ODE that corresponds to composite optimization problems.

9.2 Implicit Explicit methods and proximal gradient descent

In numerical analysis, it is common to consider the differential equation

ẋ = g(x) + ω(x), (Mixed ODE)

where g(x) is considered as the “non-stiff” part of the problem and ω the stiff one, where stiffness
may be assimilated to bad conditioning [Ascher et al., 1995; Frank et al., 1997]. Usually, we assume
ω integrable using an implicit method. If ω derives from a potential −Ω (meaning ω = −∇Ω), this
is equivalent to assume that the proximal operator of Ω defined in (22) can be computed exactly.

We approximate the solution of (Mixed ODE) using IMplicit-EXplicit schemes (IMEX). In our case,
we will focus on the following multi-step based IMEX scheme,

ρ(E)xk = h
�
σ(E)g(xk) + γ(E)ω(xk)

�
,

where ρ,σ and γ are polynomials of degrees s, s− 1 (the explicit part) and s respectively and ρ is
monic. It means that, at each iteration, we need to solve, in xk+s,

xk+s =

s−1�

i=0

�
−ρixk+i + σihg(xk+i) + γihω(xk+i)

�
� �� �

known

+γsω(xk+s).

In terms of optimization the mixed ODE corresponds to composite minimization problems of the
form

minimize f(x) + Ω(x), (23)
where f,Ω are convex and Ω has a computable proximal operator. We can link IMEX schemes with
many optimization algorithms which use the proximal operator, such as proximal gradient method,
FISTA or Nesterov’s method. For example, proximal gradient is written

yk+1 = xk − h∇f(xk)

xk+1 = proxhΩ(yk+1).

After expansion, we get

xk+1 = yk+1 − h∇Ω(xk+1) = xk + hg(xk) + hω(xk+1),

which corresponds to the IMEX method with polynomials

ρ(z) = −1 + z, σ(z) = 1, γ(z) = z.

However, for Fista and Nesterov’s method, we need to use a variant of linear multi-step algorithms,
called one leg methods [Dahlquist, 1983; Zhang and Xiao, 2016]. Instead of combining the gradients,
the idea is to compute g at a linear combination of the previous points, i.e.

ρ(E)xk = h
�
g(σ(E)xk) + ω(γ(E)xk)

�
.

Their analysis (convergence, consistency, interpretation of h, etc...) is slightly different from linear
multi-step method, so we will not go into details in this paper, but the correspondence still holds.

4

9.3 Non-smooth gradient flow

In the last subsection we assumed that ω comes from a potential. However in the optimization
literature, composite problems have a smooth convex part and a non-smooth sub-differentiable convex
part which prevents us from interpreting the problem with the gradient flow ODE. Non-smooth
convex optimization problems can be treated with differential inclusions (see [Bolte et al., 2007] for
recent results on it)

ẋ(t) + ∂f(x(t)) � 0,

where f is a sub-differentiable function whose sub-differential at x is written ∂f(x). Composite
problems (23) can then be seen as the discretization of the differential inclusion

ẋ(t) +∇f(x(t)) + ∂Ωx(t) � 0.

10 Mirror gradient descent and non-Euclidean gradient flow

In many optimization problems, it is common to replace the Euclidean geometry with a distance-
generating function called d(x), with the associated Bregman divergence

Bd(x, y) = d(x)− d(y)− �∇d(y), x− y�,
with d strongly-convex and lower semi-continuous. To take into account this geometry we consider
the Non-Euclidean Gradient Flow [Krichene et al., 2015]

ẏ(t) = −∇f
�
x(t)

�

x(t) = ∇d∗(y(t))

x(0) = x0, y(0) = ∇d(x0).

(NEGF)

Here ∇d maps primal variables to dual ones and, as d is strongly convex, (∇d)−1 = ∇d∗, where
d∗ is the Fenchel conjugate of d. In fact, we can write (NEGF) using only one variable y, but this
formulation has the advantage to exhibit both primal and dual variables x(t) and y(t). Applying the
forward Euler’s explicit method we get the following recurrent equation

yk+1 − yk = −h∇f(xk), xk+1 = ∇d∗yk+1.

Now consider the mirror gradient scheme :

xk+1 = argmin
x

h�∇f(xk), x�+ Bh(x, xk).

First optimality condition reads

∇x

�
h�∇f(xk), x�+ Bh(x, xk)

� ��
x=xk+1

= h∇f(xk) +∇d(xk+1)−∇d(xk) = 0

Using that (∇d)−1 = ∇d∗ we get

h∇f(xk) + yk+1 − yk = 0, xk+1 = ∇d∗yk+1,

which is exactly Euler’s explicit method defined in (NEGF).

11 Universal gradient descent and generalized gradient flow

Consider the Generalized Gradient Flow, which combines the ideas of (Mixed ODE) and (NEGF),

ẏ(t) = −∇f(x(t))−∇Ω(x(t))

x(t) = ∇d∗(y(t))

x(0) = x0, y(0) = ∇d(x0).

(GGF)

We can write its ODE counterpart, called the "Generalized ODE",

ẏ(t) = g(x(t)) + ω(x(t))

x(t) = ∇d∗(y(t)),

x(0) = x0, y(0) = ∇d(x0).

(GODE)

5

where g = −∇f , with f a smooth convex function, d a strongly convex and semi-continuous distance
generating function and ω = −∇Ω, where Ω is a simple convex function. If Ω is not differentiable
we can consider the corresponding differential inclusion as presented in Section 9.3. Here we focus
on (GODE) and (GGF) to highlight the links with integration methods. The discretization of this
ODE is able to generate many algorithms in many different settings. For example, consider the IMEX
explicit-implicit Euler’s method,

yk+1 − yk
h

= g(xk) + ω(∇d∗(yk+1)), xk+1 = ∇d∗(yk+1),

which can be decomposed into three steps,

zk+1 = yk + hg (xk) (Gradient step in dual space),
yk+1 = proxh(Ω◦∇d∗) (zk+1) (Projection step in dual space), (24)

xk+1 = ∇d∗(yk+1) (Mapping back in primal space).

Now consider the universal gradient method scheme presented by Nesterov [2015]:

xk+1 = argmin
x

�∇f(xk), x− xk�+ Ω(x) + Bd(x, xk).

Again we can show that both recursions are the same: if we write the first optimality condition,

0 = ∇x

�
h�∇f(xk), x− xk�+ hΩ(x) + B(x, xk)

� ��
x=xk+1

= hg(xk) + h∂Ω(xk+1) +∇d(xk+1)−∇d(xk)

= hg(xk)− yk� �� �
=zk+1

+h∂Ω(∇d∗(yk+1))− yk+1.

We thus need to solve the non-linear system of equations

yk+1 = zk+1 + h∂Ω(∇d∗(yk+1)),

which is equivalent to the projection step (24). Then we simply recover xk+1 by applying ∇d∗ on
yk+1.

12 Missing Proofs

12.1 Proof of Proposition 1.1

Proposition. Let f be a L-smooth and µ-strongly convex function and x0 ∈ dom(f). Writing x∗

the minimizer of f , the solution x(t) of (Gradient Flow) satisfies

f(x(t))− f(x∗) ≤ (f(x0)− f(x∗))e−2µt (25)
�x(t)− x∗� ≤ �x0 − x∗�e−µt. (26)

Proof. Indeed, if we derive the left-hand-side of (25),

d

dt
[f(x(t))− f(x∗)] = �∇f(x(t)), ẋ(t)� = −�f �(x(t))�2.

Using that f is strongly convex, we have (see Nesterov [2013])

f(x)− f(x∗) ≤ 1

2µ
�∇f(x)�2,

and therefore
d

dt
[f(x(t))− f(x∗)] ≤ −2µ[f(x(t))− f(x∗)].

Solving this differential equation leads to the desired result. We can apply a similar technique for the
proof of (26), using that

µ�x− y�2 ≤ �∇f(x)−∇f(y), x− y�,
for strongly convex functions (see again Nesterov [2013]).

6

12.2 Proof of Proposition 3.1

Proposition. Given constants 0 < µ ≤ L, a step size h > 0 and a linear two-step method defined by
(ρ,σ), under the conditions

(ρ1 + µhσ1)
2 ≤ 4(ρ0 + µhσ0),

(ρ1 + Lhσ1)
2 ≤ 4(ρ0 + Lhσ0),

the roots r±(λ) of πλh, defined in (8), are complex conjugate for any λ ∈ [µ, L]. Moreover, the
largest modulus root is equal to

max
λ∈[µ,L]

|r±(λ)|2 = max {ρ0 + µhσ0, ρ0 + Lhσ0} .

Proof. We begin by analyzing the roots r± of the generic polynomial

z2 + bz + c,

where b and c are real numbers, corresponding to the coefficients of πλh, i.e. b = ρ1 + λhσ1 and
c = ρ0 + λhσ0. If we want complex roots we need to satisfies

b2 ≤ 4c.

After replacement, we need to satisfy for any λ ∈ [µ, L],

b2 − 4c ≤ 0 ⇔ (ρ1 + λhσ1)
2 − 4(ρ0 + λhσ0) ≤ 0.

Since the left side this is a convex function in λ, it is equivalent to check only for the extreme values:

(ρ1 + µhσ1)
2 ≤ 4(ρ0 + µhσ0),

(ρ1 + Lhσ1)
2 ≤ 4(ρ0 + Lhσ0).

In the complex conjugate case, the roots have the same modulus,

|r±(λ)|2 = |c| = |ρ0 + λhσ0|.
Because the function is convex, the maximum is attained for an extreme value of λ,

max
λ∈[µ,L]

|r±(λ)|2 = max {ρ0 + µhσ0, ρ0 + Lhσ0} ,

which is the desired result.

12.3 Proof of Proposition 8.1

Proposition. Let f be L-smooth and convex and x(t) be the solution of (Gradient Flow). Then

f(x(t))− f(x∗) ≤ 1
t

�x0−x∗�2 + 1
f(x0)−f(x∗)

≤ �x0 − x∗�2
t+ (2/L)

.

Proof. Let L(x(t)) = f(x(t))− f(x∗). We notice that ∇L(x(t)) = ∇f(x(t)) and dL(x(t))/dt =
−�∇f(x(t))�2. Since f is convex,

L(x(t)) ≤ �∇f(x(t)), x(t)− x∗�
≤ �∇f(x(t))��x(t)− x∗�.

By consequence,

− �∇f(x(t))�2 ≤ − L(x(t))2
�x(t)− x∗�2 ≤ − L(x(t))2

�x0 − x∗�2 . (27)

The last inequality comes from the fact that �x(t)− x∗� decreases over time,

d

dt
�x(t)− x∗�2 = 2� ẋ(t), x(t)− x∗�,

= −2�∇f(x(t)), x(t)− x∗�,
≤ 0 since f is convex.

7

From (27), we deduce the differential inequality

d

dt
L(x(t)) ≤ − L(x(t))2

�x0 − x∗�2 .

The solution is obtained by integration,
� t

0

dL(x(τ))/ dτ
L(x(τ))2 dτ ≤

� t

0

−1

�x0 − x∗�2 .

The general solution is thus

L(x(t)) ≤ 1
t

�x0−x∗�2 + C
,

for some constant C. Since the inequality is valid for all time t ≥ 0, the following condition on C,

L(x(t)) ≤ 1
t

�x0−x∗�2 + C
≤ 1

C
for t ≥ 0,

is sufficient. Setting C = 1
f(x0)−f(x∗) satisfies the above inequality. If we use the fact that the

function is smooth,

f(x(t))− f(x∗) ≤ L

2
�x0 − x∗�2,

then we get the desired result.

8

References
Allen Zhu, Z. and Orecchia, L. [2017], Linear coupling: An ultimate unification of gradient and

mirror descent, in ‘Proceedings of the 8th Innovations in Theoretical Computer Science’, ITCS 17.

Ascher, U. M., Ruuth, S. J. and Wetton, B. T. [1995], ‘Implicit-explicit methods for time-dependent
partial differential equations’, SIAM Journal on Numerical Analysis 32(3), 797–823.

Beck, A. and Teboulle, M. [2003], ‘Mirror descent and nonlinear projected subgradient methods for
convex optimization’, Operations Research Letters 31(3), 167–175.

Ben-Tal, A. and Nemirovski, A. [2001], Lectures on modern convex optimization: analysis, algo-
rithms, and engineering applications, SIAM.

Bolte, J., Daniilidis, A. and Lewis, A. S. [2007], ‘The Łojasiewicz inequality for nonsmooth subana-
lytic functions with applications to subgradient dynamical systems.’, SIAM Journal on Optimization
17(4), 1205–1223.

Bubeck, S., Tat Lee, Y. and Singh, M. [2015], ‘A geometric alternative to nesterov’s accelerated
gradient descent’, ArXiv e-prints .

Dahlquist, G. [1983], ‘On one-leg multistep methods’, SIAM journal on numerical analysis
20(6), 1130–1138.

Diakonikolas, J. and Orecchia, L. [2017], ‘Accelerated extra-gradient descent: A novel accelerated
first-order method’, arXiv preprint arXiv:1706.04680 .

Duchi, J. C., Shalev-Shwartz, S., Singer, Y. and Tewari, A. [2010], Composite objective mirror
descent., in ‘COLT’, pp. 14–26.

Frank, J., Hundsdorfer, W. and Verwer, J. [1997], ‘On the stability of implicit-explicit linear multistep
methods’, Applied Numerical Mathematics 25(2-3), 193–205.

Gautschi, W. [2011], Numerical analysis, Springer Science & Business Media.

Krichene, W., Bayen, A. and Bartlett, P. L. [2015], Accelerated mirror descent in continuous and
discrete time, in ‘Advances in neural information processing systems’, pp. 2845–2853.

Lessard, L., Recht, B. and Packard, A. [2016], ‘Analysis and design of optimization algorithms via
integral quadratic constraints’, SIAM Journal on Optimization 26(1), 57–95.

Nesterov, Y. [1983], A method of solving a convex programming problem with convergence rate o
(1/k2), in ‘Soviet Mathematics Doklady’, Vol. 27, pp. 372–376.

Nesterov, Y. [2007], ‘Gradient methods for minimizing composite objective function’.

Nesterov, Y. [2013], Introductory lectures on convex optimization: A basic course, Vol. 87, Springer
Science & Business Media.

Nesterov, Y. [2015], ‘Universal gradient methods for convex optimization problems’, Mathematical
Programming 152(1-2), 381–404.

Polyak, B. T. [1964], ‘Some methods of speeding up the convergence of iteration methods’, USSR
Computational Mathematics and Mathematical Physics 4(5), 1–17.

Rockafellar, R. T. [1976], ‘Monotone operators and the proximal point algorithm’, SIAM journal on
control and optimization 14(5), 877–898.

Su, W., Boyd, S. and Candes, E. [2014], A differential equation for modeling nesterov’s accelerated
gradient method: Theory and insights, in ‘Advances in Neural Information Processing Systems’,
pp. 2510–2518.

Süli, E. and Mayers, D. F. [2003], An introduction to numerical analysis, Cambridge University
Press.

9

Taylor, A. [2017], Convex Interpolation and Performance Estimation of First-order Methods for
Convex Optimization, PhD thesis, Université catholique de Louvain.

Wibisono, A., Wilson, A. C. and Jordan, M. I. [2016], ‘A variational perspective on accelerated
methods in optimization’, Proceedings of the National Academy of Sciences p. 201614734.

Wilson, A. C., Recht, B. and Jordan, M. I. [2016], ‘A lyapunov analysis of momentum methods in
optimization’, arXiv preprint arXiv:1611.02635 .

Zhang, G. and Xiao, A. [2016], ‘Stability and convergence analysis of implicit–explicit one-leg
methods for stiff delay differential equations’, International Journal of Computer Mathematics
93(11), 1964–1983.

10

