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Abstract

We formulate a supervised learning problem, referred to as continuous ranking,
where a continuous real-valued label Y is assigned to an observable r.v. X taking
its values in a feature space X and the goal is to order all possible observations
x in X by means of a scoring function s : X → R so that s(X) and Y tend to
increase or decrease together with highest probability. This problem generalizes
bi/multi-partite ranking to a certain extent and the task of finding optimal scoring
functions s(x) can be naturally cast as optimization of a dedicated functional cri-
terion, called the IROC curve here, or as maximization of the Kendall τ related to
the pair (s(X), Y ). From the theoretical side, we describe the optimal elements of
this problem and provide statistical guarantees for empirical Kendall τ maximiza-
tion under appropriate conditions for the class of scoring function candidates. We
also propose a recursive statistical learning algorithm tailored to empirical IROC
curve optimization and producing a piecewise constant scoring function that is
fully described by an oriented binary tree. Preliminary numerical experiments
highlight the difference in nature between regression and continuous ranking and
provide strong empirical evidence of the performance of empirical optimizers of
the criteria proposed.

1 Introduction

The predictive learning problem considered in this paper can be easily stated in an informal fashion,
as follows. Given a collection of objects of arbitrary cardinality, N ≥ 1 say, respectively described
by characteristics x1, . . . , xN in a feature space X , the goal is to learn how to order them by
increasing order of magnitude of a certain unknown continuous variable y. To fix ideas, the attribute
y can represent the ’size’ of the object and be difficult to measure, as for the physical measurement of
microscopic bodies in chemistry and biology or the cash flow of companies in quantitative finance
and the features x may then correspond to indirect measurements. The most convenient way to
define a preorder on a feature space X is to transport the natural order on the real line onto it by
means of a (measurable) scoring function s : X → R: an object with charcateristics x is then said to
be ’larger’ (’strictly larger’, respectively) than an object described by x′ according to the scoring rule
s when s(x′) ≤ s(x) (when s(x) < s(x′)). Statistical learning boils down here to build a scoring
function s(x), based on a training data set Dn = {(X1, Y1), . . . , (Xn, Yn)} of objects for which
the values of all variables (direct and indirect measurements) have been jointly observed, such that
s(X) and Y tend to increase or decrease together with highest probability or, in other words, such
that the ordering of new objects induced by s(x) matches that defined by their true measures as well
as possible. This problem, that shall be referred to as continuous ranking throughout the article can
be viewed as an extension of bipartite ranking, where the output variable Y is assumed to be binary
and the objective can be naturally formulated as a functionalM -estimation problem by means of the
concept of ROC curve, see [7]. Refer also to [4], [11], [1] for approaches based on the optimization

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



of summary performance measures such as the AUC criterion in the binary context. Generalization
to the situation where the random label is ordinal and may take a finite number K ≥ 3 of values
is referred to as multipartite ranking and has been recently investigated in [16] (see also e.g. [14]),
where distributional conditions guaranteeing that ROC surface and the VUS criterion can be used
to determine optimal scoring functions are exhibited in particular.

It is the major purpose of this paper to formulate the continuous ranking problem in a quantitative
manner and explore the connection between the latter and bi/multi-partite ranking. Intuitively, op-
timal scoring rules would be also optimal for any bipartite subproblem defined by thresholding the
continuous variable Y with cut-off t > 0, separating the observations X such that Y < t from
those such that Y > t. Viewing this way continuous ranking as a continuum of nested bipartite
ranking problems, we provide here sufficient conditions for the existence of such (optimal) scoring
rules and we introduce a concept of integrated ROC curve (IROC curve in abbreviated form) that
may serve as a natural performance measure for continuous ranking, as well as the related notion of
integrated AUC criterion, a summary scalar criterion, akin to Kendall tau. Generalization properties
of empirical Kendall tau maximizers are discussed in the Supplementary Material. The paper also
introduces a novel recursive algorithm that solves a discretized version of the empirical integrated
ROC curve optimization problem, producing a scoring function that can be computed by means of
a hierarchical combination of binary classification rules. Numerical experiments providing strong
empirical evidence of the relevance of the approach promoted in this paper are also presented.

The paper is structured as follows. The probabilistic framework we consider is described and key
concepts of bi/multi-partite ranking are briefly recalled in section 2. Conditions under which optimal
solutions of the problem of ranking data with continuous labels exist are next investigated in section
3, while section 4 introduces a dedicated quantitative (functional) performance measure, the IROC
curve. The algorithmic approach we propose in order to learn scoring functions with nearly optimal
IROC curves is presented at length in section 5. Numerical results are displayed in section 6. Some
technical proofs are deferred to the Supplementary Material.

2 Notation and Preliminaries

Throughout the paper, the indicator function of any event E is denoted by I{E}. The pseudo-inverse
of any cdf F (t) on R is denoted by F−1(u) = inf{s ∈ R : F (s) ≥ u}, while U([0, 1]) denotes the
uniform distribution on the unit interval [0, 1].

2.1 The probabilistic framework

Given a continuous real valued r.v. Y representing an attribute of an object, its ’size’ say, and a
random vector X taking its values in a (typically high dimensional euclidian) feature space X
modelling other observable characteristics of the object (e.g. ’indirect measurements’ of the size
of the object), hopefully useful for predicting Y , the statistical learning problem considered here
is to learn from n ≥ 1 training independent observations Dn = {(X1, Y1), . . . , (Xn, Yn)},
drawn as the pair (X,Y ), a measurable mapping s : X → R, that shall be referred to as a
scoring function throughout the paper, so that the variables s(X) and Y tend to increase or de-
crease together: ideally, the larger the score s(X), the higher the size Y . For simplicity, we as-
sume throughout the article that X = Rd with d ≥ 1 and that the support of Y ’s distribution
is compact, equal to [0, 1] say. For any q ≥ 1, we denote by λq the Lebesgue measure on Rq
equipped with its Borelian σ-algebra and suppose that the joint distribution FX,Y (dxdy) of the
pair (X,Y ) has a density fX,Y (x, y) w.r.t. the tensor product measure λd ⊗ λ1. We also intro-
duces the marginal distributions FY (dy) = fY (y)λ1(dy) and FX(dx) = fX(x)λd(dx), where
fY (y) =

∫
x∈X fX,Y (x, y)λd(dx) and fX(x) =

∫
y∈[0,1] fX,Y (x, y)λ1(dy) as well as the condi-

tional densities fX|Y=y(x) = fX,Y (x, y)/fY (y) and fY |X=x(y) = fX,Y (x, y)/fX(x). Observe
incidentally that the probabilistic framework of the continuous ranking problem is quite similar to
that of distribution-free regression. However, as shall be seen in the subsequent analysis, even if
the regression function m(x) = E[Y | X = x] can be optimal under appropriate conditions, just
like for regression, measuring ranking performance involves criteria that are of different nature than
the expected least square error and plug-in rules may not be relevant for the goal pursued here, as
depicted by Fig. 2 in the Supplementary Material.
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Scoring functions. The set of all scoring functions is denoted by S here. Any scoring function
s ∈ S defines a total preorder on the space X : ∀(x, x′) ∈ X 2, x �s x′ ⇔ s(x) ≤ s(x′). We also
set x ≺s x′ when s(x) < s(x′) and x =s x

′ when s(x) = s(x′) for (x, x′) ∈ X 2.

2.2 Bi/multi-partite ranking

Suppose thatZ is a binary label, taking its values in {−1,+1} say, assigned to the r.v.X . In bipartite
ranking, the goal is to pick s in S so that the larger s(X), the greater the probability that Y is equal
to 1 ideally. In other words, the objective is to learn s(x) such that the r.v. s(X) given Y = +1
is as stochastically larger1 as possible than the r.v. s(X) given Y = −1: the difference between
Ḡs(t) = P{s(X) ≥ t | Y = +1} and H̄s(t) = P{s(X) ≥ t | Y = −1} should be thus maximal
for all t ∈ R. This can be naturally quantified by means of the notion of ROC curve of a candidate
s ∈ S, i.e. the parametrized curve t ∈ R 7→ (H̄s(t), Ḡs(t)), which can be viewed as the graph
of a mapping ROCs : α ∈ (0, 1) 7→ ROCs(α), connecting possible discontinuity points by linear
segments (so that ROCs(α) = Ḡs ◦ (1 − H−1s )(1 − α) when Hs has no flat part in H−1s (1 − α),
where Hs = 1− H̄s). A basic Neyman Pearson’s theory argument shows that the optimal elements
s∗(x) related to this natural (functional) bipartite ranking criterion (i.e. scoring functions whose
ROC curve dominates any other ROC curve everywhere on (0, 1)) are transforms (T ◦ η)(x) of
the posterior probability η(x) = P{Z = +1 | X = x}, where T : SUPP(η(X)) → R is any
strictly increasing borelian mapping. Optimization of the curve in sup norm has been considered in
[7] or in [8] for instance. However, given its functional nature, in practice the ROC curve of any
s ∈ S is often summarized by the area under it, which performance measure can be interpreted in a
probabilistic manner, as the theoretical rate of concording pairs

AUC(s) = P {s(X) < s(X′) | Z = −1, Z′ = +1}+
1

2
P {s(X) = s(X′) | Z = −1, Z′ = +1} ,

(1)
where (X ′, Z ′) denoted an independent copy of (X,Z). A variety of algorithms aiming at max-
imizing the AUC criterion or surrogate pairwise criteria have been proposed and studied in the
literature, among which [11], [15] or [3], whereas generalization properties of empirical AUC max-
imizers have been studied in [5], [1] and [12]. An analysis of the relationship between the AUC and
the error rate is given in [9].

Extension to the situation where the label Y takes at least three ordinal values (i.e. multipartite
ranking) has been also investigated, see e.g. [14] or [6]. In [16], it is shown that, in contrast to the
bipartite setup, the existence of optimal solutions cannot be guaranteed in general and conditions on
(X,Y )’s distribution ensuring that optimal solutions do exist and that extensions of bipartite ranking
criteria such as the ROC manifold and the volume under it can be used for learning optimal scoring
rules have been exhibited. An analogous analysis in the context of continuous ranking is carried out
in the next section.

3 Optimal elements in ranking data with continuous labels

In this section, a natural definition of the set of optimal elements for continuous ranking is first
proposed. Existence and characterization of such optimal scoring functions are next discussed.

3.1 Optimal scoring rules for continuous ranking

Considering a threshold value y ∈ [0, 1], a considerably weakened (and discretized) version of the
problem stated informally above would consist in finding s so that the r.v. s(X) given Y > y is
as stochastically larger than s(X) given Y < y as possible. This subproblem coincides with the
bipartite ranking problem related to the pair (X,Zy), where Zy = 2I{Y > y} − 1. As briefly
recalled in subsection 2.2, the optimal set S∗y is composed of the scoring functions that induce the
same ordering as

ηy(X) = P{Y > y | X} = 1− (1− py)/(1− py + pyΦy(X)),

where py = 1− FY (y) = P{Y > y} and Φy(X) = (dFX|Y >y/dFX|Y <y)(X).

1Given two real-valued r.v.’s U and U ′, recall that U is said to be stochastically larger than U ′ when
P{U ≥ t} ≥ P{U ′ ≥ t} for all t ∈ R.
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A continuum of bipartite ranking problems. The rationale behind the definition of the set S∗ of
optimal scoring rules for continuous ranking is that any element s∗ should score observations x in
the same order as ηy (or equivalently as Φy).
Definition 1. (OPTIMAL SCORING RULE) An optimal scoring rule for the continuous ranking prob-
lem related to the random pair (X,Y ) is any element s∗ that fulfills: ∀y ∈ (0, 1),

∀(x, x′) ∈ X 2, ηy(x) < ηy(x′)⇒ s∗(x) < s∗(x′). (2)
In other words, the set of optimal rules is defined as S∗ =

⋂
y∈(0,1) S∗y .

It is noteworthy that, although the definition above is natural, the set S∗ can be empty in absence of
any distributional assumption, as shown by the following example.
Example 1. As a counter-example, consider the distributions FX,Y such that FY = U([0, 1]) and

FX|Y=y = N (|2y − 1|, (2y − 1)2). Observe that (X, 1− Y )
d
=(X,Y ), so that Φ1−t = Φ−1t for all

t ∈ (0, 1) and there exists t 6= 0 s.t. Φt is not constant. Hence, there exists no s∗ in S such that (2)
holds true for all t ∈ (0, 1).
Remark 1. (INVARIANCE) We point out that the class S∗ of optimal elements for continuous rank-
ing thus defined is invariant by strictly increasing transform of the ’size’ variable Y (in particular,
a change of unit has no impact on the definition of S∗): for any borelian and strictly increasing
mapping H : (0, 1)→ (0, 1), any scoring function s∗(x) that is optimal for the continuous ranking
problem related to the pair (X,Y ) is still optimal for that related to (X,H(Y )) (since, under these
hypotheses, for any y ∈ (0, 1): Y > y ⇔ H(Y ) > H(y)).

3.2 Existence and characterization of optimal scoring rules

We now investigate conditions guaranteeing the existence of optimal scoring functions for the con-
tinuous ranking problem.
Proposition 1. The following assertions are equivalent.

1. For all 0 < y < y′ < 1, for all (x, x′) ∈ X 2: Φy(x) < Φy(x′)⇒ Φy′(x) ≤ Φy′(x
′).

2. There exists an optimal scoring rule s∗ (i.e. S∗ 6= ∅).

3. The regression function m(x) = E[Y | X = x] is an optimal scoring rule.

4. The collection of probability distributions FX|Y=y(dx) = fX|Y=y(x)λd(dx), y ∈ (0, 1)
satisfies the monotone likelihood ratio property: there exist s∗ ∈ S and, for all 0 < y <
y′ < 1, an increasing function ϕy,y′ : R→ R+ such that: ∀x ∈ Rd,

fX|Y=y′

fX|Y=y
(x) = ϕy,y′(s

∗(x)).

Refer to the Appendix section for the technical proof. Truth should be said, assessing that Assertion
1. is a very challenging statistical task. However, through important examples, we now describe (not
uncommon) situations where the conditions stated in Proposition 1 are fulfilled.
Example 2. We give a few important examples of probabilistic models fulfilling the properties listed
in Proposition 1.

• Regression model. Suppose that Y = m(X) + ε, where m : X → R is a borelian function and ε
is a centered r.v. independent from X . One may easily check that m ∈ S∗.

• Exponential families. Suppose that fX|Y=y(x) = exp(κ(y)T (x) − ψ(y))f(x) for all x ∈ Rd,
where f : Rd → R+ is borelian, κ : [0, 1] → R is a borelian strictly increasing function and
T : Rd → R is a borelian mapping such that ψ(y) = log

∫
x∈Rd exp(κ(y)T (x))f(x)dx < +∞.

We point out that, although the regression function m(x) is an optimal scoring function when
S∗ 6= ∅, the continuous ranking problem does not coincide with distribution-free regression (notice
incidentally that, in this case, any strictly increasing transform of m(x) belongs to S∗ as well). As
depicted by Fig. 2 the least-squares criterion is not relevant to evaluate continuous ranking perfor-
mance and naive plug-in strategies should be avoided, see Remark 3 below. Dedicated performance
criteria are proposed in the next section.
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4 Performance measures for continuous ranking

We now investigate quantitative criteria for assessing the performance in the continuous ranking
problem, which practical machine-learning algorithms may rely on. We place ourselves in the situ-
ation where the set S∗ is not empty, see Proposition 1 above.

A functional performance measure. It follows from the view developped in the previous section
that, for any (s, s∗) ∈ S × S∗ and for all y ∈ (0, 1), we have:

∀α ∈ (0, 1), ROCs,y(α) ≤ ROCs∗,y(α) = ROC∗y(α), (3)
denoting by ROCs,y the ROC curve of any s ∈ S related to the bipartite ranking subproblem
(X,Zy) and by ROC∗y the corresponding optimal ROC curve, i.e. the ROC curve of strictly increas-
ing transforms of ηy(x). Based on this observation, it is natural to design a dedicated performance
measure by aggregating these ’sub-criteria’. Integrating over y w.r.t. a σ-finite measure µ with sup-
port equal to [0, 1], this leads to the following definition IROCµ,s(α) =

∫
ROCs,y(α)µ(dy). The

functional criterion thus defined inherits properties from the ROCs,y’s (e.g. monotonicity, concav-
ity). In addition, the curve IROCµ,s∗ with s∗ ∈ S∗ dominates everywhere on (0, 1) any other curve
IROCµ,s for s ∈ S. However, except in pathologic situations (e.g. when s(x) is constant), the curve
IROCµ,s is not invariant when replacing Y ’s distribution by that of a strictly increasing transform
H(Y ). In order to guarantee that this desirable property is fulfilled (see Remark 1), one should
integrate w.r.t. Y ’s distribution (which boils down to replacing Y by the uniformly distributed r.v.
FY (Y )).
Definition 2. (INTEGRATED ROC/AUC CRITERIA) The integrated ROC curve of any scoring rule
s ∈ S is defined as: ∀α ∈ (0, 1),

IROCs(α) =

∫ 1

y=0

ROCs,y(α)FY(dy) = E [ROCs,Y(α)] . (4)

The integrated AUC criterion is defined as the area under the integrated ROC curve: ∀s ∈ S,

IAUC(s) =

∫ 1

α=0

IROCs(α)dα. (5)

The following result reveals the relevance of the functional/summary criteria defined above for the
continuous ranking problem. Additional properties of IROC curves are listed in the Supplementary
Material.
Theorem 1. Let s∗ ∈ S. The following assertions are equivalent.

1. The assertions of Proposition 1 are fulfilled and s∗ is an optimal scoring function in the
sense given by Definition 1.

2. For all α ∈ (0, 1), IROCs∗(α) = E [ROC∗Y(α)].

3. We have IAUCs∗ = E [AUC∗Y], where AUC∗y =
∫ 1

α=0
ROC∗y(α)dα for all y ∈ (0, 1).

If S∗ 6= ∅, then we have: ∀s ∈ S,

IROCs(α) ≤ IROC∗(α)
def
= E [ROC∗Y(α)] , for any α ∈ (0, 1, )

IAUC(s) ≤ IAUC∗
def
= E [AUC∗Y] .

In addition, for any borelian and strictly increasing mapping H : (0, 1) → (0, 1), replacing Y by
H(Y ) leaves the curves IROCs, s ∈ S, unchanged.

Equipped with the notion defined above, a scoring rule s1 is said to be more accurate than an-
other one s2 if IROCs2(α) ≤ IROCs1(α) for all α ∈ (0, 1).The IROC curve criterion thus
provides a partial preorder on S. Observe also that, by virtue of Fubini’s theorem, we have
IAUC(s) =

∫
AUCy(s)FY(dy) for all s ∈ S , denoting by AUCy(s) the AUC of s related to

the bipartite ranking subproblem (X,Zy). Just like the AUC for bipartite ranking, the scalar IAUC
criterion defines a full preorder on S for continuous ranking. Based on a training datasetDn of inde-
pendent copies of (X,Y ), statistical versions of the IROC/IAUC criteria can be straightforwardly
computed by replacing the distributions FY , FX|Y >t and FX|Y <t by their empirical counterparts in
(3)-(5), see the Supplementary Material for further details. The lemma below provides a probabilis-
tic interpretation of the IAUC criterion.
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Lemma 1. Let (X ′, Y ′) be a copy of the random pair (X,Y ) and Y ′′ a copy of the r.v. Y . Suppose
that (X,Y ), (X ′, Y ′) and Y ′′ are defined on the same probability space and are independent. For
all s ∈ S, we have:

IAUC(s) = P {s(X) < s(X′) | Y < Y′′ < Y′}+
1

2
P {s(X) = s(X′) | Y < Y′′ < Y′} . (6)

This result shows in particular that a natural statistical estimate of IAUC(s) based on Dn involves
U -statistics of degree 3. Its proof is given in the Supplementary Material for completeness.

The Kendall τ statistic. The quantity (6) is akin to another popular way to measure the tendency to
define the same ordering on the statistical population in a summary fashion:

dτ (s)
def
= P {(s(X)− s(X ′)) · (Y − Y ′) > 0}+

1

2
P {s(X) = s(X ′)} (7)

= P{s(X) < s(X ′) | Y < Y ′}+
1

2
P {X =s X

′} ,

where (X ′, Y ′) denotes an independent copy of (X,Y ), observing that P{Y < Y ′} = 1/2. The
empirical counterpart of (7) based on the sample Dn, given by

d̂n(s) =
2

n(n− 1)

∑
i<j

I {(s(Xi)− s(Xj)) · (Yi − Yj) > 0}+
1

n(n− 1)

∑
i<j

I {s(Xi) = s(Xj)}

(8)
is known as the Kendall τ statistic and is widely used in the context of statistical hypothesis testing.
The quantity (7) shall be thus referred to as the (theoretical or true) Kendall τ . Notice that dτ (s) is
invariant by strictly increasing transformation of s(x) and thus describes properties of the order it
defines. The following result reveals that the class S∗, when non empty, is the set of maximizers of
the theoretical Kendall τ . Refer to the Supplementary Material for the technical proof.
Proposition 2. Suppose that S∗ 6= ∅. For any (s, s∗) ∈ S × S∗, we have: dτ (s) ≤ dτ (s∗).

Equipped with these criteria, the objective expressed above in an informal manner can be now for-
mulated in a quantitative manner as a (possibly functional) M -estimation problem. In practice,
the goal pursued is to find a reasonable approximation of a solution to the optimization problem
maxs∈S dτ (s) (respectively maxs∈S IAUC(s)), where the supremum is taken over the set of all
scoring functions s : X → R. Of course, these criteria are unknown in general, just like (X,Y )’s
probability distribution, and the empirical risk minimization (ERM in abbreviated form) paradigm
(see [10]) invites for maximizing the statistical version (8) over a class S0 ⊂ S of controlled com-
plexity when considering the criterion dτ (s) for instance. The generalization capacity of empirical
maximizers of the Kendall τ can be straightforwardly established using results in [5]. More details
are given in the Supplementary Material.

Before describing a practical algorithm for recursive maximization of the IROC curve, a few re-
marks are in order.
Remark 2. (ON KENDALL τ AND AUC) We point out that, in the bipartite ranking problem (i.e.
when the output variable Z takes its values in {−1, +1}, see subsection 2.2) as well, the AUC
criterion can be expressed as a function of the Kendall τ related to the pair (s(X), Z) when the r.v.
s(X) is continuous. Indeed, we have in this case 2p(1−p)AUC(s) = dτ (s), where p = P{Z = +1}
and dτ (s) = P{(s(X) − s(X ′)) · (Z − Z ′) > 0}, denoting by (X ′, Z ′) an independent copy of
(X,Z).
Remark 3. (CONNECTION TO DISTRIBUTION-FREE REGRESSION) Consider the nonparametric
regression model Y = m(X) + ε, where ε is a centered r.v. independent from X . In this case, it is
well-known that the regression function m(X) = E[Y | X] is the (unique) solution of the expected
least squares minimization. However, although m ∈ S∗, the least squares criterion is far from
appropriate to evaluate ranking performance, as depicted by Fig. 2. Observe additionally that, in
contrast to the criteria introduced above, increasing transformation of the output variable Y may
have a strong impact on the least squares minimizer: except for linear stransforms, E[H(Y ) | X] is
not an increasing transform of m(X).
Remark 4. (ON DISCRETIZATION) Bi/multi-partite algorithms are not directly applicable to the
continuous ranking problem. Indeed a discretization of the interval [0, 1] would be first required but
this would raise a difficult question outside our scope: how to choose this discretization based on
the training data? We believe that this approach is less efficient than ours which reveals problem-
specific criteria, namely IROC and IAUC.
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Figure 1: A scoring function described by an oriented binary subtree T . For any element x ∈ X , one
may compute the quantity sT (x) very fast in a top-down fashion by means of the heap structure:
starting from the initial value 2J at the root node, at each internal node Cj,k, the score remains
unchanged if x moves down to the left sibling, whereas one subtracts 2J−(j+1) from it if x moves
down to the right.

5 Continuous Ranking through Oriented Recursive Partitioning

It is the purpose of this section to introduce the algorithm CRANK, a specific tree-structured learning
algorithm for continuous ranking.

5.1 Ranking trees and Oriented Recursive Partitions

Decision trees undeniably figure among the most popular techniques, in supervised and unsuper-
vised settings, refer to [2] or [13] for instance. This is essentially due to the visual model summary
they provide, in the form of a binary tree graphic that permits to describe predictions by means of
a hierachichal combination of elementary rules of the type ”X(j) ≤ κ” or ”X(j) > κ”, comparing
the value taken by a (quantitative) component of the input vector X (the split variable) to a certain
threshold (the split value). In contrast to local learning problems such as classification or regression,
predictive rules for a global problem such as ranking cannot be described by a (tree-structured) par-
tition of the feature space: cells (corresponding to the terminal leaves of the binary decision tree)
must be ordered so as to define a scoring function. This leads to the definition of ranking trees
as binary trees equipped with a ”left-to-right” orientation, defining a tree-structured collection of
anomaly scoring functions, as depicted by Fig. 1. Binary ranking trees have been in the context of
bipartite ranking in [7] or in [3] and in [16] in the context of multipartite ranking. The root node
of a ranking tree TJ of depth J ≥ 0 represents the whole feature space X : C0,0 = X , while each
internal node (j, k) with j < J and k ∈ {0, . . . , 2j − 1} corresponds to a subset Cj,k ⊂ X , whose
left and right siblings respectively correspond to disjoint subsets Cj+1,2k and Cj+1,2k+1 such that
Cj,k = Cj+1,2k∪Cj+1,2k+1. Equipped with the left-to-right orientation, any subtree T ⊂ TJ defines
a preorder on X : elements lying in the same terminal cell of T being equally ranked. The scoring
function related to the oriented tree T can be written as:

sT (x) =
∑

Cj,k: terminal leaf of T
2J
(

1− k

2j

)
· I{x ∈ Cj,k}. (9)

5.2 The CRANK algorithm

Based on Proposition 2, as mentioned in the Supplementary Material, one can try to build from
the training dataset Dn a ranking tree by recursive empirical Kendall τ maximization. We propose
below an alternative tree-structured recursive algorithm, relying on a (dyadic) discretization of the
’size’ variable Y . At each iteration, the local sample (i.e. the data lying in the cell described by the
current node) is split into two halves (the highest/smallest halves, depending on Y ) and the algorithm
calls a binary classification algorithm A to learn how to divide the node into right/left children. The
theoretical analysis of this algorithm and its connection with approximation of IROC∗ are difficult
questions that will be adressed in future work. Indeed we found out that the IROC cannot be
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represented as a parametric curve contrary to the ROC, which renders proofs much more difficult
than in the bipartite case.

THE CRANK ALGORITHM

1. Input. Training data Dn, depth J ≥ 1, binary classification algorithm A.

2. Initialization. Set C0,0 = X .

3. Iterations. For j = 0, . . . , J − 1 and k = 0, . . . , 2J − 1,

(a) Compute a median yj,k of the dataset {Y1, . . . , , Yn} ∩ Cj,k and assign the binary label
Zi = 2I{Yi > yj,k} − 1 to any data point i lying in Cj,k, i.e. such that Xi ∈ Cj,k.

(b) Solve the binary classification problem related to the input space Cj,k and the training set
{(Xi, Yi) : 1 ≤ i ≤ n, Xi ∈ Cj,k}, producing a classifier gj,k : Cj,k → {−1, +1}.

(c) Set Cj+1,2k = {x ∈ Cj,k, gj,k = +1} = Cj,k \ Cj+1,2k+1.

4. Output. Ranking tree TJ = {Cj,k : 0 ≤ j ≤ J, 0 ≤ k < D}.

Of course, the depth J should be chosen such that 2J ≤ n. One may also consider continuing to
split the nodes until the number of data points within a cell has reached a minimum specified in
advance. In addition, it is well known that recursive partitioning methods fragment the data and the
unstability of splits increases with the depth. For this reason, a ranking subtree must be selected. The
growing procedure above should be classically followed by a pruning stage, where children of a same
parent are progressively merged until the root T0 is reached and a subtree among the sequence T0 ⊂
. . . ⊂ TJ with nearly maximal IAUC should be chosen using cross-validation. Issues related to the
implementation of the CRANK algorithm and variants (e.g. exploiting randomization/aggregation)
will be investigated in a forthcoming paper.

6 Numerical Experiments

In order to illustrate the idea conveyed by Fig. 2 that the least squares criterion is not appropriate for
the continuous ranking problem we compared on a toy example CRANK with CART. Recall that
the latter is a regression decision tree algorithm which minimizes the MSE (Mean Squared Error).
We also runned an alternative version of CRANK which maximizes the empirical Kendall τ instead
of the empirical IAUC: this method is refered to as KENDALL from now on. The experimental
setting is composed of a unidimensional feature space X = [0, 1] (for visualization reasons) and a
simple regression model without any noise: Y = m(X). Intuitively, a least squares strategy can
miss slight oscillations of the regression function, which are critical in ranking when they occur in
high probability regions as they affect the order among the feature space. The results are presented
in Table 1. See Supplementary Material for further details.

IAUC Kendall τ MSE
CRANK 0.95 0.92 0.10
KENDALL 0.94 0.93 0.10
CART 0.61 0.58 7.4× 10−4

Table 1: IAUC, Kendall τ and MSE empirical measures

7 Conclusion

This paper considers the problem of learning how to order objects by increasing ’size’, modeled as a
continuous r.v. Y , based on indirect measurements X . We provided a rigorous mathematical formu-
lation of this problem that finds many applications (e.g. quality control, chemistry) and is referred
to as continuous ranking. In particular, necessary and sufficient conditions on (X,Y )’s distribution
for the existence of optimal solutions are exhibited and appropriate criteria have been proposed for
evaluating the performance of scoring rules in these situations. In contrast to distribution-free re-
gression where the goal is to recover the local values taken by the regression function, continuous
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ranking aims at reproducing the preorder it defines on the feature space as accurately as possible.
The numerical results obtained via the algorithmic approaches we proposed for optimizing the cri-
teria aforementioned highlight the difference in nature between these two statistical learning tasks.
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[4] S. Clémençon, G. Lugosi, and N.Vayatis. Ranking and scoring using empirical risk minimiza-
tion. In Proceedings of COLT 2005, volume 3559, pages 1–15. Springer., 2005.
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Appendix - Technical Proofs

Proof of Proposition 1

Observe first that 3.⇒ 2. and 1.⇔ 4. are obvious.
2. ⇒ 1.: Let us assume that assertion 2. is true. Let (x, x′) ∈ X 2 and y ∈ (0, 1) such that
Φy(x) < Φy(x′). Then, from assumption 2., s∗(x) < s∗(x′). For t′ ∈ (y, 1), if Φy′(x) > Φy′(x

′),
it leads to the following contradiction: s∗(x) > s∗(x′). Hence Φy′(x) ≤ Φy′(x

′).
1. ⇒ 3.: Let us assume that assertion 1. is true. Let (x, x′) ∈ X 2 and y ∈ (0, 1) such that
ηy(x) < ηy(x′). Observe that (x, y′) 7→ ηy′(x) is continuous. It follows from assumption 1. that
for y′ ∈ (0, 1), ηy′(x) ≤ ηy′(x

′) with strict inequality on a nonempty interval by continuity of
(x, y′) 7→ ηy′(x). Integrating the latter inequality against the uniform distribution over (0, 1) leads
to m(x) < m(x′).

Proof of Theorem 1

The implications 1.⇒ 2. and 2.⇒ 3. are obvious.
3. ⇒ 1.: Let us assume that assertion 3. is true. Assume ad absurdum that 1. is false. Then
there exists y ∈ (0, 1) s.t. AUCy(s∗) < AUCy(ηy). Notice that (x, y′) 7→ ηy′(x) and, for any
scoring function s, y′ 7→ AUCy′(s) are continuous. By integration w.r.t. FY we obtain IAUC(s∗) <
E [AUC∗Y], which contradicts assertion 3. Hence 1. is true.

Proof of Lemma 1

Recall that, for any s ∈ S and all y ∈ (0, 1), we have:

AUCy(s) = P {s(X) < s(X′) | Y < y < Y′}+
1

2
P {s(X) = s(X′) | Y < y < Y′} .

Integrating the terms in the equation above w.r.t. FY (dy) leads to the desired formula. Then, a
natural empirical version of IAUC(s) is:

ÎAUCn(s) =
6

n(n− 1)(n− 2)

∑
(i,j,k)

I {s(Xi) < s(Xk), Yi < Yj < Yk}

+
3

n(n− 1)(n− 2)

∑
(i,j,k)

I {s(Xi) = s(Xk), Yi < Yj < Yk} .

The asymptotic and nonasymptotic study of the deviation of ÎAUCn will be the subject of future
work.

Proof of Proposition 2

We assume that s(X) is a continuous r.v. for simplicity, the slight modifications needed to extend
the argument to the general framework being left to the reader. As a first go, observe that

dτ (s) = P{s(X ′) > s(X) | Y ′ > Y } =

∫ 1

y′=0

P {s(X ′) > s(X) | Y ′ = y′, Y < y′}FY (dy′)

Notice next that, for any y′ ∈ (0, 1), P {s(X ′) > s(X) | Y ′ = y′, Y < y′} is nothing else than the
AUC criterion of s(x) related to the distribution of X given Y < y′ (negative distribution) and
FX|Y=y′ (positive distribution). Since we assumed S∗ 6= ∅, the collection {FX|Y=y : y ∈ (0, 1)}
is of increasing likelihood ratio and according to Theorem 1, any s∗ ∈ S∗ is a Neyman Pearson
test statistic and thus defines uniformly most powerful tests (among unbiased tests) of H0 : Y <
y against H1 : Y = y. Hence, for any y′ ∈ (0, 1), P {s(X ′) > s(X) | Y ′ = y′, Y < y′} ≤
P {s∗(X ′) > s∗(X) | Y ′ = y′, Y < y′}. Integrating over y′ w.r.t. FY yields the desired result.

On Empirical Kendall τ Maximization

Here we state a result describing the performance of scoring rules obtained through maximization
of the empirical Kendall τ over a class S0 ⊂ S of controlled complexity. An empirical Kendall τ
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maximizer over S0 is any scoring function ŝn ∈ S0 s.t.

d̂n(ŝn) = max
s∈S0

d̂n(s). (10)

Theorem 2. Suppose that S∗ 6= ∅ and set d∗τ = dτ (s∗) for s∗ ∈ S∗. Assume that S0 is a VC major
class of functions with VC dimension V < +∞. Let δ ∈ (0, 1). With probability at least 1− δ, we
have:

d∗τ − dτ (ŝn) ≤ c
√
V

n
+ 4

√
log(1/δ)

n− 1
+

{
d∗τ −max

s∈S0
dτ (s)

}
. (11)

Proof. The argument is based on the simple bound

d∗τ − dτ (ŝn) ≤ 2 sup
s∈S0

∣∣∣d̂n(s)− dτ (s)
∣∣∣+

{
d∗τ −max

s∈S0
dτ (s)

}
,

combined with the use of concentration results for the U -process {d̂n(s)− dτ (s)}s∈S0. The proof
is finished by mimicking that of Corollary 3 in [5].

From a computational perspective, maximizing d̂n is a challenge, the optimization problem be-
ing NP-hard due to the absence of convexity/smoothness of the pairwise loss function I{(s(x) −
s(x′))(y − y′) > 0}. Whereas replacing this loss by a surrogate loss, more suited to continu-
ous optimization, is a possible strategy, using greedy algorithms in the spirit of the popular CART
method can also be considered for this purpose. A slight modification of CART based on recursive
maximization of the empirical Kendall τ criterion (rather than the Gini index or the least squares cri-
terion) permit to build an oriented ranking tree in a top down manner, see subsection 5.1. Just like
for classification/regression, the procedure can be followed by a pruning stage (model selection),
based here on (e.g. cross-validation based) estimates of Kendall τ .

Appendix - Additional Remarks

Properties of IROC curves

For any scoring function s ∈ S and y ∈ (0, 1), we define the conditional cdfs of s(X) as follows:

Hs,y(v) = P(s(X) ≤ v | Y < y),

Gs,y(v) = P(s(X) ≤ v | Y > y).

Now we give some properties of the IROC curve which are easily derived from ROC curve proper-
ties by integration over bipartite ranking subproblems.

Theorem 3. For any scoring function s ∈ S, the following properties hold:

• Limit values. We have IROCs(0) = 0 and IROCs(1) = 1.

• Invariance. For any strictly increasing funciton T : R → R, we have for all α ∈ (0, 1),
IROCT◦s(α) = IROCs(α).

• Concavity. If for all y ∈ (0, 1) the likelihood ratio dGs,y/dHs,y is a monotone function,
then the IROC curve is concave.

Proof. Use Proposition 24 in [7] for each bipartite ranking subproblem at level y ∈ (0, 1). Then
integrate over y w.r.t. FY .
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Distribution-free regression vs continuous ranking

x

m(x)

s∗(x)

sLS(x)

Figure 2: The least squares regressor sLS (dotted line) better approximates, in terms of mean squared
error, the regression function m (solid line) than s∗ (dashed line) does. Still, the latter is optimal for
the ranking task as it is a strictly increasing transform of m.

Numerical Experiments (Figures)

We considered a polynomial regression function m over [0, 1] and valued in [0, 1], namely:

m(x) =
P (x)− P (0)

P (1)− P (0)
,

where the polynomial function P is given by:

P (x) = z2 · (z + 1) · (z + 1.5) · (z + 2), with z = 25 · (x− 0.5).

Observe that m slightly oscillates in the interval I2 = [0.415, 0.51] (see 3b). With respective
probabilities p1 = 0.1, p2 = 0.8 and p3 = 0.1, X is uniformly sampled in one of the three in-
tervals I1 = [0, 0.415], I2 and I3 = [0.51, 1]: the critical window I2 is then a high probability
region. The three algorithms (CRANK, KENDALL and CART) where trained on the same dataset
(X1, Y1), . . . , (Xntrain , Yntrain) with Yi = m(Xi) and ntrain = 100 with the same constraint on the
depth of the tree: at most D = 3. Then we tested them on ntest = 2000 new iid copies of X . In Fig.
3 we plot the polynomial function m and piecewise constant scoring functions provided by the three
approaches.

We observe in Fig. 3 that CRANK and KENDALL almost provide the same ranking functions
(sCRANK ≈ sKENDALL) and achieve similar performance (see Fig. 1). Also notice in Fig. 1 that
CRANK, KENDALL and CART respectively achieve maximum IAUC, Kendall τ and MSE. As ex-
pected, CART misses the critical oscillations that is why its IAUC and Kendall τ are considerably
lower than for its concurrents.
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Figure 3: Polynomial regression function m and scoring functions provided by CRANK, KENDALL
and CART. For visualization reasons, sCRANK and sKENDALL have been renormalized by 2D = 8 to
take values in [0, 1] and, in Fig. 3b, affine functions have been applied to the three scoring functions.
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