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1 Notation

Symbol Description
s observed spectrum of length T

m(s) observed spectrum precursor mass
c(s) observed spectrum precursor charge
Omz Observed peak m/z measurement
Oin Observed peak intensity measurement
P set of all possible peptides
x peptide string, of length n, comprised of amino acids, x = x1, x2, . . . , xn = x1:n
c(x) charge of peptide x (note the overloaded use of the charge operator)

m(x1:t) mass of length-t peptide x1:t (note the overloaded use of the mass operator)
D database of peptides to be searched
w mass tolerance threshold, used to filter peptides during search

D(s,D, w) candidate set of peptides to be scored and ranked in order to identify s
cb and cy b-ion and y-ion charge, respectively, such that cb = cy = 1 for c(s) = 1 and

cb + cy = c(s) for c(s) > 1.
b(x, cb, k), y(x, cy, k) kth b- and y-ion pair of x

v length-d theoretical spectrum of x
t arbitrary frame value for DRIP
δt DRIP random variable signifying the number of theoretical peaks to move down in

frame t; δt > 1 corresponds to a deletion event
it DRIP Bernoulli random variable signifying whether an observed peak is scored as

an insertion or not
Kt DRIP random variable signifying the theoretical peak index in frame t
amz DRIP m/z insertion penalty
ain DRIP intensity insertion penalty
µmz vector of DRIP’s m/z Gaussian means
σ2 DRIP’s m/z Gaussian variance
µin DRIP’s intensity Gaussian mean
σ̄2 DRIP’s intensity Gaussian variance
θ generative model’s learnable parameters: for DRIP, this corresponds to all Gaussian

means and variances; for Theseus and the modeled XCorr scoring function, this
corresponds to the fragment ion weights

τ XCorr vector shift increment
z vector resulting from (XCorr) quantization and preprocessing of s
z′ final step of XCorr preprocessing, where z′ = z −

∑75
τ=−75 zτ
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zθ reparameterized observed spectrum vector, such that a linear score may be com-
puted as the product of zθ and a boolean theoretical vector u

u boolean theoretical vector with nonzero entries corresponding to the unity charge
b-ions of x

M set of discrete precursor masses, dictated by w, iterated over in Theseus
X1:n random peptide modeled in Theseus
Bi Theseus accumulated mass up to frame i
A set of amino acids
Si Theseus virtual evidence child in frame i

Table 1: Notation used in the main paper.

2 DRIP Fisher Score Derivation

Following the discussion in Section 3 of [2], ∂
∂µmz(k) log p(s|x, θ) = 1

p(s|x,θ)
∂

∂µmz(k)p(s|x, θ) and

we have ∂
∂µmz(k)p(s|x, θ)

=
∂

∂µmz(k)

∑
i1:T ,δ1:T

p(i1:T , δ1:T |θ) =
∑

i1:T ,δ1:T :Kt=k,1≤t≤T

∂

∂µmz(k)
p(i1:T , δ1:T |θ)

=
∑

i1:T ,δ1:T

1{Kt=k}
∏

t:Kt 6=k

φ(δt,Kt−1, it, it−1)
∂

∂µmz(k)

∏
t:Kt=k

φ(δt,Kt−1, it, it−1)

=
∑

i1:T ,δ1:T

1{Kt=k}
∏

t:Kt 6=k

φ(δt,Kt−1, it, it−1)

( ∏
t:Kt=k

φ(δt,Kt−1, it, it−1)

p(Omz
t |Kt)

)(
∂

∂µmz(k)

∏
t:Kt=k

p(Omz
t |Kt)

)

=
∑

i1:T ,δ1:T

1{Kt=k}
∏
t

φ(δt,Kt−1, it, it−1)

( ∏
t:Kt=k

1

p(Omz
t |Kt)

)(
∂

∂µmz(k)

∏
t:Kt=k

p(Omz
t |Kt)

)

=
∑

i1:T ,δ1:T

1{Kt=k}p(s|x, θ)

( ∏
t:Kt=k

1

p(Omz
t |Kt)

)(
∂

∂µmz(k)

∏
t:Kt=k

p(Omz
t |Kt)

)
,

where
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where we equivalently write p(s|x, θ) = p(i1:T , δ1:T |θ) = p(i1:T ,K1:T |θ) due to the deterministic
relationship δt = Kt −Kt−1.

3 Theseus Unsupervised Learning using Coordinate Ascent

Using the model’s Fisher scores, Theseus parameters θ may be learned via maximum likelihood
estimation. We present an alternate learning algorithm which we compare to maximum likeli-
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Algorithm 1 Unsupervised Learning in Theseus using Coordinate Ascent

1: while not converged do
2: for i = 1, . . . , n do
3: x̂i ← argmaxxi∈P log p(si, xi|θ)
4: end for
5: θ ← argmaxθ

∑n
i=1 log p(si, x̂i|θ)

6: end while

hood learning in [2]. Let s1, s2, . . . , sn be a dataset of spectra and define J(x1, . . . , xn, θ) =∑n
i=1 log p(si, xi|θ). Optimizing this objective function, Theseus’ coordinate ascent learning algo-

rithm is defined in Algorithm 1 where, rather than relying on training labels, we use max-product
inference to infer the most probable PSM for each spectrum given the current iteration’s parameters,
then maximize the log-likelihood with respect to θ given the most likely PSMs. We now prove that
Algorithm 1 converges monotonically.

Theorem 1. Algorithm 1 converges monotonically to a local optimum.

Proof. We need to show that the objective function J is nondecreasing with each iteration of
the algorithm. Denote the learned parameters at iteration k of the algorithm as θk and define
x̂ik = argmaxxi∈P log p(si, xi|θk−1). θk = argmaxθ J(x̂1k, . . . , x̂

1
k, θ). We thus have

J(x̂1k, . . . , x̂
n
k , θk) ≥ J(x̂1k, . . . , x̂

n
k , θk−1)

J(x̂1k, . . . , x̂
n
k , θk−1) ≥ J(x1, . . . , xn, θk−1), ∀x1, . . . , xn ∈ P

⇒ J(x̂1k, . . . , x̂
n
k , θk) ≥ J(x̂1k−1, . . . , x̂

n
k−1, θk−1)

4 Impact of Recalibration over Standard DRIP Search

Table 2: Percent improvement over uncalibrated search results for the DRIP methods plotted in Figure 1, at an
FDR threshold t = 1%. Largest improvement highlighted in bold. Note that at this FDR threshold, Percolator
post-processing using a standard set of features may result in diminished performance (Worm-3).

Data set DRIP DRIP Heuristic DRIP Fisher
Yeast-1 5.4 10.7 14.8
Yeast-2 5.2 8.3 16.6
Yeast-3 9.2 10.9 17.7
Yeast-4 3.4 7.5 15.1
Worm-1 10.1 17.4 20.8
Worm-2 1.1 6.7 11.3
Worm-3 -5.1 7.2 11
Worm-4 0.4 9.9 16
Average 3.7 9.8 15.4
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Figure 1: Performance increase of DRIP search after recalibration. Methods denoted by “Percolator” are
post-processed using the Percolator SVM classifier [3], otherwise the raw PSM scores of the denoted search
algorithm are used for identification. “DRIP Percolator” uses the standard set of DRIP PSM features described
in [1], “DRIP Percolator, Heuristic” augments the standard set with DRIP-Viterbi-path parsed PSM features
described in [1], and “DRIP Percolator, Fisher” augments the Heuristic set with the gradient-based DRIP features
to the standard. XCorr p-value and MS-GF+ use their standard set of Percolator features, described in [1]. Search
accuracy plots measured by q-value versus number of spectra identified for yeast (Saccharomyces cerevisiae)
and worm (C. elegans) datasets.
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