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Abstract

We present supplementary material like background and details to the convergence
proofs, analysis of the FID, additional experiments, additional figures for the paper
“GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium”
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1 Fréchet Inception Distance (FID)

We improve the Inception score for comparing the results of GANs [24]. The Inception score has the
disadvantage that it does not use the statistics of real world samples and compare it to the statistics
of synthetic samples. Let p(.) be the distribution of model samples and pw(.) the distribution of
the samples from real world. The equality p(.) = pw(.) holds except for a non-measurable set if
and only if

∫
p(.)f(x)dx =

∫
pw(.)f(x)dx for a basis f(.) spanning the function space in which

p(.) and pw(.) live. These equalities of expectations are used to describe distributions by moments
or cumulants, where f(x) are polynomials of the data x. We replacing x by the coding layer of an
Inception model in order to obtain vision-relevant features and consider polynomials of the coding
unit functions. For practical reasons we only consider the first two polynomials, that is, the first two
moments: mean and covariance. The Gaussian is the maximum entropy distribution for given mean
and covariance, therefore we assume the coding units to follow a multidimensional Gaussian. The
difference of two Gaussians is measured by the Fréchet distance [9] also known as Wasserstein-2
distance [26]. The Fréchet distance d(., .) between the Gaussian with mean and covariance (m,C)
obtained from p(.) and the Gaussian (mw,Cw) obtained from pw(.) is called the “Fréchet Inception
Distance” (FID), which is given by [8]:

d2((m,C), (mw,Cw)) = ‖m−mw‖22 + Tr
(
C +Cw − 2

(
CCw

)1/2)
. (1)

Next we show that the FID is consistent with increasing disturbances and human judgment on the
CelebA dataset. We computed the (mw,Cw) on all CelebA images, while for computing (m,C)
we used 50,000 randomly selected samples. We considered following disturbances of the imageX:

1. Gaussian noise: We constructed a matrix N with Gaussian noise scaled to [0, 255]. The
noisy image is computed as (1− α)X + αN for α ∈ {0, 0.25, 0.5, 0.75}. The larger α is,
the larger is the noise added to the image, the larger is the disturbance of the image.

2. Gaussian blur: The image is convolved with a Gaussian kernel with standard deviation
α ∈ {0, 1, 2, 4}. The larger α is, the larger is the disturbance of the image, that is, the more
the image is smoothed.

3. Black rectangles: To an image five black rectangles are are added at randomly chosen
locations. The rectangles cover parts of the image. The size of the rectangles is αimagesize
with α ∈ {0, 0.25, 0.5, 0.75}. The larger α is, the larger is the disturbance of the image, that
is, the more of the image is covered by black rectangles.

4. Swirl: Parts of the image are transformed as a spiral, that is, as a swirl (whirlpool effect).
Consider the coordinate (x, y) in the noisy (swirled) image for which we want to find the
color. Towards this end we need the reverse mapping for the swirl transformation which
gives the location which is mapped to (x, y). We first compute polar coordinates relative
to a center (x0, y0) given by the angle θ = arctan((y − y0)/(x − x0)) and the radius
r =

√
(x− x0)2 + (y − y0)2. We transform them according to θ′ = θ + αe−5r/(ln 2ρ).

Here α is a parameter for the amount of swirl and ρ indicates the swirl extent in pixels. The
original coordinates, where the color for (x, y) can be found, are xorg = x0 + r cos(θ′)
and yorg = y0 + r sin(θ′). We set (x0, y0) to the center of the image and ρ = 25. The
disturbance level is given by the amount of swirl α ∈ {0, 1, 2, 4}. The larger α is, the larger
is the disturbance of the image via the amount of swirl.

5. Salt and pepper noise: Some pixels of the image are set to black or white, where black is
chosen with 50% probability (same for white). Pixels are randomly chosen for being flipped
to white or black, where the ratio of pixel flipped to white or black is given by the noise
level α ∈ {0, 0.1, 0.2, 0.3}. The larger α is, the larger is the noise added to the image via
flipping pixels to white or black, the larger is the disturbance level.

6. ImageNet contamination: From each of the 1,000 ImageNet classes, 5 images are randomly
chosen, which gives 5,000 ImageNet images. The images are ensured to be RGB and to
have a minimal size of 256x256. A percentage of α ∈ {0, 0.25, 0.5, 0.75} of the CelebA
images has been replaced by ImageNet images. α = 0 means all images are from CelebA,
α = 0.25 means that 75% of the images are from CelebA and 25% from ImageNet etc.
The larger α is, the larger is the disturbance of the CelebA dataset by contaminating it by
ImageNet images. The larger the disturbance level is, the more the dataset deviates from the
reference real world dataset.
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We compare the Inception Score [24] with the FID. The Inception Score with m samples and K
classes is

exp
( 1

m

m∑
i=1

K∑
k=1

p(yk |Xi) log
p(yk |Xi)

p(yk)

)
. (2)

The FID is a distance, while the Inception Score is a score. To compare FID and Inception Score,
we transform the Inception Score to a distance, which we call “Inception Distance” (IND). This
transformation to a distance is possible since the Inception Score has a maximal value. For zero
probability p(yk | Xi) = 0, we set the value p(yk | Xi) log p(yk|Xi)

p(yk) = 0. We can bound the
log-term by

log
p(yk |Xi)

p(yk)
6 log

1

1/m
= logm . (3)

Using this bound, we obtain an upper bound on the Inception Score:

exp
( 1

m

m∑
i=1

K∑
k=1

p(yk |Xi) log
p(yk |Xi)

p(yk)

)
(4)

6 exp
(

logm
1

m

m∑
i=1

K∑
k=1

p(yk |Xi)
)

(5)

= exp
(

logm
1

m

m∑
i=1

1
)

= m . (6)

The upper bound is tight and achieved if m 6 K and every sample is from a different class and
the sample is classified correctly with probability 1. The IND is computed “IND = m - Inception
Score”, therefore the IND is zero for a perfect subset of the ImageNet with m < K samples, where
each sample stems from a different class. Therefore both distances should increase with increasing
disturbance level. In Figure 1 we present the evaluation for each kind of disturbance. The larger the
disturbance level is, the larger the FID and IND should be. In Figure 2, 3, 4, and 4 we show examples
of images generated with DCGAN trained on CelebA with FIDs 500, 300, 133, 100, 45, 13, and FID
3 achieved with WGAN-GP on CelebA.
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Figure 1: Left: FID and right: Inception Score are evaluated for first row: Gaussian noise, second
row: Gaussian blur, third row: implanted black rectangles, fourth row: swirled images, fifth row.
salt and pepper noise, and sixth row: the CelebA dataset contaminated by ImageNet images. Left is
the smallest disturbance level of zero, which increases to the highest level at right. The FID captures
the disturbance level very well by monotonically increasing whereas the Inception Score fluctuates,
stays flat or even, in the worst case, decreases. 4



Figure 2: Samples generated from DCGAN trained on CelebA with different FIDs. Left: FID 500
and Right: FID 300.

Figure 3: Samples generated from DCGAN trained on CelebA with different FIDs. Left: FID 133
and Right: FID 100.
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Figure 4: Samples generated from DCGAN trained on CelebA with different FIDs. Left: FID 45 and
Right: FID 13.

Figure 5: Samples generated from WGAN-GP trained on CelebA with a FID of 3.
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2 Two Time-Scale Stochastic Approximation Algorithms

Stochastic approximation algorithms are iterative procedures to find a root or a stationary point
(minimum, maximum, saddle point) of a function when only noisy observations of its values or
its derivatives are provided. Two time-scale stochastic approximation algorithms are two coupled
iterations with different step sizes. For proving convergence of these interwoven iterates it is assumed
that one step size is considerably smaller than the other. The slower iterate (the one with smaller step
size) is assumed to be slow enough to allow the fast iterate converge while being perturbed by the the
slower. The perturbations of the slow should be small enough to ensure convergence of the faster.

The iterates map at time step n > 0 the fast variable wn ∈ Rk and the slow variable θn ∈ Rm to
their new values:

θn+1 = θn + a(n)
(
h
(
θn,wn,Z

(θ)
n

)
+ M (θ)

n

)
, (7)

wn+1 = wn + b(n)
(
g
(
θn,wn,Z

(w)
n

)
+ M (w)

n

)
. (8)

The iterates use

• h(.) ∈ Rm: mapping for the slow iterate Eq. (7),

• g(.) ∈ Rk: mapping for the fast iterate Eq. (8),

• a(n): step size for the slow iterate Eq. (7),

• b(n): step size for the fast iterate Eq. (8),

• M (θ)
n : additive random Markov process for the slow iterate Eq. (7),

• M (w)
n : additive random Markov process for the fast iterate Eq. (8),

• Z(θ)
n : random Markov process for the slow iterate Eq. (7),

• Z(w)
n : random Markov process for the fast iterate Eq. (8).

2.1 Convergence of Two Time-Scale Stochastic Approximation Algorithms

2.1.1 Additive Noise

The first result is from Borkar 1997 [5] which was generalized in Konda and Borkar 1999 [15].
Borkar considered the iterates:

θn+1 = θn + a(n)
(
h
(
θn,wn

)
+ M (θ)

n

)
, (9)

wn+1 = wn + b(n)
(
g
(
θn,wn

)
+ M (w)

n

)
. (10)

Assumptions. We make the following assumptions:

(A1) Assumptions on the update functions: The functions h : Rk+m 7→ Rm and g : Rk+m 7→ Rk
are Lipschitz.

(A2) Assumptions on the learning rates:∑
n

a(n) = ∞ ,
∑
n

a2(n) < ∞ , (11)∑
n

b(n) = ∞ ,
∑
n

b2(n) < ∞ , (12)

a(n) = o(b(n)) , (13)

(A3) Assumptions on the noise: For the increasing σ-field

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l , l 6 n), n > 0 ,
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the sequences of random variables (M
(θ)
n ,Fn) and (M

(w)
n ,Fn) satisfy∑

n

a(n)M (θ)
n < ∞ a.s. (14)∑

n

b(n)M (w)
n < ∞ a.s. . (15)

(A4) Assumption on the existence of a solution of the fast iterate: For each θ ∈ Rm, the ODE

ẇ(t) = g
(
θ,w(t)

)
(16)

has a unique global asymptotically stable equilibrium λ(θ) such that λ : Rm 7→ Rk is
Lipschitz.

(A5) Assumption on the existence of a solution of the slow iterate: The ODE

θ̇(t) = h
(
θ(t),λ(θ(t))

)
(17)

has a unique global asymptotically stable equilibrium θ∗.
(A6) Assumption of bounded iterates:

sup
n
‖θn‖ < ∞ , (18)

sup
n
‖wn‖ < ∞ . (19)

Convergence Theorem The next theorem is from Borkar 1997 [5].
Theorem 1 (Borkar). If the assumptions are satisfied, then the iterates Eq. (9) and Eq. (10) converge
to (θ∗,λ(θ∗)) a.s.

Comments

(C1) According to Lemma 2 in [4] Assumption (A3) is fulfilled if {M (θ)
n } is a martingale

difference sequence w.r.t Fn with

E
[
‖M (θ)

n ‖2 | F (θ)
n

]
6 B1

and {M (w)
n } is a martingale difference sequence w.r.t Fn with

E
[
‖M (w)

n ‖2 | F (w)
n

]
6 B2 ,

where B1 and B2 are positive deterministic constants.
(C2) Assumption (A3) holds for mini-batch learning which is the most frequent case of stochastic

gradient. The batch gradient is Gn := ∇θ( 1
N

∑N
i=1 f(xi, θ)), 1 6 i 6 N and the mini-

batch gradient for batch size s is hn := ∇θ( 1
s

∑s
i=1 f(xui , θ)), 1 6 ui 6 N , where the

indexes ui are randomly and uniformly chosen. For the noiseM (θ)
n := hn −Gn we have

E[M
(θ)
n ] = E[hn]−Gn = Gn −Gn = 0. Since the indexes are chosen without knowing

past events, we have a martingale difference sequence. For bounded gradients we have
bounded ‖M (θ)

n ‖2.
(C3) We address assumption (A4) with weight decay in two ways: (I) Weight decay avoids

problems with a discriminator that is region-wise constant and, therefore, does not have a
locally stable generator. If the generator is perfect, then the discriminator is 0.5 everywhere.
For generator with mode collapse, (i) the discriminator is 1 in regions without generator
examples, (ii) 0 in regions with generator examples only, (iii) is equal to the local ratio
of real world examples for regions with generator and real world examples. Since the
discriminator is locally constant, the generator has gradient zero and cannot improve. Also
the discriminator cannot improve, since it has minimal error given the current generator.
However, without weight decay the Nash Equilibrium is not stable since the second order
derivatives are zero, too. (II) Weight decay avoids that the generator is driven to infinity
with unbounded weights. For example a linear discriminator can supply a gradient for the
generator outside each bounded region.

8



(C4) The main result used in the proof of the theorem relies on work on perturbations of ODEs
according to Hirsch 1989 [11].

(C5) Konda and Borkar 1999 [15] generalized the convergence proof to distributed asynchronous
update rules.

(C6) Tadić relaxed the assumptions for showing convergence [25]. In particular the noise as-
sumptions (Assumptions A2 in [25]) do not have to be martingale difference sequences
and are more general than in [5]. In another result the assumption of bounded iterates is
not necessary if other assumptions are ensured [25]. Finally, Tadić considers the case of
non-additive noise [25]. Tadić does not provide proofs for his results. We were not able
to find such proofs even in other publications of Tadić.

2.1.2 Linear Update, Additive Noise, and Markov Chain

In contrast to the previous subsection, we assume that an additional Markov chain influences the
iterates [14, 16]. The Markov chain allows applications in reinforcement learning, in particular in
actor-critic setting where the Markov chain is used to model the environment. The slow iterate is the
actor update while the fast iterate is the critic update. For reinforcement learning both the actor and
the critic observe the environment which is driven by the actor actions. The environment observations
are assumed to be a Markov chain. The Markov chain can include eligibility traces which are modeled
as explicit states in order to keep the Markov assumption.

The Markov chain is the sequence of observations of the environment which progresses via transition
probabilities. The transitions are not affected by the critic but by the actor.

Konda et al. considered the iterates [14, 16]:
θn+1 = θn + a(n)Hn , (20)

wn+1 = wn + b(n)
(
g
(
Z(w)
n ;θn

)
+ G

(
Z(w)
n ;θn

)
wn + M (w)

n wn

)
. (21)

Hn is a random process that drives the changes of θn. We assume thatHn is a slow enough process.
We have a linear update rule for the fast iterate using the vector function g(.) ∈ Rk and the matrix
functionG(.) ∈ Rk×k.

Assumptions. We make the following assumptions:

(A1) Assumptions on the Markov process, that is, the transition kernel: The stochastic process
Z

(w)
n takes values in a Polish (complete, separable, metric) space Z with the Borel σ-field

Fn = σ(θl,wl,Z
(w)
l ,Hl, l 6 n), n > 0 .

For every measurable set A ⊂ Z and the parametrized transition kernel P(.;θn) we have:

P(Z
(w)
n+1 ∈ A | Fn) = P(Z

(w)
n+1 ∈ A | Z(w)

n ;θn) = P(Z(w)
n , A;θn) . (22)

We define for every measurable function f

Pθf(z) :=

∫
P(z,dz̄;θn) f(z̄) .

(A2) Assumptions on the learning rates:∑
n

b(n) = ∞ ,
∑
n

b2(n) < ∞ , (23)

∑
n

(
a(n)

b(n)

)d
< ∞ , (24)

for some d > 0.
(A3) Assumptions on the noise: The sequence M (w)

n is a k × k-matrix valued Fn-martingale
difference with bounded moments:

E
[
M (w)

n | Fn
]

= 0 , (25)

sup
n

E

[∥∥∥M (w)
n

∥∥∥d] < ∞ , ∀d > 0 . (26)
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We assume slowly changing θ, therefore the random processHn satisfies

sup
n

E
[
‖Hn‖d

]
< ∞ , ∀d > 0 . (27)

(A4) Assumption on the existence of a solution of the fast iterate: We assume the existence of a
solution to the Poisson equation for the fast iterate. For each θ ∈ Rm, there exist functions
ḡ(θ) ∈ Rk, Ḡ(θ) ∈ Rk×k, ĝ(z;θ) : Z→ Rk, and Ĝ(z;θ) : Z→ Rk×k that satisfy the
Poisson equations:

ĝ(z;θ) = g(z;θ) − ḡ(θ) + (Pθĝ(.;θ))(z) , (28)

Ĝ(z;θ) = G(z;θ) − Ḡ(θ) + (PθĜ(.;θ))(z) . (29)

(A5) Assumptions on the update functions and solutions to the Poisson equation:

(a) Boundedness of solutions: For some constant C and for all θ:

max{‖ḡ(θ)‖} 6 C , (30)

max{‖Ḡ(θ)‖} 6 C . (31)

(b) Boundedness in expectation: All moments are bounded. For any d > 0, there exists
Cd > 0 such that

sup
n

E

[∥∥∥ĝ(Z(w)
n ;θ)

∥∥∥d] 6 Cd , (32)

sup
n

E

[∥∥∥g(Z(w)
n ;θ)

∥∥∥d] 6 Cd , (33)

sup
n

E

[∥∥∥Ĝ(Z(w)
n ;θ)

∥∥∥d] 6 Cd , (34)

sup
n

E

[∥∥∥G(Z(w)
n ;θ)

∥∥∥d] 6 Cd . (35)

(c) Lipschitz continuity of solutions: For some constant C > 0 and for all θ,θ̄ ∈ Rm:∥∥ḡ(θ) − ḡ(θ̄)
∥∥ 6 C ‖θ − θ̄‖ , (36)∥∥Ḡ(θ) − Ḡ(θ̄)
∥∥ 6 C ‖θ − θ̄‖ . (37)

(d) Lipschitz continuity in expectation: There exists a positive measurable function C(.)
on Z such that

sup
n

E
[
C(Z(w)

n )d
]
< ∞ , ∀d > 0 . (38)

Function C(.) gives the Lipschitz constant for every z:∥∥(Pθĝ(.;θ))(z) − (Pθ̄ĝ(.; θ̄))(z)
∥∥ 6 C(z) ‖θ − θ̄‖ , (39)∥∥∥(PθĜ(.;θ))(z) − (Pθ̄Ĝ(.; θ̄))(z)
∥∥∥ 6 C(z) ‖θ − θ̄‖ . (40)

(e) Uniform positive definiteness: There exists some α > 0 such that for allw ∈ Rk and
θ ∈ Rm:

wT Ḡ(θ) w > α ‖w‖2 . (41)

Convergence Theorem. We report Theorem 3.2 (see also Theorem 7 in [16]) and Theorem 3.13
from [14]:
Theorem 2 (Konda & Tsitsiklis). If the assumptions are satisfied, then for the iterates Eq. (20) and
Eq. (21) holds:

lim
n→∞

∥∥Ḡ(θn) wn − ḡ(θn)
∥∥ = 0 a.s. , (42)

lim
n→∞

∥∥wn − Ḡ−1(θn) ḡ(θn)
∥∥ = 0 . (43)
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Comments.

(C1) The proofs only use the boundedness of the moments of Hn [14, 16], therefore Hn may
depend on wn. In his PhD thesis [14], Vijaymohan Konda used this framework for the
actor-critic learning, whereHn drives the updates of the actor parameters θn. However, the
actor updates are based on the current parameters wn of the critic.

(C2) The random process Z(w)
n can affectHn as long as boundedness is ensured.

(C3) Nonlinear update rule. g
(
Z

(w)
n ;θn

)
+ G

(
Z

(w)
n ;θn

)
wn can be viewed as a linear approxi-

mation of a nonlinear update rule. The nonlinear case has been considered in [14] where
additional approximation errors due to linearization were addressed. These errors are treated
in the given framework [14].

2.1.3 Additive Noise and Controlled Markov Processes

The most general iterates use nonlinear update functions g and h, have additive noise, and have
controlled Markov processes [12].

θn+1 = θn + a(n)
(
h
(
θn,wn,Z

(θ)
n

)
+ M (θ)

n

)
, (44)

wn+1 = wn + b(n)
(
g
(
θn,wn,Z

(w)
n

)
+ M (w)

n

)
. (45)

Required Definitions. Marchaud Map: A set-valued map h : Rl → {subsets of Rk} is called a
Marchaud map if it satisfies the following properties:

(i) For each θ ∈ Rl, h(θ) is convex and compact.

(ii) (point-wise boundedness) For each θ ∈ Rl, sup
w∈h(θ)

‖w‖ < K (1 + ‖θ‖) for some K > 0.

(iii) h is an upper-semicontinuous map.
We say that h is upper-semicontinuous, if given sequences {θn}n≥1 (in Rl) and {yn}n≥1

(in Rk) with θn → θ, yn → y and yn ∈ h(θn), n ≥ 1,y ∈ h(θ). In other words, the
graph of h,

{
(x,y) : y ∈ h(x), x ∈ Rl

}
, is closed in Rl × Rk.

If the set-valued map H : Rm → {subsets of Rm} is Marchaud, then the differential inclusion (DI)
given by

θ̇(t) ∈ H(θ(t)) (46)

is guaranteed to have at least one solution that is absolutely continuous. If Θ is an absolutely
continuous map satisfying Eq. (46) then we say that Θ ∈ Σ.

Invariant Set: M ⊆ Rm is invariant if for every θ ∈M there exists a trajectory, Θ, entirely in M
with Θ(0) = θ. In other words, Θ ∈ Σ with Θ(t) ∈M , for all t ≥ 0.
Internally Chain Transitive Set: M ⊂ Rm is said to be internally chain transitive if M is compact
and for every θ,y ∈M , ε > 0 and T > 0 we have the following: There exist Φ1, . . . ,Φn that are n
solutions to the differential inclusion θ̇(t) ∈ h(θ(t)), a sequence θ1(= θ), . . . ,θn+1(= y) ⊂M and
n real numbers t1, t2, . . . , tn greater than T such that: Φiti(θi) ∈ N

ε(θi+1) where N ε(θ) is the open
ε-neighborhood of θ and Φi[0,ti](θi) ⊂M for 1 ≤ i ≤ n. The sequence (θ1(= θ), . . . ,θn+1(= y))

is called an (ε, T ) chain in M from θ to y.

Assumptions. We make the following assumptions [12]:

(A1) Assumptions on the controlled Markov processes: The controlled Markov process {Z(w)
n }

takes values in a compact metric space S(w). The controlled Markov process {Z(θ)
n }

takes values in a compact metric space S(θ). Both processes are controlled by the iterate
sequences {θn} and {wn}. Furthermore {Z(w)

n } is additionally controlled by a random
process {A(w)

n } taking values in a compact metric space U (w) and {Z(θ)
n } is additionally
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controlled by a random process {A(θ)
n } taking values in a compact metric space U (θ). The

{Z(θ)
n } dynamics is

P(Z
(θ)
n+1 ∈ B(θ)|Z(θ)

l ,A
(θ)
l ,θl,wl, l 6 n) =

∫
B(θ)

p(θ)(dz|Z(θ)
n ,A(θ)

n ,θn,wn), n > 0 ,

(47)

for B(θ) Borel in S(θ). The {Z(w)
n } dynamics is

P(Z
(w)
n+1 ∈ B(w)|Z(w)

l ,A
(w)
l ,θl,wl, l 6 n) =

∫
B(w)

p(w)(dz|Z(w)
n ,A(w)

n ,θn,wn), n > 0 ,

(48)

for B(w) Borel in S(w).

(A2) Assumptions on the update functions: h : Rm+k × S(θ) → Rm is jointly continuous as
well as Lipschitz in its first two arguments uniformly w.r.t. the third. The latter condition
means that

∀z(θ) ∈ S(θ) : ‖h(θ,w, z(θ)) − h(θ′,w′, z(θ))‖ 6 L(θ) (‖θ − θ′‖+ ‖w −w′‖) .
(49)

Note that the Lipschitz constant L(θ) does not depend on z(θ).
g : Rk+m × S(w) → Rk is jointly continuous as well as Lipschitz in its first two arguments
uniformly w.r.t. the third. The latter condition means that

∀z(w) ∈ S(w) : ‖g(θ,w, z(w)) − g(θ′,w′, z(w))‖ 6 L(w) (‖θ − θ′‖+ ‖w −w′‖) .
(50)

Note that the Lipschitz constant L(w) does not depend on z(w).

(A3) Assumptions on the additive noise: {M (θ)
n } and {M (w)

n } are martingale difference sequence
with second moments bounded by K(1 + ‖θn‖2 + ‖wn‖2). More precisely, {M (θ)

n } is a
martingale difference sequence w.r.t. increasing σ-fields

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l ,Z

(θ)
l ,Z

(w)
l , l 6 n), n > 0 , (51)

satisfying

E
[
‖M (θ)

n+1‖2 | Fn
]
6 K (1 + ‖θn‖2 + ‖wn‖2) , (52)

for n > 0 and a given constant K > 0.

{M (w)
n } is a martingale difference sequence w.r.t. increasing σ-fields

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l ,Z

(θ)
l ,Z

(w)
l , l 6 n), n > 0 , (53)

satisfying

E
[
‖M (w)

n+1‖2 | Fn
]
6 K (1 + ‖θn‖2 + ‖wn‖2) , (54)

for n > 0 and a given constant K > 0.

(A4) Assumptions on the learning rates:∑
n

a(n) = ∞ ,
∑
n

a2(n) < ∞ , (55)∑
n

b(n) = ∞ ,
∑
n

b2(n) < ∞ , (56)

a(n) = o(b(n)) , (57)

Furthermore, a(n), b(n), n > 0 are non-increasing.
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(A5) Assumptions on the controlled Markov processes, that is, the transition kernels: The state-
action map

S(θ) × U (θ) × Rm+k 3 (z(θ),a(θ),θ,w) → p(θ)(dy | z(θ),a(θ),θ,w) (58)

and the state-action map

S(w) × U (w) × Rm+k 3 (z(w),a(w),θ,w) → p(w)(dy | z(w),a(w),θ,w) (59)

are continuous.
(A6) Assumptions on the existence of a solution:

We consider occupation measures which give for the controlled Markov process the prob-
ability or density to observe a particular state-action pair from S × U for given θ and a
given control policy π. We denote by D(w)(θ,w) the set of all ergodic occupation measures
for the prescribed θ and w on state-action space S(w) × U (θ) for the controlled Markov
processZ(w) with policy π(w). Analogously we denote, byD(θ)(θ,w) the set of all ergodic
occupation measures for the prescribed θ and w on state-action space S(θ) × U (θ) for the
controlled Markov process Z(θ) with policy π(θ). Define

g̃(θ,w,ν) =

∫
g(θ,w, z) ν(dz, U (w)) (60)

for ν a measure on S(w) × U (w) and the Marchaud map

ĝ(θ,w) = {g̃(θ,w,ν) : ν ∈ D(w)(θ,w)} . (61)

We assume that the set D(w)(θ,w) is singleton, that is, ĝ(θ,w) contains a single function
and we use the same notation for the set and its single element. If the set is not a singleton, the
assumption of a solution can be expressed by the differential inclusion ẇ(t) ∈ ĝ(θ,w(t))
[12].
∀θ ∈ Rm, the ODE

ẇ(t) = ĝ(θ,w(t)) (62)

has an asymptotically stable equilibrium λ(θ) with domain of attraction Gθ where λ :
Rm → Rk is a Lipschitz map with constant K. Moreover, the function V : G → [0,∞)
is continuously differentiable where V (θ, .) is the Lyapunov function for λ(θ) and G =
{(θ,w) : w ∈ Gθ,θ ∈ Rm}. This extra condition is needed so that the set {(θ,λ(θ)) :
θ ∈ Rm} becomes an asymptotically stable set of the coupled ODE

ẇ(t) = ĝ(θ(t),w(t)) (63)

θ̇(t) = 0 . (64)

(A7) Assumption of bounded iterates:

sup
n
‖θn‖ < ∞ a.s. , (65)

sup
n
‖wn‖ < ∞ a.s. (66)

Convergence Theorem. The following theorem is from Karmakar & Bhatnagar [12]:
Theorem 3 (Karmakar & Bhatnagar). Under above assumptions if for all θ ∈ Rm, with probability
1, {wn} belongs to a compact subset Qθ (depending on the sample point) of Gθ “eventually”, then

(θn,wn) → ∪θ∗∈A0
(θ∗,λ(θ∗)) a.s. as n → ∞ , (67)

where A0 = ∩t>0{θ̄(s) : s > t} which is almost everywhere an internally chain transitive set of the
differential inclusion

θ̇(t) ∈ ĥ(θ(t)), (68)

where ĥ(θ) = {h̃(θ,λ(θ),ν) : ν ∈ D(w)(θ,λ(θ))}.
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Comments.

(C1) This framework allows to show convergence for gradient descent methods beyond stochastic
gradient like for the ADAM procedure where current learning parameters are memorized
and updated. The random processes Z(w) and Z(θ) may track the current learning status for
the fast and slow iterate, respectively.

(C2) Stochastic regularization like dropout is covered via the random processes A(w) and A(θ).

2.2 Rate of Convergence of Two Time-Scale Stochastic Approximation Algorithms

2.2.1 Linear Update Rules

First we consider linear iterates according to the PhD thesis of Konda [14] and Konda & Tsitsiklis
[17].

θn+1 = θn + a(n)
(
a1 − A11 θn − A12 wn + M (θ)

n

)
, (69)

wn+1 = wn + b(n)
(
a2 − A21 θn − A22 wn + M (w)

n

)
. (70)

Assumptions. We make the following assumptions:

(A1) The random variables (M
(θ)
n ,M

(w)
n ), n = 0, 1, . . ., are independent of w0,θ0 and of each

other. The have zero mean: E[M
(θ)
n ] = 0 and E[M

(w)
n ] = 0. The covariance is

E
[
M (θ)

n (M (θ)
n )T

]
= Γ11 , (71)

E
[
M (θ)

n (M (w)
n )T

]
= Γ12 = ΓT21 , (72)

E
[
M (w)

n (M (w)
n )T

]
= Γ22 . (73)

(A2) The learning rates are deterministic, positive, nondecreasing and satisfy with ε 6 0:∑
n

a(n) = ∞ , lim
n→∞

a(n) = 0 , (74)∑
n

b(n) = ∞ , lim
n→∞

b(n) = 0 , (75)

a(n)

b(n)
→ ε . (76)

We often consider the case ε = 0.
(A3) Convergence of the iterates: We define

∆ := A11 − A12A
−1
22 A21 . (77)

A matrix is Hurwitz if the real part of each eigenvalue is strictly negative. We assume that
the matrices −A22 and −∆ are Hurwitz.

(A4) Convergence rate remains simple:

(a) There exists a constant ā 6 0 such that

lim
n

(a(n+ 1)−1 − a(n)−1) = ā . (78)

(b) If ε = 0, then

lim
n

(b(n+ 1)−1 − b(n)−1) = 0 . (79)

(c) The matrix

−
(
∆ − ā

2
I
)

(80)

is Hurwitz.
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Rate of Convergence Theorem. The next theorem is taken from Konda [14] and Konda & Tsitsik-
lis [17].

Let θ∗ ∈ Rm and w∗ ∈ Rk be the unique solution to the system of linear equations

A11 θn + A12 wn = a1 , (81)
A21 θn + A22 wn = a2 . (82)

For each n, let

θ̂n = θn − θ∗ , (83)

ŵn = wn − A−1
22 (a2 − A21 θn) , (84)

Σn
11 = θ−1

n E
[
θ̂nθ̂

T
n

]
, (85)

Σn
12 =

(
Σn

21

)T
= θ−1

n E
[
θ̂nŵ

T
n

]
, (86)

Σn
22 = w−1

n E
[
ŵnŵ

T
n

]
, (87)

Σn =

(
Σn

11 Σn
12

Σn
21 Σn

22

)
. (88)

Theorem 4 (Konda & Tsitsiklis). Under above assumptions and when the constant ε is sufficiently
small, the limit matrices

Σ
(ε)
11 = lim

n
Σn

11 , Σ
(ε)
12 = lim

n
Σn

12 , Σ
(ε)
22 = lim

n
Σn

22 . (89)

exist. Furthermore, the matrix

Σ(0) =

(
Σ

(0)
11 Σ

(0)
12

Σ
(0)
21 Σ

(0)
22

)
(90)

is the unique solution to the following system of equations

∆ Σ
(0)
11 + Σ

(0)
11 ∆T − ā Σ

(0)
11 + A12 Σ

(0)
21 + Σ

(0)
12 A

T
12 = Γ11 , (91)

A12 Σ
(0)
22 + Σ

(0)
12 A

T
22 = Γ12 , (92)

A22 Σ
(0)
22 + Σ

(0)
22 A

T
22 = Γ22 . (93)

Finally,

lim
ε↓0

Σ
(ε)
11 = Σ

(0)
11 , lim

ε↓0
Σ

(ε)
12 = Σ

(0)
12 , lim

ε↓0
Σ

(ε)
22 = Σ

(0)
22 . (94)

The next theorems shows that the asymptotic covariance matrix of a(n)−1/2θn is the same as that of
a(n)−1/2θ̄n, where θ̄n evolves according to the single time-scale stochastic iteration:

θ̄n+1 = θ̄n + a(n)
(
a1 − A11 θ̄n − A12 w̄n + M (θ)

n

)
, (95)

0 = a2 − A21 θ̄n − A22 w̄n + M (w)
n . (96)

The next theorem combines Theorem 2.8 of Konda & Tsitsiklis and Theorem 4.1 of Konda &
Tsitsiklis:

Theorem 5 (Konda & Tsitsiklis 2nd). Under above assumptions

Σ
(0)
11 = lim

n
a(n)−1 E

[
θ̄nθ̄

T
n

]
. (97)

If the assumptions hold with ε = 0, then a(n)−1/2θ̂n converges in distribution to N (0,Σ
(0)
11 ).
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Comments.

(C1) In his PhD thesis [14] Konda extended the analysis to the nonlinear case. Konda makes a
linearization of the nonlinear function h and g with

A11 = − ∂h

∂θ
, A12 = − ∂h

∂w
, A21 = − ∂g

∂θ
, A22 = − ∂g

∂w
. (98)

There are additional errors due to linearization which have to be considered. However, only
a sketch of a proof is provided but not a complete proof.

(C2) Theorem 4.1 of Konda & Tsitsiklis is important to generalize to the nonlinear case.
(C3) The convergence rate is governed byA22 for the fast and ∆ for the slow iterate. ∆ in turn

is affected by the interaction effects captured byA21 andA12 together with the inverse of
A22.

2.2.2 Nonlinear Update Rules

The rate of convergence for nonlinear update rules according to Mokkadem & Pelletier is considered
[20].

The iterates are

θn+1 = θn + a(n)
(
h
(
θn,wn

)
+ Z(θ)

n + M (θ)
n

)
, (99)

wn+1 = wn + b(n)
(
g
(
θn,wn

)
+ Z(w)

n + M (w)
n

)
. (100)

with the increasing σ-fields

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l ,Z

(θ)
l ,Z

(w)
l , l 6 n), n > 0 . (101)

The terms Z(θ)
n and Z(w)

n can be used to address the error through linearization, that is, the difference
of the nonlinear functions to their linear approximation.

Assumptions. We make the following assumptions:

(A1) Convergence is ensured:

lim
n→∞

θn = θ∗ a.s. , (102)

lim
n→∞

wn = w∗ a.s. . (103)

(A2) Linear approximation and Hurwitz:
There exists a neighborhood U of (θ∗,w∗) such that, for all (θ,w) ∈ U(

h
(
θ,w

)
g
(
θ,w

)) =

(
A11 A12

A21 A22

) (
θ − θ∗

w − w∗

)
+ O

(∥∥∥∥ θ − θ∗

w − w∗

∥∥∥∥2
)
. (104)

We define

∆ := A11 − A12A
−1
22 A21 . (105)

A matrix is Hurwitz if the real part of each eigenvalue is strictly negative. We assume that
the matricesA22 and ∆ are Hurwitz.

(A3) Assumptions on the learning rates:

a(n) = a0 n
−α (106)

b(n) = b0 n
−β , (107)

where a0 > 0 and b0 > 0 and 1/2 < β < α 6 1. If α = 1, then a0 > 1/(2emin) with emin

as the absolute value of the largest eigenvalue of ∆ (the eigenvalue closest to 0).
(A4) Assumptions on the noise and error:
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(a) martingale difference sequences:

E
[
M

(θ)
n+1 | Fn

]
= 0 a.s. , (108)

E
[
M

(w)
n+1 | Fn

]
= 0 a.s. . (109)

(b) existing second moments:

lim
n→∞

E

[(
M

(θ)
n+1

M
(w)
n+1

) (
(M

(θ)
n+1)T (M

(w)
n+1)T

)
| Fn

]
= Γ =

(
Γ11 Γ12

Γ21 Γ22

)
a.s.

(110)

(c) bounded moments:
There exist l > 2/β such that

sup
n

E
[
‖M (θ)

n+1‖l | Fn
]
< ∞ a.s. , (111)

sup
n

E
[
‖M (w)

n+1‖l | Fn
]
< ∞ a.s. (112)

(d) bounded error:

Z(θ)
n = r(θ)

n + O
(
‖θ − θ∗‖2 + ‖w − w∗‖2

)
, (113)

Z(w)
n = r(w)

n + O
(
‖θ − θ∗‖2 + ‖w − w∗‖2

)
, (114)

with
‖r(θ)
n ‖ + ‖r(w)

n ‖ = o(
√
a(n)) a.s. (115)

Rate of Convergence Theorem. We report a theorem and a proposition from Mokkadem & Pel-
letier [20]. However, first we have to define the covariance matrices Σθ and Σw which govern the
rate of convergence.

First we define

Γθ := lim
n→∞

E

[(
M

(θ)
n+1 − A12 A

−1
22 M

(w)
n+1

) (
M

(θ)
n+1 − A12 A

−1
22 M

(w)
n+1

)T
| Fn

]
=

(116)

Γ11 + A12 A
−1
22 Γ22 (A−1

22 )T AT
12 − Γ12(A−1

22 )T AT
12 − A12 A

−1
22 Γ21 .

We now define the asymptotic covariance matrices Σθ and Σw:

Σθ =

∫ ∞
0

exp

((
∆ +

1a=1

2 a0
I

)
t

)
Γθ exp

((
∆T +

1a=1

2 a0
I

)
t

)
dt , (117)

Σw =

∫ ∞
0

exp (A22 t) Γ22 exp (A22 t) dt . (118)

Σθ and Σw are solutions of the Lyapunov equations:(
∆ +

1a=1

2 a0
I

)
Σθ + Σθ

(
∆T +

1a=1

2 a0
I

)
= − Γθ , (119)

A22 Σw + Σw A
T
22 = − Γ22 . (120)

Theorem 6 (Mokkadem & Pelletier: Joint weak convergence). Under above assumptions:(√
a(n)−1 (θ − θ∗)√
b(n)−1 (w − w∗)

)
D−→ N

(
0 ,

(
Σθ 0
0 Σw

))
. (121)

Theorem 7 (Mokkadem & Pelletier: Strong convergence). Under above assumptions:

‖θ − θ∗‖ = O


√√√√a(n) log

(
n∑
l=1

a(l)

) a.s. , (122)

‖w − w∗‖ = O


√√√√b(n) log

(
n∑
l=1

b(l)

) a.s. (123)
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Comments.

(C1) Besides the learning steps a(n) and b(n), the convergence rate is governed by A22 for
the fast and ∆ for the slow iterate. ∆ in turn is affected by interaction effects which are
captured byA21 andA12 together with the inverse ofA22.

2.3 Equal Time-Scale Stochastic Approximation Algorithms

In this subsection we consider the case when the learning rates have equal time-scale.

2.3.1 Equal Time-Scale for Saddle Point Iterates

If equal time-scales assumed then the iterates revisit infinite often an environment of the solution
[28]. In Zhang 2007, the functions of the iterates are the derivatives of a Lagrangian with respect to
the dual and primal variables [28]. The iterates are

θn+1 = θn + a(n)
(
h
(
θn,wn

)
+ Z(θ)

n + M (θ)
n

)
, (124)

wn+1 = wn + a(n)
(
g
(
θn,wn

)
+ Z(w)

n + M (w)
n

)
. (125)

with the increasing σ-fields

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l ,Z

(θ)
l ,Z

(w)
l , l 6 n), n > 0 . (126)

The terms Z(θ)
n and Z(w)

n subsum biased estimation errors.

Assumptions. We make the following assumptions:

(A1) Assumptions on update function: h and g are continuous, differentiable, and bounded. The
Jacobians

∂g

∂w
and

∂h

∂θ
(127)

are Hurwitz. A matrix is Hurwitz if the real part of each eigenvalue is strictly negative. This
assumptions corresponds to the assumption in [28] that the Lagrangian is concave in w and
convex in θ.

(A2) Assumptions on noise:

{M (θ)
n } and {M (w)

n } are a martingale difference sequences w.r.t. the increasing σ-fields
Fn. Furthermore they are mutually independent.
Bounded second moment:

E
[
‖M (θ)

n+1‖2 | Fn
]
< ∞ a.s. , (128)

E
[
‖M (w)

n+1‖2 | Fn
]
< ∞ a.s. . (129)

(A3) Assumptions on the learning rate:

a(n) > 0 , a(n) → 0 ,
∑
n

a(n) = ∞ ,
∑
n

a2(n) < ∞ . (130)

(A4) Assumption on the biased error:
Boundedness:

lim
n

sup ‖Z(θ)
n ‖ 6 α(θ) a.s. (131)

lim
n

sup ‖Z(w)
n ‖ 6 α(w) a.s. (132)

Theorem. Define the “contraction region” Aη as follows:

Aη = {(θ,w) : α(θ) > η ‖h(θ,w)‖ or α(w) > η ‖g(θ,w)‖, 0 6 η < 1} . (133)

Theorem 8 (Zhang). Under above assumptions the iterates return to Aη infinitely often with proba-
bility one (a.s.).
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Comments.

(C1) The proof of the theorem in [28] does not use the saddle point condition and not the fact
that the functions of the iterates are derivatives of the same function.

(C2) For the unbiased case, Zhang showed in Theorem 3.1 of [28] that the iterates converge.
However, he used the saddle point condition of the Lagrangian. He considered iterates
with functions that are the derivatives of a Lagrangian with respect to the dual and primal
variables [28].

2.3.2 Equal Time Step for Actor-Critic Method

If equal time-scales assumed then the iterates revisit infinite often an environment of the solution of
DiCastro & Meir [7]. The iterates of DiCastro & Meir are derived for actor-critic learning.

To present the actor-critic update iterates, we have to define some functions and terms. µ(u | x,θ) is
the policy function parametrized by θ ∈ Rm with observations x ∈ X and actions u ∈ U . A Markov
chain given by P(y | x,u) gives the next observation y using the observation x and the action u. In
each state x the agent receives a reward r(x).

The average reward per stage is for the recurrent state x∗:

η̃(θ) = lim
T→∞

E

[
1

T

T−1∑
n=0

r(xn) | x0 = x∗,θ

]
. (134)

The estimate of η̃ is denoted by η.

The differential value function is

h̃(x,θ) = E

[
T−1∑
n=0

(r(xn) − η̃(θ)) | x0 = x,θ

]
. (135)

The temporal difference is

d̃(x,y,θ) = r(x) − η̃(θ) + h̃(y,θ) − h̃(x,θ) . (136)

The estimate of d̃ is denoted by d.

The likelihood ratio derivative Ψ ∈ Rm is

Ψ(x,u,θ) =
∇θµ(u | x,θ)

µ(u | x,θ)
. (137)

The value function h̃ is approximated by

h(x,w) = φ(x)T w , (138)

where φ(x) ∈ Rk. We define Φ ∈ R|X |×k

Φ =


φ1(x1) φ2(x1) . . . φk(x1)
φ1(x2) φ2(x2) . . . φk(x2)

...
...

...
φ1(x|X |) φ2(x|X |) . . . φk(x|X |)

 (139)

and

h(w) = Φ w . (140)

For TD(λ) we have an eligibility trace:

en = λ en−1 + φ(xn) . (141)

We define the approximation error with optimal parameter w∗(θ):

εapp(θ) = inf
w∈Rk

‖h̃(θ) − Φ w‖π(θ) = ‖h̃(θ) − Φ w∗(θ)‖π(θ) , (142)
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where π(θ) is an projection operator into the span of Φw. We bound this error by

εapp = sup
θ∈Rk

εapp(θ) . (143)

We denoted by η̃, d̃, and h̃ the exact functions and used for their approximation η, d, and h,
respectively. We have learning rate adjustments Γη and Γw for the critic.

The update rules are:
Critic:

ηn+1 = ηn + a(n) Γη (r(xn) − ηn) , (144)

h(x,wn) = φ(x)T wn , (145)
d(xn,xn+1,wn) = r(xn) − ηn + h(xn+1,wn) − h(xn,wn) , (146)

en = λ en−1 + φ(xn) , (147)
wn+1 = wn + a(n) Γw d(xn,xn+1,wn) en . (148)

Actor:

θn+1 = θn + a(n) Ψ(xn,un,θn) d(xn,xn+1,wn) . (149)

Assumptions. We make the following assumptions:

(A1) Assumption on rewards:
The rewards {r(x)}x∈X are uniformly bounded by a finite constant Br.

(A2) Assumption on the Markov chain:
Each Markov chain for each θ is aperiodic, recurrent, and irreducible.

(A3) Assumptions on the policy function:
The conditional probability function µ(u | x,θ) is twice differentiable. Moreover, there
exist positive constants, Bµ1

and Bµ2
, such that for all x ∈ X , u ∈ U , θ ∈ Rm and

1 6 l1, l2 6 m we have∥∥∥∥∂µ(u | x,θ)

∂θl

∥∥∥∥ 6 Bµ1 ,

∥∥∥∥∂2µ(u | x,θ)

∂θl1 ∂θl2

∥∥∥∥ 6 Bµ2 . (150)

(A4) Assumption on the likelihood ratio derivative:
For all x ∈ X , u ∈ U , and θ ∈ Rm, there exists a positive constant BΨ, such that

‖Ψ(x,u,θ)‖2 6 BΨ < ∞ , (151)

where ‖.‖2 is the Euclidean L2 norm.

(A5) Assumptions on the approximation space given by Φ:
The columns of the matrix Φ are independent, that is, the form a basis of dimension k. The
norms of the columns vectors of the matrix Φ are bounded above by 1, that is, ‖φl‖2 6 1
for 1 6 l 6 k.

(A6) Assumptions on the learning rate:∑
n

a(n) = ∞ ,
∑
n

a2(n) < ∞ . (152)

Theorem. The algorithm converged if ∇θη̃(θ) = 0, since the actor reached a stationary point
where the updates are zero. We assume that ‖∇θη̃(θ)‖ hints at how close we are to the convergence
point.

The next theorem from DiCastro & Meir [7] implies that the trajectory visits a neighborhood of
a local maximum infinitely often. Although it may leave the local vicinity of the maximum, it is
guaranteed to return to it infinitely often.
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Theorem 9 (DiCastro & Meir). Define

B∇η̃ =
B∆td1

Γw
+

B∆td2

Γη
+ B∆td3 εapp , (153)

where B∆td1, B∆td2, and B∆td3 are finite constants depending on the Markov decision process and
the agent parameters.

Under above assumptions

lim
t→∞

inf ‖∇θη̃(θt)‖ 6 B∇η̃ . (154)

The trajectory visits a neighborhood of a local maximum infinitely often.

Comments.

(C1) The larger the critic learning rates Γw and Γη are, the smaller is the region around the local
maximum.

(C2) The results are in agreement with those of Zhang 2007 [28].
(C3) Even if the results are derived for a special actor-critic setting, they carry over to a more

general setting of the iterates.

3 ADAM Optimization as Stochastic Heavy Ball with Friction

The Nesterov Accelerated Gradient Descent (NAGD) [21] has raised considerable interest due to its
numerical simplicity and its low complexity. Previous to NAGD and its derived methods there was
Polyak’s Heavy Ball method [23]. The idea of the Heavy Ball is a ball that evolves over the graph of
a function f with damping (due to friction) and acceleration. Therefore, this second-order dynamical
system can be described by the ODE for the Heavy Ball with Friction (HBF) [10]:

θ̈t + a(t) θ̇t + ∇f(θt) = 0 , (155)

where a(n) is the damping coefficient with a(n) = a
nβ

for β ∈ (0, 1]. This ODE is equivalent to the
integro-differential equation

θ̇t = − 1

k(t)

∫ t

0

h(s)∇f(θs)ds , (156)

where k and h are two memory functions related to a(t). For polynomially memoried HBF we have
k(t) = tα+1 and h(t) = (α + 1)tα for some positive α, and for exponentially memoried HBF we
have k(t) = λ exp(λ t) and h(t) = exp(λ t). For the sum of the learning rates, we obtain

n∑
l=1

a(l) = a

{
ln(n) + γ + 1

2n + O
(

1
n2

)
for β = 1

n1−β

1−β for β < 1
, (157)

where γ = 0.5772156649 is the Euler-Mascheroni constant.

Gadat et al. derived a discrete and stochastic version of the HBF [10]:

θn+1 = θn − a(n+ 1)mn (158)

mn+1 = mn + a(n+ 1) r(n)
(
∇f(θn) − mn

)
+ a(n+ 1) r(n)Mn+1 ,

where

r(n) =

{
r for exponentially memoried HBF

r∑n
l=1 a(l) for polynomially memoried HBF . (159)

This recursion can be rewritten as

θn+1 = θn − a(n+ 1)mn (160)

mn+1 =
(
1 − a(n+ 1) r(n)

)
mn + a(n+ 1) r(n)

(
∇f(θn) + Mn+1

)
. (161)
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The recursion Eq. (160) is the first moment update of ADAM [13].

For the term r(n)a(n) we obtain for the polynomial memory the approximations

r(n) a(n) ≈ r

{
1

n logn for β = 1
1 − β
n for β < 1

, (162)

Gadat et al. showed that the recursion Eq. (158) converges for functions with at most quadratic grow
[10]. The authors mention that convergence can be proofed for functions f that are L-smooth, that is,
the gradient is L-Lipschitz.

Kingma et al. [13] state in Theorem 4.1 convergence of ADAM while assuming that β1, the first
moment running average coefficient, decays exponentially. Furthermore they assume that β2

1√
β2
< 1

and the learning rate αt decays with αt = α√
t
.

ADAM divides mn of the recursion Eq. (160) by the bias-corrected second raw moment estimate.
Since the bias-corrected second raw moment estimate changes slowly, we consider it as an error.

1√
v + ∆v

≈ 1√
v
− 1

2 v
√
v

∆v + O(∆v2) . (163)

ADAM assumes the second moment E
[
g2
]

to be stationary with its approximation vn:

vn =
1 − β2

1 − βn2

n∑
l=1

βn−l2 g2
l . (164)

∆nvn = vn − vn−1 =
1 − β2

1 − βn2

n∑
l=1

βn−l2 g2
l −

1 − β2

1 − βn−1
2

n−1∑
l=1

βn−l−1
2 g2

l (165)

=
1 − β2

1 − βn2
g2
n +

β2 (1 − β2)

1 − βn2

n−1∑
l=1

βn−l−1
2 g2

l −
1 − β2

1 − βn−1
2

n−1∑
l=1

βn−l−1
2 g2

l

=
1 − β2

1 − βn2

(
g2
n +

(
β2 −

1 − βn2
1 − βn−1

2

) n−1∑
l=1

βn−l−1
2 g2

l

)

=
1 − β2

1 − βn2

(
g2
n −

1 − β2

1 − βn−1
2

n−1∑
l=1

βn−l−1
2 g2

l

)
.

Therefore

E [∆nvn] = E [vn − vn−1] =
1 − β2

1 − βn2

(
E
[
g2
]
− 1 − β2

1 − βn−1
2

n−1∑
l=1

βn−l−1
2 E

[
g2
])

(166)

=
1 − β2

1 − βn2

(
E
[
g2
]
− E

[
g2
])

= 0 .

We are interested in the difference of actual stochastic vn to the true stationary v:

∆vn = vn − v =
1 − β2

1 − βn2

n∑
l=1

βn−l2

(
g2
l − v

)
. (167)

For a stationary second moment of mn and β2 = 1 − αa(n + 1)r(n), we have ∆vn ∝ a(n +
1)r(n). We use a linear approximation to ADAM’s second moment normalization 1/

√
v + ∆vn ≈

1/
√
v − 1/(2v

√
v)∆vn + O(∆2vn). If we set M (v)

n+1 = −(mn∆vn)/(2v
√
va(n + 1)r(n)), then

mn/
√
vn ≈ mn/

√
v + a(n + 1)r(n)M

(v)
n+1 and E

[
M

(v)
n+1

]
= 0, since E

[
g2
l − v

]
= 0. For a

stationary second moment of mn, {M (v)
n } is a martingale difference sequence with a bounded

second moment. Therefore {M (v)
n+1} can be subsumed into {Mn+1} in update rules Eq. (160). The

factor 1/
√
v can be incorporated into a(n+ 1) and r(n).
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4 Experiments: Additional Information

4.1 WGAN-GP on Image Data.

Table 1: The performance of WGAN-GP trained with the original procedure and with TTUR on
CIFAR-10 and LSUN Bedrooms. We compare the performance with respect to the FID at the optimal
number of iterations during training and wall-clock time in minutes.

dataset method b, a iter time(m) FID method b = a iter time(m) FID

CIFAR-10 TTUR 3e-4, 1e-4 168k 700 24.8 orig 1e-4 53k 800 29.3
LSUN TTUR 3e-4, 1e-4 80k 1900 9.5 orig 1e-4 23k 2010 20.5

4.2 WGAN-GP on the One Billion Word Benchmark.

Table 2: Samples generated by WGAN-GP trained on fhe One Billion Word benchmark with TTUR
(left) the original method (right).

Dry Hall Sitning tven the concer
There are court phinchs hasffort
He scores a supponied foutver il
Bartfol reportings ane the depor
Seu hid , it ’s watter ’s remold
Later fasted the store the inste
Indiwezal deducated belenseous K
Starfers on Rbama ’s all is lead
Inverdick oper , caldawho ’s non
She said , five by theically rec
RichI , Learly said remain .‘‘‘‘
Reforded live for they were like
The plane was git finally fuels
The skip lifely will neek by the
SEW McHardy Berfect was luadingu
But I pol rated Franclezt is the

No say that tent Franstal at Bra
Caulh Paphionars tven got corfle
Resumaly , braaky facting he at
On toipe also houd , aid of sole
When Barrysels commono toprel to
The Moster suprr tent Elay diccu
The new vebators are demases to
Many ’s lore wockerssaow 2 2 ) A
Andly , has le wordd Uold steali
But be the firmoters is no 200 s
Jermueciored a noval wan ’t mar
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ISLUN , The crather wilh a them
Fow 22o2 surgeedeto , theirestra
Make Sebages of intarmamates , a
Gullla " has cautaria Thoug ly t

Table 3: The performance of WGAN-GP trained with the original procedure and with TTUR on the
One Billion Word Benchmark. We compare the performance with respect to the JSD at the optimal
number of iterations and wall-clock time in minutes during training. WGAN-GP trained with TTUR
exhibits consistently a better FID.

n-gram method b, a iter time(m) JSD method b = a iter time(m) JSD

4-gram TTUR 3e-4, 1e-4 98k 1150 0.35 orig 1e-4 33k 1040 0.38
6-gram TTUR 3e-4, 1e-4 100k 1120 0.74 orig 1e-4 32k 1070 0.77

4.3 BEGAN

The Boundary Equilibrium GAN (BEGAN) [3] maintains an equilibrium between the discriminator
and generator loss (cf. Section 3.3 in [3])

E[L(G(z))] = γE[L(x)] (168)

which, in turn, also leads to a fixed relation between the two gradients, therefore, a two time-scale
update is not ensured by solely adjusting the learning rates. Indeed, for stable learning rates, we see
no differences in the learning progress between orig and TTUR as depicted in Figure 6.
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Figure 6: Mean, maximum and minimum FID over eight runs for BEGAN training on CelebA and
LSUN Bedrooms. TTUR learning rates are given as pairs (b, a) of discriminator learning rate b
and generator learning rate a: “TTUR b a”. Left: CelebA, starting at mini-batch 10k for better
visualisation. Right: LSUN Bedrooms. Orig and TTUR behave similar. For BEGAN we cannot
ensure TTUR by adjusting learning rates.

5 Discriminator vs. Generator Learning Rate

The convergence proof for learning GANs with TTUR assumes that the generator learning rate will
eventually become small enough to ensure convergence of the discriminator learning. At some time
point, the perturbations of the discriminator updates by updates of the generator parameters are
sufficient small to assure that the discriminator converges. Crucial for discriminator convergence is
the magnitude of the perturbations which the generator induces into the discriminator updates. These
perturbations are not only determined by the generator learning rate but also by its loss function,
current value of the loss function, optimization method, size of the error signals that reach the
generator (vanishing or exploding gradient), complexity of generator’s learning task, architecture of
the generator, regularization, and others. Consequently, the size of generator learning rate does not
solely determine how large the perturbations of the discriminator updates are but serve to modulate
them. Thus, the generator learning rate may be much larger than the discriminator learning rate
without inducing large perturbation into the discriminator learning.

Even the learning dynamics of the generator is different from the learning dynamics of the discrimi-
nator, though they both have the same learning rate. Figure 7 shows the loss of the generator and
the discriminator for an experiment with DCGAN on CelebA, where the learning rate was 0.0005
for both the discriminator and the generator. However, the discriminator loss is decreasing while
the generator loss is increasing. This example shows that the learning rate neither determines the
perturbations nor the progress in learning for two coupled update rules. The choice of the learning
rate for the generator should be independent from choice for the discriminator. Also the search ranges
of discriminator and generator learning rates should be independent from each other, but adjusted to
the corresponding architecture, task, etc.
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Figure 7: The respective losses of the discriminator and the generator show the different learning
dynamics of the two networks.

6 Used Software, Datasets, Pretrained Models, and Implementations

We used the following datasets to evaluate GANs: The Large-scale CelebFaces Attributes (CelebA)
dataset, aligned and cropped [19], the training dataset of the bedrooms category of the large scale
image database (LSUN) [27], the CIFAR-10 training dataset [18], the Street View House Numbers
training dataset (SVHN) [22], and the One Billion Word Benchmark [6].

All experiments rely on the respective reference implementations for the corresponding GAN model.
The software framework for our experiments was Tensorflow 1.3 [1, 2] and Python 3.6. We used
following software, datasets and pretrained models:

• BEGAN in Tensorflow, https://github.com/carpedm20/BEGAN-tensorflow, Fixed
random seeds removed. Accessed: 2017-05-30

• DCGAN in Tensorflow, https://github.com/carpedm20/DCGAN-tensorflow, Fixed
random seeds removed. Accessed: 2017-04-03

• Improved Training of Wasserstein GANs, image model, https://github.com/igul222/
improved_wgan_training/blob/master/gan_64x64.py, Accessed: 2017-06-12

• Improved Training of Wasserstein GANs, language model, https://github.com/
igul222/improved_wgan_training/blob/master/gan_language.py, Accessed:
2017-06-12

• Inception-v3 pretrained, http://download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgz, Accessed: 2017-05-02

Implementations are available at

• https://github.com/bioinf-jku/TTUR
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