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1 KMTL Ridge Regression

Let n,; be the number of times the algorithm has selected arm a up and including time ¢ so that

Zivzl Ngt = t. Define sets t, = {7 < ¢ : a; = a}, where a is the arm selected at time 7. Notice
that |t,| = n4,—1 for all a. We solve the following problem at time ¢:

N

. 1 1
fi = al;geminNZ Z(f(iaf) —Taz)’ +)‘||f||§-t,;7 (D

- Nt
Hy, a=1""%t"1 ¢,

where I, , is augmented context and 7,  is the reward of arm a selected at time 7. We can minimize
(T) by solving a variant of kernel ridge regression. Applying the representer theorem [10] the optimal
f can be expressed as f = 25:1 > rret, Qarr k(- Tar 7). Plugging this in, we have the objective
function

N N
J(f) = %Z ! Z(Z Z aa’T’];(CEa,‘rvja’,‘r’) _ra,T)Q"")‘”fH?-L;,
a=1

Rat=1 225 1 et
= (g1 — Ki10) T 1(ys—1 — Ki1a) + Aol K; o
= Yl M1t — Y1 Ko — ol Ky 1y

+OéTI~(t_17]t_1I~(t_1OL -+ )\aTIE}_loz.

Taking the gradient, we have
0J

7 - —2K; me—1ye—1 + 2K 11 Ko+ 20K, a0 = 0.

Solving for « yields
a = (oK +AD o1y,
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which implies

ft(f) = k(@) T Ko + 0D Y1y 2)

Here K; ; is the (t — 1) x (t — 1) kernel matrix on the augmented data [Z,, ,]'Z%, ki 1(Z) =

[k(Z, Za, -)]ZY is a vector of kernel evaluations between & and the past data, y, 1 = [r,. +]i} are

all observed labels or rewards and 7;_1 is the (t — 1) x (¢ — 1) diagonal matrix 7;_, = diag[-2-]*_}.

We can also derive the solution without using the representer theorem. Let ¢ be a feature map
associated with kernel k. Let

N
A o1 1 -
6 = arg min g E (0(Zar)T0 —rar)* + MO 3)
Minimizing eqn. (3) over ¢ gives,

0, = D@ 11y, 4
where Dy 1 = (B 1n_1®11 + M), &y = [¢(F,. )7L , € R**4 and d is the dimension of

feature space ¢(x). The equivalence between eqn. and follows from the matrix inversion
lemma.

2 Upper Confidence Bound

Lemma 1. Suppose the rewards [ro, .|T_, are independent random variables with means
Elra, +|Ta. -] = qb(iaﬁT)T@*, where ||6%|| < ¢. Let « = w and 6 > 0. With prob-
ability at least 1 — 2., we have that Va € [N]

|3(Za,6)" 0 — (Za,)T 07| < (a+ V)50,

where sq.1 = \/(i)(fa,t)TD;lQS(fa,t)-

Proof. Proof of this theorem is similar to proof of Lemma 1 in [4]. For simplicity we write D;_; =

D,®_1=®,y, 1 =yandn_1 =n. Now
G(Fat) 00 — ¢(Ea)T 0" = H(iay) (Za,t)

= 0(Ta0)" DTy — G(Ta)" DTH(@ D + N)O*
(Zat) ( )TD_1(<I>T17<I>9* + A\6)
(Zat) — ¢(Ta)T DTN

Therefore
|3(Za,t)" 0 — D(&a,e)T 0] |¢(Za.0)" DT O n(y — 26%)| + 167 ||¢(Fa,e) " DA

<
< [¢(&an) DT (Y — 07|+ eAl|¢(Zan) D]

where the first inequality is due to Cauchy-Schwarz.

Now we know that By = E[r,. ,],=1. 1 = ®0* = E[y — ®0*] = 0. Let f(y', ...,y ') =
|¢(Za0)T D710 n(y — ®0*)| and vector V = ¢(Z,¢)T D~1®T. Then

Fy oyt ™) = Fyt 9y = Vil = 9] < Vi

That means any component y; can change f(y',...,y*~1) by at most |V;].



Using statistical independence of all random variables r,_ - in a vector y and using McDiarmid’s
Inequality:

= NT P=15T (1 _ HO* _2a253,t
P(|¢(‘ra,t) Do 77(2/ o0 )l Zasaﬂf) < QQXP( ||V||2 )
< 2exp(—2a?)
- 5
TN

where the second inequality is due to
Sat = O(Fan) D7 d(Fa)
DIDH(@Tn® + A)D ™ (3 04)
Za,0) DO T n® DT §(Fa,1)
70t) "D BT 2B D P )
= [n®D (Za)|?
= |V~

AVAR VAR
N\
2 =
)

Now applying the union bound we can see that, with probability at least 1 — 2, Va € [N]

|6(Za2)" DTI@ (Y — ©0;)| < asag
Bounding the second term:

A|¢(Fa,0)T AL

cA\/¢(:ea,t)TD—1ID—1¢(5:a,t)
VA $(E0) T DAL + BT D)D" 6(i)

= cﬁ\/¢(fa,t)TD71¢(ja,t)
= C\/Xsa,t.

IN

We kernelize s, ; in the following result.

2.1 Proof of Lemma 1 In Main Paper

Proof. We use Lemmal[I]to get the width and then kernelize it using techniques in [11]]. Note that
Dop(2) = l;t_l(i"). When Z = Z,+, we write ka,t = Et_1(£a7t). For simplicity we write ;1 = 7
and ®; _; = ®. Since the matrices (®7n® + A\I), (n®®T + AI) are regularized, they are strictly
positive definite and hence their inverses are defined. Observe that

(®Tnd + AT = T (ndd” + AI) (5)
by associative property of matrix multiplication and
T (ned” + ANt = (@Tnd + AI)'oT (6)
by multiplication of (®T1® + A\I)~! and (n®®* + AI)~! on both sides. Also observe that
(@70 + A)o(Tar) = (2T kas + Ad(Tar))

by associative property of matrix multiplication and using ®¢(Z, ) = l%a,t. Multiplying on the left
by (®Tn® + \I)~1,

A(Ear) = (®Tn®+ M) ks + AD(Ea,1))
= (®Tn® 4+ X)) 10Tk, s + A@T® + ) "L (Zar)
= T (n@dT + )" nkas + A@T® + A" p(Zar) 7)



where the last step is due to eqn. (6).
Multiplying both sides of eqn. (7) by ¢(Z,..)T we get,

O(Fat) (Ear) = kL @PT + A) " 'nkay + Ad(Tar)T (DT0® + M) ' (dart)
or, equivalently,

k(Zap,Zap) = kL,(mKi—1+ ) "'kl + As2,.

By rearranging terms, we get

Sat = )\71/2\/];(%,“ Zat) — ];Z;F,t(ﬁt—lf{t—l + M) "1k (8)

3 UCB Width

In this subsection we establish a lower bound on the UCB width. To simplify the analysis we consider
a problem:

. 1S N
fi = arg min ~ Z Z (f(Zar) —Taqr)® + A”f”%—t,g ©)

feHy a=1TEt,

as —L— obscures the analysis. In this case s, ; = /\’1/2\//;(i"a7t7 Tat) — l;f,t(f(t_l + M)~k .

Na,t—1

Let (®) denote the Hadamard product and (®) denote the Kronecker product.

Lemma 2. [|6]] Let A be a positive definite matrix partitioned according to

A:|:A11 A12:|.

A21 A22

Then I
Agy > Agy — AT AT Ay > — 00 Ay

()\max + )\min)

where Apax and Apin are the maximum and minimum eigenvalues of A and A > B means A — B is
a positive semidefinite matrix.

Lemma 3. [8] Let D, C be positive semidefinite matrices. Any eigenvalue \(D © C) of D © C
satisfies
)\(D O] C) S )\max(D O] C) S |max dn‘)wnar(C)

and
|m,in diip‘min(c) < /\min(D © C) < )\(D ® C)

Lemma 4. [5] Let D € R™*™ and C € R™*™. Any eigenvalue \(D @ C) of D ® C' € R¥m*nm

is equal to the product of an eigenvalue of D and an eigenvalue of C.

We assume that n, ; = % after time ¢ to get interpretibility (this is not needed for the general regret
bound that we prove in Theorem 1 in main paper). For simplicity define n; = n,_;. Let (©) denote the
Hadamard product, (®) denote the Kronecker product and 1,, € R™ be the vector of ones. Let K x, =
[kx(Za, rsTa_, )]t 11—, be the t X t kernel matrix on contexts, Kz, = [kz(2a,, 24, )|5 1= be
the associated ¢ x t kernel matrix based on arm similarity, and Kz = [kz (24, z4)]Y_; be the N x N
arm similarity matrix between N arms, where z,_ - is observed context and z,_ is an associated

arm descriptor. Using the definition of tildek, % ((z, x), (#, x’)) =kz(z,2")kx(z,2"), we can write

Kt = Kz, © Kx,. We rearrange a sequence of z,, - to get [z ;] such that elements

N
N a=1,7=(t+1),
(a — 1)n; to an, belong to arm a. Define K, K and K, be rearranged kernel matrices based on



the re-ordered set [z, -], +—(t+1), - Notice that we can write Kl =(Kz®1,17)® K%, and
the eigenvalues A(K;) and A(K7) are equal. To summarize, we have

K, = Kz 0Kx,
and

MKy = A((&@hﬂb@l{}}ﬁ). (10)

Lemma 5. Assume /;(95, z) < ¢, VT € )~(, and let K; be the final product kernel matrix and Kz be
the task similarity matrix. Also write

Ky + AL, = [ Koy 4 Moy | Ko } .

kT, | E(Za,tr Fat) + A
Then

4 ~>\max K A (A ~ k
Loy = 2w BD Az, 50 40) 1202, < E (n

(nc,;/\max(Kz) + 2)\) A

Proof. Using Lemma[2]

k(Zat, Fa) + A — ];Zit(thl M) ke < k(Fas Tap) + A

Subtracting A from both sides,
AsZ, < K(Fau, Fay)
and therefore
2, <
This proves the upper bound. Again by using Lemmal[2]
: Winax (Kt + M) Amin(Ki + ALy

]Nf(v%a,t»ja,t)"‘)‘_ifg,t(Kt71+>\ft71)_1/€a,t > - -
(Mo ML) 4+ A (Ko + AL

3 (R(Eats 7ai)+2)

Notice that the right hand side of the above equation is a monotonically decreasing function of ’/\\"ﬂ
Then

4)\max(I~(t + )\It)Amin(Rt + AIt)
~ ~ 2
(Amax(Kt + )\If) + )\min(Kt + AL‘))

4)\max (f(t )+>\

_ )\;x;ixx(Kt)+)\ (l;(ja,ta javt) + A)

= 2
(/\Iylax(fft)+)\ + 1)
Amin (K¢)+A
4max (KT)+X

_ >\min(KtT)+)\ (l;(i'a,ta '{i'avt) + A)

o 2
Amax (K7)+A
( Amin(Ktr)Jl‘)\ + 1)

4C;;)\max(th)+>\
> min; K;gt (ii)Amin(th)“F)\
= C;;/\max(th)"!‘)\ 4 1 2
min; K;f (ii))\min(th )+>\

/\53,1‘, +A >

(ff(ja,t, Tay) + A)

(ff(i’a,t, Tayp) + )\)

where K, (ii) are the diagonal elements of K %, and the last inequality is due to Lemma (3} The

smallest eigenvalue of 1,,, ]lft is zero and therefore according to Lemma the smallest eigenvalue
of K7, is zero. This implies



4ncg Amax (K;t )+A

Asi’t tA 2 neg A (K)T\ )+A 2 (lzj("i‘aﬂt7 j}a,t) + )\)
( i max)\ Z4 + 1)

AnciAmax(Kz) + X /- .
i Amax (Kz) (k(Za, Far) + A)A
(nc,;)\max(Kz) + 2/\>

where the last equality is again due to Lemma[d] Dividing both sides by A and then subtracting one
gives

9 ) > 4nC%AmaX(Kz) + A
at =
(nc,;)\maX(KZ) n 2/\)

2 (];(ja,t,i’a,t) + )\) -1

O

Theorem [T below says that the lower bound on width decreases as task similarity increases. In
particular, assume that all distinct tasks are similar to each other with task similarity equal to x4 and
there are N tasks (arms). Thus Kz (u) := (1 — p)Iy + ply17%.

Define
4n01})\max (KZ (/’L)) + A

2
(nC]QAmaX(KZ (/1/)) + QA)
Theorem 1. Let L, be the lower bound on width as defined in Lemma If i1 < o then

Lsa,t (/”Ll) > LSa,t(/u’Q)' (12)

LSa,t (/J‘) =

(I%(i'a,hja,t) + )\) — 1.

Proof. The eigenvalues of Kz(u) = (1 — p)In + ply1% are 1 + pu(N — 1) with multiplicity 1
and 1 — g with multiplicity N — 1.

That means Ap,ax (K 7z (1)) is highest when tasks are more similar and it decreases as task similarity p
goes to zero. The theorem follows as L, ,(,,) is a monotonically decreasing function of Apax (K z (1))
' O

This is important because if the lower bound on s, ; is small then we may be more confident about
the reward estimates and this may lead to a tighter regret bound. In the next subsection we discuss
the upper bound on regret.

4 Regret Analysis

Algorithm 1 BaseKMTL-UCB at step ¢
I: Input: « € Ry, e, \, ¥ C{1,2,...,t — 1}
: Get Ky = ¢ ®L, where &g = [¢(:EGT77)T]TE¢

: Get Yo = [rar,'r]

TEW
: Observe context features at time ¢: z, ¢ foreacha € N

2
3
4
5: Calculate ko ¢ = ®LP(744) and k(o ¢, Ta,r) foreacha € N.
6: for all a at time ¢ do

7

8

9

Sat = A2\ k(0 Fat) — KLy (R + M)~ o

Uchas kL o (Ky + M) lyg + (0 + ev/X)Sa
: end for

We use the Lemma [6fo prove the Lemma



Algorithm 2 SupKMTL-UCB

Using same notation as in [4]:
I: Input: o € R, T €N
2: Q< [logT]

3: Ui« (and Vg € [Q].
4: fort=1,...,T do

5: ¢+« land A; + [N]

6 repeat

7: Sat,uchy < BaseKMTL-UCB with ¥ and a, forall a € flq
8 Wa, = (a+ C\/X)Sa’t

9 if wy s < % foralla € A, then

10: Choose a; = argmax, . A, uchg, ¢

11: U W forall ¢ € [Q]

12: elseif w,; <2 9foralla € Aq then

13: Ay + {a € Ayluchy; > max, ¢ 4 ucbat — 21-a}
14: g+—q-+1

15: else R

16: Choose a; € A, such that wg,, ; > 2749

17: Update W/, | < 7 U {t} and Vg’ # g, U7, « W
18: end if

19:  until q; is found
20:  Observe reward 74, ¢
21: end for

Lemma 6 (Lemma 1.1 in [12])). Let A € R™*™ be a positive definite matrix partitioned according to

A | Ao
A= .
|: A12 A22 :|

where Ay; € R-DX(=1) A1 ¢ RO=D and Ayy € RY. Then det(A) = det(Aq;1)(Agy —

AT AT A).

Using the notations of Base KMTL-UCB, we write Ky = Oy ®L and l:;a,q, = ®$¢(ia7t) where

Oy = [¢(2)T |repand U C {1,...,t — 1}. Define

ar,T

qu+)\I‘\1,| ‘ ];1,17\1,
T

Ky + M = —
v KTy | E(Za Zag) + A

Also, define k; = INc(:Tcamg, Za, o). Where o is the smallest element of .

Lemma 7. Using notations in BaseKMTL-UCB and suppose |¥| > 2. Then

> se . <2mlogg(¥),
TEW

where m = max(1, &) and

det(Ky 1 4+ M)
g(V) = T



Proof. Using the Lemmal6]
det(f(q;_,_l + )\I)

B+ JI rxa+s2 )
TeW\{o}

ky )
= )‘(7 +1) H )‘(1+Samr)

TeV\{o}

AT ra+s2 ),

Tevw

where the last step is because s2 o = ’%

From Lemma maxs2 . = . When 3 < 1, using z < 2log(1l + z),Vz € [0,1], 52 | <

2log(1 + s7_ ). In this case,

so . <2 Z log(1+s2 )
TEW TEWY

= 2log H (1+ siT’T)
TEW

det(Ky 1+ M)
¥+

AN

2log

When > 1,

IN

k Zl 1+*Sa,,‘r)

TeW

2¢;i
2% 3 log(1+ 52, )

TEWY

2 ~
= g [Ja+s2 )
TEW

PP
aT,‘r
A .

TeV

IN

_ QCk log det(K\yH + /\I)

A AP+

Combining both cases,

9 cj, det(kqud + )
;SGT’T S 2maX(1,X)IOgW

= 2mlogg(P).

Lemma 8. Using the same notations as in Lemmal7)

Z Sa,.r < /2m|¥|log g(P)

TEWY

Proof.

N

E Sa.,

o< Y s,
tew TEW

det(f(q; 1+ M)
\/2|\I/|mlog/\|\;|+1

IN

where the first inequality is due to Cauchy-Schwarz and the last inequality is due to Lemma[7] [



Lemma 9. [[[]] Using notations in SupKMTL-UCB, for each t € [T, q € [Q)], and any fixed sequence
of feature vectors xq, + with t € U}, the corresponding rewards r,, ; are independent random

variables such that E[r, 1] = ¢(Za,.+)T 0"

Lemma 10. [[I]] Using notations in SupKMTL-UCB, let ||6*|| < c and a; be the best arm at time t.
With probability 1 — §Q and V't € [T, q € [Q), the following hold

o [¢(Za,0)" 00 — Elra o] < (\/ 710%251\]/5 + ﬁc) Sat

®q; € Aq
[ ]E[Ta:,t] - E[Ta,t] S 237(1.
Lemma 11. Using notations in SupKMTL-UCB, Vq € [Q)],

Wl <2 (|2 4 o), fom (gt 19|

where [T] ={1,...,T}.

Proof.

Z Way it = Z / 10g 2TN/5 satyt

te‘IlT+1 tE‘I’%_'_l

(\/W )\/Qm\\IIT_H\ log (V5. ,)
< (\/@Hﬁ)\/2m(1ogg([T]))|wg+l|

where the first inequality is due to Lemmal and the last inequality holds because 1 + s2 , > 1 for
all £.

From the third step (line 16) in SupKMTL -UCB algorithm I we choose and alternative a; € A
such that w,, ; > 277 and include that ¢ in ‘Ilt 1 for the next round of estimates. Therefore,

Z watt>2 q|\IJT+1
tevd

T+1

Combining the above two equations completes the proof. O

Lemma 12. [Azuma’s inequality [2]]] Let r1, ..., 7 be random variables with |r;| < a., for some

ai,...,ar >= 0. Then
BZ
>B | <2exp| — —7—— (13)
227’:1 CL72_

T T
P (
We use same proof technique proposed by Auer et al. [1]].

ZTT — Z]E[T-,—h‘h...,’l},l]

T=1 T=1

4.1 Proof of Theorem 1 in Main paper

Proof. Let U be the set of trials for Wthh an alternative (w,,; < \F ) at line 9 of SupKMTL-UCB

algorlthmlls chosen . Since 27¢ < \f’ we have {1,...,T} = $oUUJ, V7., .



With probability 1 — §Q),

E[R(T)] = ZE[Taf,t]_E[Tat,t]

Q
= Z Elraz t] — Elra, ] + Z Z Elra; ¢] — E[ra, ¢

teWg q=1tewi

\I’O + Z Z rat7 rat;t}

9=ltew]

Zrey 3 o

a=1tevy

IN

IN

IN

2f+223 90|

WT + ;23_‘12‘1(@—&- C\/X) \/2m(10g9([T])) T 4]
WT + 8<\/W+cxﬁ\) 2m(1ogg ) XQ: m

g=1
2T+ 8 B2 ¢ o5 fom (o o)) Q3194

< 2ﬁ+8<\/w+cﬁ) Qm(logg([T}))\/ﬁ

where the first inequality is because of line 9 of SupKMTL-UCB algorithm 2] the second inequality
is due to Lemma 0] and the fourth inequality is due to Lemma|[TT]

Using B = /2T log(2/6) and a, = 1 in Azuma’s inequality (Lemma , with probability at least
1-6(Q+1),

IN

IN

IN

R(T) < E[R(T)]+ /2T log(2/95)

2\/?%—8(\/@—1—6\5\) 2m(10gg ) QT + /2T log(2/9)

<
< 2T+ 10(\/ w + C\/X) Zm(logg([T])) VQT.
Replacing § with rormy +1 , we get that with probability at least 1 — §,
R(T) < 2VT+ 10(\/10g QTN(QQ U/ cﬁ) Qm(log g([T])) VaOT (14)
<

ST + 10 W log 2TN{og(T) + /0 M) V2mlog g([T]y/TTloa(T)](15)

O

We use following definitions and lemmas to interpret the regret bound and to establish a regret bound
in terms of the effective rank of the kernel matrix.

10



Definition 1. Lerx,y e R"and x1 > 12 > .... > xp, Y1 > Y2 > .... > Y . We say x is majorized
byy, ie x <y, ifzle z; < Zle yifork=1,...,n—land Y, o= 1" Y.

Definition 2. A real valued function on g defined on set S C R™ is said to be Schur concave on S if
v =<y = g(x)=g(y)

Lemma 13. [7] If 2,y € R and x < y, then []\"_, x; > []\_; yi. This means []x; is a Schur
concave function.

Lemma 14. [3|] Let A, B be positive semidefinite matrices of the same size and let all elements on
diagonal of B are 1. Then \(A ® B) < A(A).

Lemma 15. [5] Let A, B be matrices of size R"*™ then rank(A ® B) < rank(A) rank(B).

Lemma 16. [ Arithmetic Mean-Geometric Mean Inequality [9|]] For every sequence of nonnegative
real numbers a1, as, ...a, one has

n
N/n Dim1 i
(];[1 a;) > n
with equality if and only if a1 = as = ... = an,.

4.2 Proof of Theorem 2 in Main Paper

Suppose the rank of K7 is 7. Hence only the first 7 eigenvalues are non zero. In that case g(ﬂ)
16)

attains its maximum when each of these r eigenvalues is equal to M (using Lemma
Thus,

T+1,y
g([1)) = w
[Ty (trace(Kr1) /r + A)
AT
_ (trace(f(Tﬂ)/r_i_/\)r
2\ )

IN

It follows that,

log(g([T])) < rlog (trace(KT)Tl)/T_,_)\)

< rlog (trace(Kiﬂ) + A)

trace(Kri1) + )\)
A

(T + ]‘)Cfc + A\

)

= r,r.log (
< rerglog (
where the second inequality is due to Lemma|T5]

4.3 Proof of Theorem 3 in Main Paper

Proof. Suppose the f(TH(ul) and f(TH(ug) are final kernel matrices after time 7', K} 1(p1)

and K7, +1(p2) are corresponding matrices using the deﬁnition Also suppose that K 7 (1) and
K7 (us) are task similarity matrices.

Kppa(m) = (Kz(m) @ Lnpy, 1y, ) © Kk,

H1 r
(Kz(g) ® ]lTLT+1 HZTH) © (KZ(MQ) Y ]lnT+1 ]IZTH) © KXT+1

and using the Lemma [[4] we have

11



A K41 (1)) =< MEr41(p2))

This implies

MK 11 () + A < MEry (p2)) + A

Using the Lemma|[I3] we conclude that

T41 T+1
[T Ow(Era (1)) H M (K1 (p2)) +X).

t=1

This completes the proof. O

4.4 Proof of Corollary 1

Proof. Let’s find the upper bound of maximum of g([7']). We know that rAlog T > E{H ;. Let

i=r+1
¢ be a constant such that rAlog T = ZT;{H Ai + €. Notice that € < (T 4 1)c;,. Consider

max HiT;ll A+ A)
st. Yo N+ A=(T+ 1) +rA—rXlogT + e

and ZzT:tl_,_l Ai+tA=rAlogT —e+ (T+1—7)A

Using Lemma|[I6] the maximum of above constrained optimization problem occurs at

(T+1)cz+rA—rXlog T+e <
ns {m‘)g“(ﬂl—m e otherwise (16)
(T+1—7) ~ T¥i-r otherwise.
Therefore,
T+1
(A + )
oy = I
t=1
< (T + )ck+r/\ r/\10gT+e) (n\logT—f— T+1_7«))\)T+17T
- rA (T+1—1)\
_ ((T+1)ck+r)\fr/\logT+e>r(T10gT+ T+1—r)>T+1—r
- rA (T+1-r)
_ (<T+1>ck+M—rAlogT+e)v( rlogT )Tﬂ_r
- A T—l-l—r
_ ((T+ )ck+r)\—r)\logT+6)r( rlog T )T—i-l—r
- A T-|—1—7"
T A—7rAlogT log(T -1 T
< (( + )Ck—H" rAlog +e) (rog +r )+1)
rA
T+ 1)c, A—1rAlogT
< (( + )C;ﬁ-r}\ rAlog +6) exp(rlog(T+r—1))
r

where the first inequality is due to eqn. , the second inequality holds because (1 + logx(ﬂ )*
is monotonically increasing function Vz > 1 and the last inequality holds because log(1 + z) <
x, Vo > —1.

Taking log on both sides
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(T +1)cj, +rA—7rAlogT + €

log(g([T])) < rlog ( ) +rlog(T+r—1)

rA
T+ 1)ci —rilogT
< rlog T+ )CkJrT:\)\ rAlog +e> + rlog(2T)
2T+ 1)z +rA —rAlogT
log(g([T])) < rlog <2T ( ) .Y )

5 Comment on Scalability

As number of time steps ¢ increases, kernel matrix K; grows in size and that has an effect on how
well one can scale the proposed algorithm. While scalability was not our focus, there are at least a
couple of obvious ways to address this issue. One would be rank one updates of the kernel matrix,
and another would be kernel approximation techniques such as the Nystrom method. Both are
straightforward to implement. We had implemented the latter, and noticed that such an approximation
has a more detrimental effect on Kernel-UCB than our method. One possible reason could be that the
Nystrom method assumes the kernel matrix has low rank, and when there is more task similarity, the
rank of our kernel matrix is lower compared to that of Kernel-UCB.

6 Results

We run every experiment 10 times and calculate empirical mean regret. Confidence interval is
calculated using standard deviation (mean =+ standard deviation) of results of these 10 experiments.

Figure 1: Results on Multiclass Dataset with confidence interval
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