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1 KMTL Ridge Regression

Let na,t be the number of times the algorithm has selected arm a up and including time t so that∑N
a=1 na,t = t. Define sets ta = {τ < t : aτ = a}, where aτ is the arm selected at time τ . Notice

that |ta| = na,t−1 for all a. We solve the following problem at time t:

f̂t = arg min
f∈Hk̃

1

N

N∑
a=1

1

na,t−1

∑
τ∈ta

(f(x̃a,τ )− ra,τ )2 + λ‖f‖2Hk̃ , (1)

where x̃a,τ is augmented context and ra,τ is the reward of arm a selected at time τ . We can minimize
(1) by solving a variant of kernel ridge regression. Applying the representer theorem [10] the optimal
f can be expressed as f =

∑N
a′=1

∑
τ ′∈ta αa′τ ′ k̃(·, x̃a′,τ ′). Plugging this in, we have the objective

function

J(f) =
1

N

N∑
a=1

1

na,t−1

∑
τ∈ta

(

N∑
a′=1

∑
τ ′∈ta

αa′τ ′ k̃(x̃a,τ , x̃a′,τ ′)− ra,τ )2 + λ‖f‖2Hk̃

= (yt−1 − K̃t−1α)T ηt−1(yt−1 − K̃t−1α) + λαT K̃t−1α

= yTt−1ηt−1yt−1 − yTt−1ηt−1K̃t−1α− αT K̃t−1ηt−1yt−1

+αT K̃t−1ηt−1K̃t−1α+ λαT K̃t−1α.

Taking the gradient, we have
∂J

∂α
= −2K̃t−1ηt−1yt−1 + 2K̃t−1ηt−1K̃t−1α+ 2λK̃t−1α = 0.

Solving for α yields

α = (ηt−1K̃t−1 + λI)−1ηt−1yt−1,
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which implies

f̂t(x̃) = k̃t−1(x̃)T (ηt−1K̃t−1 + λI)−1ηt−1yt−1. (2)

Here K̃t−1 is the (t − 1) × (t − 1) kernel matrix on the augmented data [x̃aτ ,τ ]t−1
τ=1, k̃t−1(x̃) =

[k̃(x̃, x̃aτ ,τ )]t−1
τ=1 is a vector of kernel evaluations between x̃ and the past data, yt−1 = [raτ ,τ ]t−1

τ=1 are
all observed labels or rewards and ηt−1 is the (t−1)× (t−1) diagonal matrix ηt−1 = diag[ 1

naτ
]t−1
τ=1.

We can also derive the solution without using the representer theorem. Let φ be a feature map
associated with kernel k̃. Let

θ̂ = arg min
θ

1

N

N∑
a=1

1

na,t−1

∑
τ∈ta

(φ(x̃a,τ )T θ − ra,τ )2 + λ‖θ‖2. (3)

Minimizing eqn. (3) over θ gives,

θ̂t = D−1
t−1ΦTt−1ηt−1yt−1, (4)

where Dt−1 = (ΦTt−1ηt−1Φt−1 + λI), Φt = [φ(x̃aτ ,τ )T ]tτ=1 ∈ Rt×d̃ and d̃ is the dimension of
feature space φ(x). The equivalence between eqn. (2) and (4) follows from the matrix inversion
lemma.

2 Upper Confidence Bound

Lemma 1. Suppose the rewards [raτ ,τ ]Tτ=1 are independent random variables with means

E[raτ ,τ |x̃aτ ,τ ] = φ(x̃aτ ,τ )T θ∗, where ‖θ∗‖ ≤ c. Let α =
√

log(2TN/δ)
2 and δ > 0. With prob-

ability at least 1− δ
T , we have that ∀a ∈ [N ]

|φ(x̃a,t)
T θ̂t − φ(x̃a,t)

T θ∗| ≤ (α+ c
√
λ)sa,t,

where sa,t =
√
φ(x̃a,t)TD

−1
t φ(x̃a,t).

Proof. Proof of this theorem is similar to proof of Lemma 1 in [4]. For simplicity we write Dt−1 =
D,Φt−1 = Φ, yt−1 = y and ηt−1 = η. Now

φ(x̃a,t)
T θ̂t − φ(x̃a,t)

T θ∗ = φ(x̃a,t)
TD−1ΦT ηy − φ(x̃a,t)

TD−1Dθ∗

= φ(x̃a,t)
TD−1ΦT ηy − φ(x̃a,t)

TD−1(ΦT ηΦ + λI)θ∗

= φ(x̃a,t)
TD−1ΦT ηy − φ(x̃a,t)

TD−1(ΦT ηΦθ∗ + λθ∗)

= φ(x̃a,t)
TD−1ΦT η(y − Φθ∗)− φ(x̃a,t)

TD−1λθ∗.

Therefore

|φ(x̃a,t)
T θ̂t − φ(x̃a,t)

T θ∗| ≤ |φ(x̃a,t)
TD−1ΦT η(y − Φθ∗)|+ ‖θ∗‖‖φ(x̃a,t)

TD−1λ‖
≤ |φ(x̃a,t)

TD−1ΦT η(y − Φθ∗)|+ cλ||φ(x̃a,t)
TD−1||

where the first inequality is due to Cauchy-Schwarz.

Now we know that Ey = E[raτ ,τ ]τ=1,...,t−1 = Φθ∗ =⇒ E[y − Φθ∗] = 0. Let f(y1, ..., yt−1) =
|φ(x̃a,t)

TD−1ΦT η(y − Φθ∗)| and vector V = φ(x̃a,t)
TD−1ΦT η. Then

|f(y1, ...yi, ..., yt−1)− f(y1, ...ŷi, ..., yt−1)| = |Vi(yi − ŷi)| ≤ |Vi|.

That means any component yi can change f(y1, ..., yt−1) by at most |Vi|.
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Using statistical independence of all random variables raτ ,τ in a vector y and using McDiarmid’s
Inequality:

P (|φ(x̃a,t)
TD−1ΦT η(y − Φθ∗)| ≥ αsa,t) ≤ 2 exp(−

2α2s2
a,t

‖V ‖2
)

≤ 2 exp(−2α2)

=
δ

TN

where the second inequality is due to

s2
a,t = φ(x̃a,t)

TD−1φ(x̃a,t)

= φ(x̃a,t)
TD−1(ΦT ηΦ + λI)D−1φ(x̃a,t)

≥ φ(x̃a,t)
TD−1ΦT ηΦD−1φ(x̃a,t)

≥ φ(x̃a,t)
TD−1ΦT η2ΦD−1φ(x̃a,t)

= ‖ηΦD−1φ(x̃a,t)‖2

= ‖V ‖2.

Now applying the union bound we can see that, with probability at least 1− δ
T , ∀a ∈ [N ]

|φ(x̃a,t)
TD−1ΦT η(y − Φθ∗a)| ≤ αsa,t.

Bounding the second term:

cλ||φ(x̃a,t)
TA−1

a || = cλ
√
φ(x̃a,t)TD−1ID−1φ(x̃a,t)

≤ c
√
λ
√
φ(x̃a,t)TD−1(λI + ΦTΦ)D−1φ(x̃a,t)

= c
√
λ
√
φ(x̃a,t)TD−1φ(x̃a,t)

= c
√
λsa,t.

We kernelize sa,t in the following result.

2.1 Proof of Lemma 1 In Main Paper

Proof. We use Lemma 1 to get the width and then kernelize it using techniques in [11]. Note that
Φφ(x̃) = k̃t−1(x̃). When x̃ = x̃a,t, we write k̃a,t = k̃t−1(x̃a,t). For simplicity we write ηt−1 = η
and Φt−1 = Φ. Since the matrices (ΦT ηΦ + λI), (ηΦΦT + λI) are regularized, they are strictly
positive definite and hence their inverses are defined. Observe that

(ΦT ηΦ + λI)ΦT = ΦT (ηΦΦT + λI) (5)
by associative property of matrix multiplication and

ΦT (ηΦΦT + λI)−1 = (ΦT ηΦ + λI)−1ΦT (6)
by multiplication of (ΦT ηΦ + λI)−1 and (ηΦΦT + λI)−1 on both sides. Also observe that

(ΦT ηΦ + λI)φ(x̃a,t) = (ΦT ηk̃a,t + λφ(x̃a,t))

by associative property of matrix multiplication and using Φφ(x̃a,t) = k̃a,t. Multiplying on the left
by (ΦT ηΦ + λI)−1,

φ(x̃a,t) = (ΦT ηΦ + λI)−1(ΦT ηk̃a,t + λφ(x̃a,t))

= (ΦT ηΦ + λI)−1ΦT ηk̃a,t + λ(ΦT ηΦ + λI)−1φ(x̃a,t)

= ΦT (ηΦΦT + λI)−1ηk̃a,t + λ(ΦT ηΦ + λI)−1φ(x̃a,t) (7)
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where the last step is due to eqn. (6).

Multiplying both sides of eqn. (7) by φ(x̃a,t)
T we get,

φ(x̃a,t)
Tφ(x̃a,t) = k̃Ta,t(ηΦΦT + λI)−1ηk̃a,t + λφ(x̃a,t)

T (ΦT ηΦ + λI)−1φ(x̃a,t)

or, equivalently,

k̃(x̃a,t, x̃a,t) = k̃Ta,t(ηK̃t−1 + λI)−1ηk̃Ta,t + λs2
a,t.

By rearranging terms, we get

sa,t = λ−1/2
√
k̃(x̃a,t, x̃a,t)− k̃Ta,t(ηt−1K̃t−1 + λI)−1ηt−1k̃a,t. (8)

3 UCB Width

In this subsection we establish a lower bound on the UCB width. To simplify the analysis we consider
a problem:

f̂t = arg min
f∈Hk̃

1

N

N∑
a=1

∑
τ∈ta

(f(x̃a,τ )− ra,τ )2 + λ‖f‖2Hk̃ , (9)

as 1
na,t−1

obscures the analysis. In this case sa,t = λ−1/2
√
k̃(x̃a,t, x̃a,t)− k̃Ta,t(K̃t−1 + λI)−1k̃a,t.

Let (�) denote the Hadamard product and (⊗) denote the Kronecker product.

Lemma 2. [6] Let A be a positive definite matrix partitioned according to

A =

[
A11 A12

A21 A22

]
.

Then

A22 ≥ A22 −AT12A
−1
11 A12 ≥

4λmaxλmin(
λmax + λmin

)2A22

where λmax and λmin are the maximum and minimum eigenvalues of A and A ≥ B means A−B is
a positive semidefinite matrix.

Lemma 3. [8] Let D,C be positive semidefinite matrices. Any eigenvalue λ(D � C) of D � C
satisfies

λ(D � C) ≤ λmax(D � C) ≤ |max
i
dii|λmax(C)

and
|min

i
dii|λmin(C) ≤ λmin(D � C) ≤ λ(D � C).

Lemma 4. [5] Let D ∈ Rn×n and C ∈ Rm×m. Any eigenvalue λ(D ⊗ C) of D ⊗ C ∈ Rnm×nm
is equal to the product of an eigenvalue of D and an eigenvalue of C.

We assume that na,t = t
N after time t to get interpretibility (this is not needed for the general regret

bound that we prove in Theorem 1 in main paper). For simplicity define nt = na,t. Let (�) denote the
Hadamard product, (⊗) denote the Kronecker product and 1n ∈ Rn be the vector of ones. LetKXt =
[kX (xaτ ,τ , xaτ′ ,τ ′)]

t
τ,τ ′=1 be the t × t kernel matrix on contexts, KZt = [kZ(zaτ , zaτ′ )]

t
τ,τ ′=1 be

the associated t× t kernel matrix based on arm similarity, and KZ = [kZ(za, za)]Na=1 be the N ×N
arm similarity matrix between N arms, where xaτ ,τ is observed context and zaτ is an associated

arm descriptor. Using the definition of tildek, k̃
(

(z, x), (z′, x′)
)

= kZ(z, z′)kX (x, x′), we can write

K̃t = KZt �KXt . We rearrange a sequence of xaτ ,τ to get [xa,τ ]Na=1,τ=(t+1)a
such that elements

(a− 1)nt to ant belong to arm a. Define K̃r
t ,K

r
Xt

and Kr
Zt

be rearranged kernel matrices based on
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the re-ordered set [xa,τ ]Na=1,τ=(t+1)a
. Notice that we can write K̃r

t = (KZ ⊗ 1nt1
T
nt)�K

r
Xt

and

the eigenvalues λ(K̃t) and λ(K̃r
t ) are equal. To summarize, we have

K̃t = KZt �KXt

and

λ(K̃t) = λ
(

(KZ ⊗ 1nt1Tnt)�K
r
Xt

)
. (10)

Lemma 5. Assume k̃(x̃, x̃) ≤ ck̃,∀x̃ ∈ X̃, and let K̃t be the final product kernel matrix and KZ be
the task similarity matrix. Also write

K̃t + λIt =

[
K̃t−1 + λIt−1 k̃a,t

k̃Ta,t k̃(x̃a,t, x̃a,t) + λ

]
.

Then

Lsa,t =
4nck̃λmax(KZ) + λ(
nck̃λmax(KZ) + 2λ

)2

(
k̃(x̃a,t, x̃a,t) + λ

)
− 1 ≤ s2

a,t ≤
ck̃
λ
. (11)

Proof. Using Lemma 2,

k̃(x̃a,t, x̃a,t) + λ− k̃Ta,t(K̃t−1 + λIt−1)−1k̃a,t ≤ k̃(x̃a,t, x̃a,t) + λ.

Subtracting λ from both sides,

λs2
a,t ≤ k̃(x̃a,t, x̃a,t)

and therefore

s2
a,t ≤

ck̃
λ
.

This proves the upper bound. Again by using Lemma 2,

k̃(x̃a,t, x̃a,t)+λ−k̃Ta,t(K̃t−1+λIt−1)−1k̃a,t ≥
4λmax(K̃t + λIt)λmin(K̃t + λIt)(
λmax(K̃t + λIt) + λmin(K̃t + λIt)

)2

(
k̃(x̃a,t, x̃a,t)+λ

)

Notice that the right hand side of the above equation is a monotonically decreasing function of λmax

λmin
.

Then

λs2
a,t + λ ≥ 4λmax(K̃t + λIt)λmin(K̃t + λIt)(

λmax(K̃t + λIt) + λmin(K̃t + λIt)
)2

(
k̃(x̃a,t, x̃a,t) + λ

)

=

4λmax(K̃t)+λ

λmin(K̃t)+λ(
λmax(K̃t)+λ

λmin(K̃t)+λ
+ 1
)2

(
k̃(x̃a,t, x̃a,t) + λ

)

=

4λmax(K̃r
t )+λ

λmin(K̃r
t )+λ(

λmax(K̃r
t )+λ

λmin(K̃r
t )+λ

+ 1
)2

(
k̃(x̃a,t, x̃a,t) + λ

)

≥

4ck̃λmax(Kr
Zt

)+λ

miniKr
Xt

(ii)λmin(Kr
Zt

)+λ(
ck̃λmax(Kr

Zt
)+λ

miniKr
Xt

(ii)λmin(Kr
Zt

)+λ + 1
)2

(
k̃(x̃a,t, x̃a,t) + λ

)
where Kr

Xt
(ii) are the diagonal elements of Kr

Xt
and the last inequality is due to Lemma 3. The

smallest eigenvalue of 1nt1
T
nt is zero and therefore according to Lemma 4, the smallest eigenvalue

of Kr
Zt

is zero. This implies

5



λs2
a,t + λ ≥

4nck̃λmax(Kr
Zt

)+λ

λ(
nck̃λmax(Kr

Zt
)+λ

λ + 1
)2

(
k̃(x̃a,t, x̃a,t) + λ

)

=
4nck̃λmax(KZ) + λ(
nck̃λmax(KZ) + 2λ

)2

(
k̃(x̃a,t, x̃a,t) + λ

)
λ

where the last equality is again due to Lemma 4. Dividing both sides by λ and then subtracting one
gives

s2
a,t ≥

4nck̃λmax(KZ) + λ(
nck̃λmax(KZ) + 2λ

)2

(
k̃(x̃a,t, x̃a,t) + λ

)
− 1

Theorem 1 below says that the lower bound on width decreases as task similarity increases. In
particular, assume that all distinct tasks are similar to each other with task similarity equal to µ and
there are N tasks (arms). Thus KZ(µ) := (1− µ)IN + µ1N1

T
N .

Define

Lsa,t(µ) :=
4nck̃λmax(KZ(µ)) + λ(
nck̃λmax(KZ(µ)) + 2λ

)2

(
k̃(x̃a,t, x̃a,t) + λ

)
− 1.

Theorem 1. Let Lsa,t be the lower bound on width as defined in Lemma 5. If µ1 ≤ µ2 then

Lsa,t(µ1) ≥ Lsa,t(µ2). (12)

Proof. The eigenvalues of KZ(µ) = (1 − µ)IN + µ1N1
T
N are 1 + µ(N − 1) with multiplicity 1

and 1− µ with multiplicity N − 1.

That means λmax(KZ(µ)) is highest when tasks are more similar and it decreases as task similarity µ
goes to zero. The theorem follows as Lsa,t(µ) is a monotonically decreasing function of λmax(KZ(µ))

This is important because if the lower bound on sa,t is small then we may be more confident about
the reward estimates and this may lead to a tighter regret bound. In the next subsection we discuss
the upper bound on regret.

4 Regret Analysis

Algorithm 1 BaseKMTL-UCB at step t
1: Input: α ∈ R+, c, λ,Ψ ⊆ {1, 2, ..., t− 1}
2: Get K̃Ψ = ΦΨΦTΨ, where ΦΨ = [φ(x̃aτ ,τ )T ]τ∈Ψ

3: Get yΨ =
[
raτ ,τ

]
τ∈Ψ

4: Observe context features at time t: xa,t for each a ∈ N
5: Calculate k̃a,Ψ = ΦTΨφ(x̃a,t) and k̃(x̃a,t, x̃a,t) for each a ∈ N .
6: for all a at time t do
7: sa,t = λ−1/2

√
k̃(x̃a,t, x̃a,t)− k̃Ta,Ψ(K̃Ψ + λI)−1k̃a,Ψ

8: ucba,t ← k̃Ta,Ψ(K̃Ψ + λI)−1yΨ + (α+ c
√
λ)sa,t

9: end for

We use the Lemma 6to prove the Lemma 7

6



Algorithm 2 SupKMTL-UCB
Using same notation as in [4]:

1: Input: α ∈ R+, T ∈ N
2: Q← dlog T e
3: Ψq

1 ← ∅ and ∀q ∈ [Q].
4: for t = 1, ..., T do
5: q ← 1 and Â1 ← [N ]
6: repeat
7: sa,t, ucba,t ← BaseKMTL-UCB with Ψq

t and α, for all a ∈ Âq
8: wa,t = (α+ c

√
λ)sa,t

9: if wa,t ≤ 1√
T

for all a ∈ Âq then
10: Choose at = argmaxa∈Âq ucba,t

11: Ψq′

t+1 ← Ψq′

t for all q′ ∈ [Q]

12: else if wa,t ≤ 2−q for all a ∈ Âq then
13: Âq+1 ← {a ∈ Âq|ucba,t ≥ maxa′∈Âq ucba′,t − 21−q}
14: q ← q + 1
15: else
16: Choose at ∈ Âq such that wat,t > 2−q

17: Update Ψq
t+1 ← Ψq

t ∪ {t} and ∀q′ 6= q, Ψq′

t+1 ← Ψq′

t
18: end if
19: until at is found
20: Observe reward rat,t
21: end for

Lemma 6 (Lemma 1.1 in [12]). Let A ∈ Rn×n be a positive definite matrix partitioned according to

A =

[
A11 A12

AT12 A22

]
.

where A11 ∈ R(n−1)×(n−1), A12 ∈ R(n−1) and A22 ∈ R1. Then det(A) = det(A11)(A22 −
AT12A

−1
11 A12).

Using the notations of BaseKMTL-UCB, we write K̃Ψ = ΦΨΦTΨ and k̃a,Ψ = ΦTΨφ(x̃a,t) where
ΦΨ = [φ(x̃)Taτ ,τ ]τ∈Ψ and Ψ ⊆ {1, ..., t− 1}. Define

K̃Ψ+1 + λI =

[
K̃Ψ + λI|Ψ| k̃a,Ψ

k̃Ta,Ψ k̃(x̃a,t, x̃a,t) + λ

]

Also, define k̃1 = k̃(x̃aσ,σ, x̃aσ,σ), where σ is the smallest element of Ψ.

Lemma 7. Using notations in BaseKMTL-UCB and suppose |Ψ| ≥ 2. Then

∑
τ∈Ψ

s2
aτ ,τ ≤ 2m log g(Ψ),

where m = max(1,
ck̃
λ ) and

g(Ψ) =
det(K̃Ψ+1 + λI)

λ|Ψ|+1
.

7



Proof. Using the Lemma 6,

det(K̃Ψ+1 + λI) = (k̃1 + λ)
∏

τ∈Ψ\{σ}

λ(1 + s2
aτ ,τ )

= λ(
k̃1

λ
+ 1)

∏
τ∈Ψ\{σ}

λ(1 + s2
aτ ,τ )

= λ
∏
τ∈Ψ

λ(1 + s2
aτ ,τ ),

where the last step is because s2
aσ,σ = k1

λ .

From Lemma 5, max s2
aτ ,τ =

ck̃
λ . When ck̃

λ ≤ 1, using x ≤ 2 log(1 + x),∀x ∈ [0, 1] , s2
aτ ,τ ≤

2 log(1 + s2
aτ ,τ ). In this case,

∑
τ∈Ψ

s2
aτ ,τ ≤ 2

∑
τ∈Ψ

log(1 + s2
aτ ,τ )

= 2 log
∏
τ∈Ψ

(1 + s2
aτ ,τ )

= 2 log
det(K̃Ψ+1 + λI)

λ|Ψ|+1
.

When ck̃
λ > 1, ∑

τ∈Ψ

ck̃
λ

λ

ck̃
s2
aτ ,τ ≤

2ck̃
λ

∑
τ∈Ψ

log(1 +
λ

ck̃
s2
aτ ,τ )

≤
2ck̃
λ

∑
τ∈Ψ

log(1 + s2
aτ ,τ )

=
2ck̃
λ

log
∏
τ∈Ψ

(1 + s2
aτ ,τ )

=
2ck̃
λ

log
det(K̃Ψ+1 + λI)

λ|Ψ|+1
.

Combining both cases,

∑
τ∈Ψ

s2
aτ ,τ ≤ 2 max(1,

ck̃
λ

) log
det(K̃Ψ+1 + λI)

λ|Ψ|+1

= 2m log g(Ψ).

Lemma 8. Using the same notations as in Lemma 7,∑
τ∈Ψ

saτ ,τ ≤
√

2m|Ψ| log g(Ψ)

Proof. ∑
t∈Ψ

saτ ,τ ≤
√
|Ψ|
∑
τ∈Ψ

s2
aτ ,τ

≤

√
2|Ψ|m log

det(K̃Ψ+1 + λI)

λ|Ψ|+1

where the first inequality is due to Cauchy-Schwarz and the last inequality is due to Lemma 7.

8



Lemma 9. [1] Using notations in SupKMTL-UCB, for each t ∈ [T ], q ∈ [Q], and any fixed sequence
of feature vectors xat,t with t ∈ Ψq

t , the corresponding rewards rat,t are independent random
variables such that E[rat,t] = φ(x̃at,t)

T θ∗.

Lemma 10. [1] Using notations in SupKMTL-UCB, let ‖θ∗‖ ≤ c and a∗t be the best arm at time t.
With probability 1− δQ and ∀t ∈ [T ], q ∈ [Q], the following hold

• |φ(x̃a,t)
T θ̂t − E[ra,t|xa,t]| ≤

(√
log 2TN/δ

2 +
√
λc
)
sa,t

• a∗t ∈ Âq

• E[ra∗t ,t]− E[ra,t] ≤ 23−q .

Lemma 11. Using notations in SupKMTL-UCB, ∀q ∈ [Q],

|Ψq
T+1| ≤ 2q

(√ log 2TN/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
)
|Ψq
T+1|

where [T ] = {1, ..., T}.

Proof.

∑
t∈ΨqT+1

wat,t =
∑

t∈ΨqT+1

(√ log 2TN/δ

2
+ c
√
λ
)
sat,t

≤
(√ log 2TN/δ

2
+ c
√
λ
)√

2m|Ψq
T+1| log g(Ψq

T+1)

≤
(√ log 2TN/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
)
|Ψq
T+1|

where the first inequality is due to Lemma 8 and the last inequality holds because 1 + s2
at,t ≥ 1 for

all t.

From the third step (line 16) in SupKMTL-UCB algorithm 2, we choose and alternative at ∈ Âq
such that wat,t ≥ 2−q and include that t in Ψq

t+1 for the next round of estimates. Therefore,∑
t∈ΨqT+1

wat,t ≥ 2−q|Ψq
T+1|

.

Combining the above two equations completes the proof.

Lemma 12. [Azuma’s inequality [2]] Let r1, ..., rT be random variables with |rτ | ≤ aτ , for some
a1, ..., aT ≥= 0. Then

P

(∣∣∣∣∣
T∑
τ=1

rτ −
T∑
τ=1

E[rτ |r1, ..., rτ−1]

∣∣∣∣∣ ≥ B
)
≤ 2 exp

(
− B2

2
∑T
τ=1 a

2
τ

)
(13)

4.1 Proof of Theorem 1 in Main paper

We use same proof technique proposed by Auer et al. [1].

Proof. Let Ψ0 be the set of trials for which an alternative (wa,t ≤ 1√
T

) at line 9 of SupKMTL-UCB
algorithm 2 is chosen . Since 2−Q ≤ 1√

T
, we have {1, ..., T} = Ψ0 ∪

⋃
q Ψq

T+1.

9



With probability 1− δQ,

E[R(T )] =

T∑
t=1

E[ra∗t ,t]− E[rat,t]

=
∑
t∈Ψ0

E[ra∗t ,t]− E[rat,t] +

Q∑
q=1

∑
t∈ΨqT+1

E[ra∗t ,t]− E[rat,t]

≤ 2√
T

Ψ0 +

Q∑
q=1

∑
t∈ΨqT+1

E[ra∗t ,t]− E[rat,t]

≤ 2√
T
T +

Q∑
q=1

∑
t∈ΨqT+1

23−q

≤ 2
√
T +

Q∑
q=1

23−q|Ψq
T+1|

≤ 2
√
T +

Q∑
q=1

23−q2q
(√ log 2TN/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
)
|Ψq
T+1|

≤ 2
√
T + 8

(√ log 2TN/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
) Q∑
q=1

√
|Ψq
T+1|

≤ 2
√
T + 8

(√ log 2TN/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
)√√√√Q

Q∑
q=1

|Ψq
T+1|

≤ 2
√
T + 8

(√ log 2TN/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
)√

QT

where the first inequality is because of line 9 of SupKMTL-UCB algorithm 2, the second inequality
is due to Lemma 10 and the fourth inequality is due to Lemma 11.

Using B =
√

2T log(2/δ) and aτ = 1 in Azuma’s inequality (Lemma 12), with probability at least
1− δ(Q+ 1),

R(T ) ≤ E[R(T )] +
√

2T log(2/δ)

≤ 2
√
T + 8

(√ log 2TN/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
)√

QT +
√

2T log(2/δ)

≤ 2
√
T + 10

(√ log 2TN/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
)√

QT.

Replacing δ with δ
Q+1 , we get that with probability at least 1− δ,

R(T ) ≤ 2
√
T + 10

(√ log 2TN(Q+ 1)/δ

2
+ c
√
λ
)√

2m
(

log g([T ])
)√

QT (14)

≤ 2
√
T + 10

(√
log 2TN(log(T ) + 1)/δ

2
+ c
√
λ

)√
2m log g([T ]

√
T dlog(T )e.(15)

We use following definitions and lemmas to interpret the regret bound and to establish a regret bound
in terms of the effective rank of the kernel matrix.

10



Definition 1. Let x, y ∈ Rn and x1 ≥ x2 ≥ .... ≥ xn, y1 ≥ y2 ≥ .... ≥ yn . We say x is majorized
by y, i.e. x ≺ y, if

∑k
i=1 xi ≤

∑k
i=1 yi, for k = 1, ..., n− 1 and

∑n
i=1 xi =

∑n
i=1 yi.

Definition 2. A real valued function on g defined on set S ⊂ Rn is said to be Schur concave on S if
x ≺ y =⇒ g(x) ≥ g(y).
Lemma 13. [7] If x, y ∈ Rn+ and x ≺ y, then

∏n
i=1 xi ≥

∏n
i=1 yi. This means

∏
xi is a Schur

concave function.
Lemma 14. [3] Let A,B be positive semidefinite matrices of the same size and let all elements on
diagonal of B are 1. Then λ(A�B) ≺ λ(A).
Lemma 15. [5] Let A,B be matrices of size Rn×m then rank(A�B) ≤ rank(A) rank(B).
Lemma 16. [ Arithmetic Mean-Geometric Mean Inequality [9]] For every sequence of nonnegative
real numbers a1, a2, ...an one has

(

n∏
i=1

ai)
1/n ≤

∑
i=1 ai
n

with equality if and only if a1 = a2 = ... = an.

4.2 Proof of Theorem 2 in Main Paper

Suppose the rank of K̃T+1 is r. Hence only the first r eigenvalues are non zero. In that case g([T ])

attains its maximum when each of these r eigenvalues is equal to trace(K̃T+1)
r (using Lemma 16).

Thus,

g([T ]) =

∏T+1
i=1 (λi + λ)

λT+1

≤
∏r
i=1(trace(K̃T+1)/r + λ)

λr

=
( trace(K̃T+1)/r + λ

λ

)r
.

It follows that,

log(g([T ])) ≤ r log
( trace(K̃T+1)/r + λ

λ

)
≤ r log

( trace(K̃T+1) + λ

λ

)
= rzrx log

( trace(K̃T+1) + λ

λ

)
≤ rzrx log

( (T + 1)ck̃ + λ

λ

)
,

where the second inequality is due to Lemma 15.

4.3 Proof of Theorem 3 in Main Paper

Proof. Suppose the K̃T+1(µ1) and K̃T+1(µ2) are final kernel matrices after time T , K̃r
T+1(µ1)

and K̃r
T+1(µ2) are corresponding matrices using the definition 10. Also suppose that KZ(µ1) and

KZ(µ2) are task similarity matrices.

K̃r
T+1(µ1) = (KZ(µ1)⊗ 1nT+1

1
T
nT+1

)�Kr
XT+1

= (KZ(
µ1

µ2
)⊗ 1nT+1

1
T
nT+1

)� (KZ(µ2)⊗ 1nT+1
1
T
nT+1

)�Kr
XT+1

and using the Lemma 14, we have
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λ(K̃T+1(µ1)) ≺ λ(K̃T+1(µ2))

This implies

λ(K̃T+1(µ1)) + λ ≺ λ(K̃T+1(µ2)) + λ.

Using the Lemma 13, we conclude that

T+1∏
t=1

(λt(K̃T+1(µ1)) + λ) ≥
T+1∏
t=1

(λt(K̃T+1(µ2)) + λ).

This completes the proof.

4.4 Proof of Corollary 1

Proof. Let’s find the upper bound of maximum of g([T ]). We know that rλ log T ≥
∑T+1
i=r+1 λi. Let

ε be a constant such that rλ log T =
∑T+1
i=r+1 λi + ε. Notice that ε ≤ (T + 1)ck̃. Consider

max
∏T+1
i=1 (λi + λ)

s.t.
∑r
i=1 λi + λ = (T + 1)ck̃ + rλ− rλ log T + ε

and
∑T+1
i=r+1 λi + λ = rλ log T − ε+ (T + 1− r)λ

Using Lemma 16, the maximum of above constrained optimization problem occurs at

λi + λ =

{
(T+1)ck̃+rλ−rλ log T+ε

r , if λi ≤ r,
rλ log T+(T+1−r)λ

(T+1−r) − ε
T+1−r otherwise.

(16)

Therefore,

g([T ]) =

T+1∏
t=1

(λt + λ)

λ

≤
( (T + 1)ck̃ + rλ− rλ log T + ε

rλ

)r(rλ log T + (T + 1− r)λ
(T + 1− r)λ

)T+1−r

=
( (T + 1)ck̃ + rλ− rλ log T + ε

rλ

)r(r log T + (T + 1− r)
(T + 1− r)

)T+1−r

=
( (T + 1)ck̃ + rλ− rλ log T + ε

rλ

)r( r log T

T + 1− r
+ 1
)T+1−r

=
( (T + 1)ck̃ + rλ− rλ log T + ε

rλ

)r( r log T

T + 1− r
+ 1
)T+1−r

≤
( (T + 1)ck̃ + rλ− rλ log T + ε

rλ

)r(r log(T + r − 1)

T
+ 1
)T

≤
( (T + 1)ck̃ + rλ− rλ log T + ε

rλ

)r
exp

(
r log(T + r − 1)

)
where the first inequality is due to eqn. (16), the second inequality holds because (1 + log(x)

x )x

is monotonically increasing function ∀x ≥ 1 and the last inequality holds because log(1 + x) ≤
x, ∀x > −1.

Taking log on both sides
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log(g([T ])) ≤ r log
( (T + 1)ck̃ + rλ− rλ log T + ε

rλ

)
+ r log(T + r − 1)

≤ r log
( (T + 1)ck̃ + rλ− rλ log T + ε

rλ

)
+ r log(2T )

log(g([T ])) ≤ r log
(

2T
2(T + 1)ck̃ + rλ− rλ log T

rλ

)
.

5 Comment on Scalability

As number of time steps t increases, kernel matrix K̃t grows in size and that has an effect on how
well one can scale the proposed algorithm. While scalability was not our focus, there are at least a
couple of obvious ways to address this issue. One would be rank one updates of the kernel matrix,
and another would be kernel approximation techniques such as the Nystrom method. Both are
straightforward to implement. We had implemented the latter, and noticed that such an approximation
has a more detrimental effect on Kernel-UCB than our method. One possible reason could be that the
Nystrom method assumes the kernel matrix has low rank, and when there is more task similarity, the
rank of our kernel matrix is lower compared to that of Kernel-UCB.

6 Results

We run every experiment 10 times and calculate empirical mean regret. Confidence interval is
calculated using standard deviation (mean ± standard deviation) of results of these 10 experiments.

Figure 1: Results on Multiclass Dataset with confidence interval
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