
Appendix
A Convergence of the log-loss function
Let K(x,xo) be a kernel. We assume that K ≥ 0 and that K(xo,xo) > 0. Starting from the
marginal

p(x) =

∫
p(θ)p(x|θ)dθ

we define a weighted version as follows:

pK(x) :=
p(x)K(x,xo)∫
p(x′)K(x′,xo)dx′

=
1

ZK
p(x)K(x,xo),

where we assume that the denominator is nonzero and finite. By the law of large numbers:

− 1

N

∑
n

p(θn)

p̃(θn)
K(x,xo) log qφ(θn|xn)

a.s.−−→〈−p(θ)

p̃(θ)
K(x,xo) log qφ(θ|x)〉p̃(θ)p(x|θ)

=〈−K(x,xo) log qφ(θ|x)〉p(θ)p(x|θ)
=〈−K(x,xo) log qφ(θ|x)〉p(x)p(θ|x)
=ZK〈− log qφ(θ|x)〉pK(x)p(θ|x)

This expression equals

ZKDKL (pK(x)p(θ|x)||pK(x)qφ(θ|x)) + const.,

where the constant does not depend on φ. Assuming that the family qφ is sufficiently flexible to
model the posterior distribution p(θ|x), the above quantity is minimised iff the two distributions
agree, ie. iff

p(θ|x) = qφ(θ|x)

almost everywhere, where p(x)K(x,xo) 6= 0.

B Details on algorithm and optimisation

Algorithm 1: Training SNPE

initialise Bayesian MDN with parameters φ = {φm,φs} and K components
initialise proposal prior p̃(θ)(1) with prior p(θ)
initialise prior over network weights π(0) as N (w|0, λ−1I)

repeat
for n = 1 . . . N do

sample θn ∼ p̃(θ)(r)

sample xn ∼ p(x|θn)

optional: add components to neural network

(re)train Bayesian MDN using Eq.2

set p̂(θ|x = xo)
(r) := qw(θ|xo) where w = φm

p̃(θ)(r+1) ← p̂(θ|x = xo)
(r)

until p̂(θ|x = xo) has converged

The precision of the prior on w is fixed to λ = 0.01. We normalise importance weights per round.
For optimisation, we use Adam with proposed default settings [1]. We rescale gradients such that
their combined norm does not exceed a threshold of 0.1 [2].

[1] D Kingma and Ba J. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

[2] I Sutskever, O Vinyals, and Q V Le. Sequence to sequence learning with neural networks. In Adv
in Neur In, 2014.

12



C Continual learning through the DKL-term
TheDKL-term in Eq. 2 implements continual learning. In Bayesian inference calculating the posterior
given r rounds is equivalent to taking the posterior after r − 1 rounds as the prior for round r.
Translating this to variational inference formulation gives Eq. 2.

The DKL-term is between two Gaussian distributions over weights w:

DKL(q̃
(r)
φ (w)||q̃(r−1)φ (w)) =

1

2

[
log
|Σ1|
|Σ2|

+ tr(Σ−11 Σ2)− d+ (µ1 − µ2)TΣ−11 (µ1 − µ2)

]
,

where d is the dimension of the space (the number of weights) and the parameters of q̃(r−1) are Σ1

and µ1.

A central term in the DKL above is a quadratic penalty on the change in posterior mean (of MDN
weights) which is weighted by the posterior precision of round r − 1. Thus, given that the posterior
precision Σ−11 increases with r, the penalty on the change in means also increases with rounds.

D Details of simulated and neurophysiological data
D.1 Mixture-models

Models SNPE is applied to two distinct mixture-models. The first is a mixture of two Gaussians
with a common mean:

p(x|θ) = αN (x|θ, σ2
1) + (1− α)N (x|θ, σ2

2)

The second model is a mixture of two Gaussians, such that

p(x|θ) = αN (x|θ, σ2
1) + (1− α)N (x| − θ, σ2

1).

Inference We set α = 0.5, σ1 = 1, σ2 = 0.1. The prior is chosen as p(θ) ∼ U (−10, 10).

For the first model, we run 6 rounds of SNPE and CDE-LFI with 1000 samples per round. We
initialise our SNPE with 2 components.

For the second model we draw 250 samples per round, use 3 rounds, and add a second component to
SNPE after the second round.

D.2 Generalised linear model

Model We simulate the activity of a neuron depending on a single set of covariates. Neural activity
is subdivided in bins and, within each bin i, spikes are generated according to a Bernoulli observation
model:

yi ∼ Bern(η(v>i β)),

where v>i β is the convolution of the white-noise input (represented by vi) and a linear filter with
coefficients β, and η(·) = exp(·)/(1 + exp(·)) is the canonical link function for a Bernoulli GLM.

Inference We apply SNPE to a GLM with a 10-dimensional parameter vector β. As summary
statistics, we use the cross-correlation between input and response, i.e., the sufficient statistics for the
generative model.

A Gaussian prior with mean 0 and covariance Σβ = σ2(F>F)−1 is used, where F encourages
smoothness, by penalizing the second-order differences in the vector of parameters [51]. SNPE is run
for 5 rounds with 5000 GLM simulations each. We only enforce continuity in MDN weights after
round 3, when the proposal distribution converged.

To perform PG-MCMC, the generative model is augmented with latent Pólya-Gamma distributed
random variables ω, and samples from ω and β are drawn according to the iterative scheme described
by Polson and Scott [42]. The set of samples for β represents a draw from the posterior distribution of
β given the data. PG-MCMC procedure uses the same prior as in the SNPE to estimate the posterior.

D.3 Single-compartment Hodgkin-Huxley neuron

Model The single-compartment Hodgkin-Huxley neuron uses channel kinetics as in [45]:

Cm
dV

dt
= gleak(Eleak − V ) + ḡNam

3h(ENa − V ) + ḡKn
4(EK − V ) + ḡMp(EK − V ) + Iinj + σ(t),

13



where Cm is membrane capacitance, V membrane potential, ḡc density of channels of type c (m, h,
n, p) of the channel gating kinetic variables, Ec reversal potential of c, and σ(t) intrinsic neural noise.
The right hand side is composed of a leak current, a Na-current, a K-current, a slow voltage-dependent
K-current responsible for spike-frequency adaptation, and an injected current Iinj. Channel gating
variables have dynamics fully characterised by the neuron membrane potential, once the kinetic
parameters are known.

Inference We illustrate SNPE in a model with 12 parameters (gleak, ḡNa,
ḡK, ḡM, Eleak, ENa, EK, VT , σ, kβn1, kβn2, τmax) (where kβn1 and kβn2 control the kinetics of
K channel activation, and σ is the magnitude of the injected Gaussian noise), and 20 voltage features
(number of spikes, resting potential, 10 lagged auto-correlations, and the first 8 voltage moments).
SNPE is applied to the log absolute value of the parameters (log |gleak|, log |ḡNa|...).

The prior distribution over the parameters is uniform, and centred around the true parameter values:

θ ∼ U
(

1

2
θ∗,

3

2
θ∗
)

SNPE is run for 5 rounds with 5000 Hodgkin-Huxley simulations each, and we fix the posterior to be
a mixture of two Gaussians.

D.4 Inference in in-vitro recordings from Allen Cell-type database

We apply the approach to in vitro recordings from mouse visual cortex (Allen Cell Type Database),
(illustration on cell 464212183 in Fig. 3E-G), and inferred the posterior over 12 parameters, as for
the application to the simulated data from the Hodgkin-Huxley neuron. We choose the same prior
as in the Hodgkin-Huxley simulated data. SNPE is run for 5 rounds with 5000 Hodgkin-Huxley
simulations each, and we fix the posterior to be a mixture of two Gaussians.

D.5 Autapse

Model The autapse model corresponds to a neuron synapsing onto itself with connection strength
J , time constant τ , injected current Iinj and external white noise source ηt ∼ N (0, 1) with 〈ηs, ηt〉 =
δt,s:

τ
dr

dt
= −r + Jr + Iinj + σηt,

Using this formula it can be straightforwardly shown that the system has unstable dynamics if J > 1.

Inference We apply SNPE to infer two parameters of the autapse model (J, τ), where the feature
of interest is the mean across time of the trace. The prior distribution over the parameters is uniform:

J ∼ U(0, 2)

τ ∼ U(−1, 2.5),

where the true parameters are (0.75, 1). We note that the prior allows for the time constant τ to take
negative values: while negative time constants do not make physical sense, we note that these are
mathematically equivalent to positive time constants where the autapse equation has flipped signs.
We draw 1000 samples for each one of 5 rounds.
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E Bad features
When sampling from the prior, many parameters sets can lead the Hodgkin-Huxley model to non-
spiking behaviour, and therefore features that depend on the presence of spiking, such as latency to
first spike, are not defined (Fig. E.1A). In the absence of spiking, the algorithm imputes values to the
undefined features, values which are learned during the MDN training. In Fig. E.1B, the imputed
value for the latency is close to the mean latency, although we have observed this not to be generally
the case.
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Figure E.1: We can impute values to missing features. A. Hodgkin-Huxley simulations with
parameters sampled from the prior, with several parameters sets leading to non-spiking behaviour. B.
Latency to first spike as a function of firing rate, for samples from the posterior distribution. In this
case, the imputed value for the latency (in orange) is close to the mean latency (in green).

F Comparison with Sequential Monte-Carlo ABC
SNPE has been tested on problems with 10 or more parameters, whereas most ABC methods (such
as SMC-ABC [25]) have addressed problems with fewer parameters, since sampling-based methods
require large numbers of simulations. In a GLM with 10 parameters, we observe that our method
consistently performs better than SMC-ABC, even when SMC is given orders of magnitude more
simulations (Fig. F.1).
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Figure F.1: Comparison between SNPE and SMC-ABC in a GLM with 10 parameters. The
reference (PG-MCMC) posterior means and variances A. and covariance B. are recovered well by
SNPE after 25000 simulations, whereas sequential Monte-Carlo ABC performs worse with over
4× 106 simulations. For the application of the SMC-ABC algorithm, we used 1000 particles and a
sequence of tolerances {εi}ni=0, εi = 15× 0.9i.
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G Supplementary Figures
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Figure G.1: Full posterior inferred for GLM by SNPE. In red, ground-truth parameter values. 2-D
marginals for SNPE (lines) and PG-MCMC (histograms). White and yellow contour lines correspond
respectively to 68% and 95% of the mass for SNPE.
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Figure G.2: Full posterior inferred for HH synthetic data
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Figure G.3: Full posterior inferred for HH real data
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