
Appendix

A Pseudocode of the Proposed Algorithm

Algorithm 1 Pseudocode of our proposed methodology for pre-miRNA prediction

1: Input: xs ∈ {A,C,G,U}|xs|, y ∈ {[0 1]>, [1 0]>}
. xs: a pre-miRNA sequence with its length of |xs|.
. y: A 2-dim vector indicating the true label for xs.

2: Param: b: mini-batch size
3: Output: whole model weights W and prediction ŷ ∈ R2. W

is composed of the weights of the two LSTM layers, attention
mechanism, and three fully connected layers.

Step 1: Preprocessing (Section 3.1)
4: for each sequence xs in training samples
5: xt ← fold(xs)

. fold: a function to predict the secondary structure of a given
input.
. xt: secondary structure of given input sequence xs in dot-
bracket notation. |xt| = |xs| and xt ∈ {(,), ., :}|xt|.

6: Xs ← encode(xs, xt)
. encode: a function to convert a given sequence and structure
into a 16-dimensional one-hot encoded matrix.
. Xs: a one-hot encoded matrix. Xs ∈ {0, 1}|xs|×16.

Step 2: Training on neural network (Section 3.2)
7: initialize weights W
8: for each epoch
9: for b training data composed of Xs, which is randomly picked

from training samples

LSTM Layers with Attention Mechanism
10: H1 ← LLSTM

1 (Xs)

. H1 ∈ R|xs|×d1 , where d1 is the no. of LSTM units
in the 1st layer.

11: H2 ← LLSTM
2 (H1)

. H2 ∈ R|xs|×d2 , where d2 is the no. of LSTM units
in the 2nd layer.

12: Ωatt ← H2Ω

. Ω ∈ Rd2×|xs|: learned weights for the output of the
second LSTM layer; Ωatt ∈ R|xs|×|xs|: attention weight
matrix.

13: ωatt ← softmax(diag(Ωatt))

. ωatt ∈ R|xs|: attention weights for the individual posi-
tions in xs.

14: Hatt ← H2 � (ωatt ⊗ ud2
)

. Hatt ∈ R|xs|×d2 : attention-weighted representation
of H2.
.�: element-wise multiplication.
.⊗: outer product operator.

15: h̃att ← flatten(Hatt)

. h̃att ∈ Rd2·|x̃s|: final output vector of the LSTM lay-
ers.
. flatten: reshape a given matrix into a vector.

Fully Connected Layers
16: f1 ← LFC

1 (h̃att)

. f1 ∈ Rd3 (sigmoid activated).
17: f2 ← LFC

2 (f1)

. f2 ∈ Rd4 (sigmoid activated).
18: ŷ ← LFC

3 (f2)

. ŷ ∈ R2 (softmax activated).

. ŷ: final output.

Weight Update (Section 3.3)
19: E ← − 1

b

∑
i{c
−yi log(ŷi)+c+(1−yi) log(1−ŷi)}

. E: mini-batch training error obtained using binary cross-
entropy (logloss).
. b: mini-batch size (b = 128).
. c−, c+: class weights.

20: W ← W −4W
. calculate4W based on E using gradient descent optimiza-
tion algorithm “Adam”

B Experimental Setup

Our method was implemented using Theano [6, 7] and Keras [8]. All the experiments were performed
on a system equipped with an Intel Xeon E5-2650 CPU, 8 GB of memory, and an Nvidia Geforce Titan
X GPU with 12 GB of memory and 3072 cores. For comparison with our method, we examined the
performance of five state-of-the-art tools: miRBoost [4], CSHMM [5], triplet-SVM [3], microPred [2],
and MIReNA [1]. The last is a rule-based tool supporting pre-determined thresholds for prediction;
allowing us to skip training and perform inference directly with the validation data. The other tools
and our method are ML-based, and used the same training and validation data in every case.

C Additional Experiments

1) Architecture exploration: We explored the alternative architectures listed in Table 5, which
shows the performance of different network architectures with different numbers of layers with and
without an attention mechanism. The reported metrics are averages of the five-fold cross-validation
results obtained with the human dataset.

1

Table 5: Performance of different types of neural network,
assessed in terms of five-fold cross-validation results from
the human dataset (the same table as Table 4 in the main
text; repeated here for the sake of convenience). The number
of stacked layers is shown in brackets. ATT means that an
attention mechanism was included, and a BiLSTM is a bi-
directional LSTM. The configuration that we finally adopted
is shown in row 6.

No. Type SE SP F-score g-mean

1 1D-CNN(2) 0.745 0.978 0.771 0.853
2 1D-CNN(2)+LSTM(2) 0.707 0.976 0.738 0.830
3 1D-CNN(2)+LSTM(2)+ ATT 0.691 0.979 0.739 0.822

4 LSTM(2) 0.666 0.988 0.751 0.810
5 LSTM(1) + ATT 0.781 0.987 0.824 0.878
6 LSTM(2) + ATT (proposed) 0.799 0.988 0.839 0.888

7 BiLSTM(1) + ATT 0.783 0.987 0.827 0.879
8 BiLSTM(2) + ATT 0.795 0.987 0.834 0.886

Table 6: Performance evaluation with varying numbers of
LSTM units.

1st LSTM layer 2nd LSTM layer SE SP F-score g-mean

20 10 0.799 0.988 0.839 0.888
20 20 0.802 0.985 0.829 0.888

40 10 0.785 0.988 0.829 0.880
40 20 0.785 0.987 0.827 0.880
40 40 0.773 0.987 0.820 0.873

100 10 0.783 0.985 0.819 0.878
100 20 0.770 0.985 0.812 0.871
100 40 0.750 0.985 0.798 0.859
100 100 0.767 0.984 0.804 0.868

In rows 1–3 of the table, we show the results for CNNs with or without LSTM networks. There
are one-dimensional CNNs with a layer of 32 filters and another layer of 64 filters. Both filter and
pooling sizes were set to three. CNNs are good at discovering short motifs, and the simple 1D-CNN
in row one showed comparable performance to our scheme; but the addition of LSTM networks (rows
2 and 3) somewhat degraded its performance. This can be explained because extracting short motifs
discards the long-term sequential information inherent in the sequence of nucleotides and structure
elements. Rows 4–6 of the table show results from LSTM networks. The two-layer LSTM network
without an attention mechanism (row 4) showed the lowest F-score of 0.751. The performance of
these networks can be greatly improved by an attention mechanism (rows 5 and 6). As stated in
Section 4.3, this result suggests that the long-term dependency between the front and rear part of a
sequence (captured by an attention mechanism) is essential in pre-miRNA identification. Stacking
two LSTM layers (row 6) produced better performance than a single LSTM layer (row 5). Stacking
further layers caused underfitting due to the limited data, and we omitted the results. Rows 7–8
show results obtained with bi-directional LSTM (BiLSTM) networks. We could not find noticeable
improvement, even though a BiLSTM layer has the twice parameters of an LSTM layer, and it means
that considering attentive sequential information in one direction is sufficient for the current task.

2) LSTM hyperparameter tuning: To find the optimal number of units in each of the two LSTM
layers in our model, we measured its performance with the configurations shown in Table 6. Using
20 units for the first LSTM layer and 10 units for the second LSTM layer produced the best result.
Using more units in either layer degraded the performance, probably due to overfitting.

Table 7: Performance evaluation with soft and hard
encoding.

SE SP F-score g-mean

hard encoding (one-hot) 0.799 0.988 0.839 0.888
soft encoding 0.821 0.982 0.830 0.898

2

3) Soft vs. hard encoding: We use one-hot encoding (e.g., [0 1]) for representing sequences and
structures in our method. An alternative would be to learn a soft version of the one-hot encoding by
training (e.g., [0.2 0.8]). Such an approach has been effective in recent studies on natural language
processing [9]. In our experiments, however, a soft encoding did not give significant advantages, as
shown in Table 7, despite additional training time.

4) Running time: The total training time of the proposed method for the human dataset was
approximately 1 hours (12 seconds × 300 epochs) per fold. Triplet-SVM required the shortest
training time of 2.7 seconds (1 second for testing). The second shortest training time was 13 minutes
(2 seconds for testing) for miRBoost. The training of CSHMM and microPred was relatively time-
consuming, taking 10 hours and 30 hours respectively. Deep learning-based methods are generally
considered to be slower than feature-based tools. However, testing with our method was as fast as the
fastest alternatives (less than 2 seconds). MIReNA (8.3 seconds for testing) is a rule-based method
which does not require any training, and it was excluded from this comparison.

References

[1] A. Mathelier and A. Carbone. MIReNA: finding microRNAs with high accuracy and no learning at genome
scale and from deep sequencing data. Bioinformatics, 26(18):2226–2234, 2010.

[2] R. Batuwita and V. Palade. microPred: effective classification of pre-miRNAs for human miRNA gene
prediction. Bioinformatics, 25(8):989–995, 2009.

[3] C. Xue, et al. Classification of real and pseudo microRNA precursors using local structure-sequence
features and support vector machine. BMC bioinformatics, 6(1):310, 2005.

[4] V. D. T. Tran, et al. miRBoost: boosting support vector machines for microRNA precursor classification.
RNA, 21(5):775–785, 2015.

[5] S. Agarwal, et al. Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model
(CSHMM). BMC bioinformatics, 11(Suppl 1):S29, 2010.

[6] F. Bastien, et al. Theano: new features and speed improvements. Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop, 2012.

[7] J. Bergstra, et al. Theano: a CPU and GPU Math Expression Compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy), June 2010. Oral Presentation.

[8] F. Chollet. Keras: Theano-based deep learning library. Code: https://github. com/fchollet. Documentation:
http://keras. io, 2015.

[9] T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–3119, 2013.

3

	I Appendix
	Pseudocode of the Proposed Algorithm
	Experimental Setup
	Additional Experiments

