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We present a complete presentation of the theoretical results presented in the main text.
We provide detailed analysis of the DStump algorithm in the context of a general additive
regression model with uncorrelated design. We derive the results for the linear case as special
case of the general theory. Our analysis is high-dimensional and non-asymptotic, and to our
knowledge the first such analysis of feature selection properties of decision trees. We show
that even in the high-dimensional setting where the number of features p is much larger that
the sample size n, feature importance scores based on impurity reduction contain enough
information for consistent model selection. Additionally, we provide simulation experiments to
supplement the results in the main text.

1 Setup

Consider an additive regression model yi =
∑p

j=1 fj(xij) + wi with random design X = (xij) ∈
Rn×p. Here each column of X represents a covariate or feature. Let us denote generic covariates
as Z1, . . . , Zp and assume them to be i.i.d. uniformly distributed on [0, 1]. Each row of X is
taken to be an independent draw from (Z1, . . . , Zp). We assume (fk) to be s-sparse, namely,
fj 6= 0 for j ∈ S = {1, . . . , s} and zero otherwise. Let w = (w1, . . . , wn) and assume the entries
to be IID draws from a sub-Gaussian distribution with variance var(wi) = v2w and sub-Gaussian
norm ‖wi‖ψ2 ≤ σ2w, for all i ∈ [n]. Recall that the sub-Gaussian norm is defined as (see [Ver12]):

‖wi‖ψ2 := sup
k≥1

k−1/2(E|wi|k)1/k.

Fix some δ ∈ (0, 1), let U ∼ unif(0, 1) and assume the following about the underlying
functions (fk):

F1 ‖fk(αU)‖2ψ2
≤ σ2f,k, ∀α ∈ [0, 1].

F2 var[fk(αU)] ≤ var[fk((1− δ)U)], ∀α ≤ 1− δ.

Let us define v2
f,k

:= var[fk(U)] and

σ2f,∗ :=

p∑
k=1

σ2f,k =
∑
k∈S

σ2f,k, v2
f,∗

:=

p∑
k=1

v2
f,k

=
∑
k∈S

v2
f,k

(1)
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Note that we take σ2f,k = v2
f,k

= 0 for k /∈ S. We also define the following key gap quantities,

gf,k(δ) := var[fk(U))]− var[fk((1− δ)U)]. (2)

Section 3 explores the class of functions satisfying (F1) and (F2) and have positive gap:
gf,k(δ) > 0.

Throughout, C,C1, . . . , c, c1, . . . are absolute positive constants which can be different in
each occurrence.

Facts about sub-Gaussian vectors [Ver12]. Recall that if {Xi} are independent zero-
mean sub-Gaussian variables then so is

∑
iXi and we have

SG-1 ‖
∑

iXi‖2ψ2
≤ C

∑
i ‖Xi‖2ψ2

.

Centering inflates the sub-Gaussian norm by at most a factor of 2, i.e.,

SG-2 ‖X − EX‖ψ2 ≤ 2‖X‖ψ2 .

Examples of sub-Gaussian random variables included bounded and Gaussian variables:

SG-3 If |X| ≤ K a.s., then X is sub-Gaussian with norm ‖X‖ψ2 ≤ K.

SG-4 X ∼ N(0, σ2) is sub-Gaussian with ‖Xi‖ψ2 ≤ Cσ for absolute constant C.

Notation. In order describe DStump more precisely, let us introduce some notation. We
write [p] := {1, . . . , p}. For an ordered index set I = (i1, i2, . . . , ir), we set yI = (yi1 , yi2 . . . , yir).
The order of elements of yI matter in this case. For an unordered index set S = {i1, i2, . . . , ir},
we first turn S into an ordered set, with elements in increasing order, and then form yS . We
write xj = (x1j , x2j , . . . , xnj) ∈ Rn for the vector collecting values of the jth feature, i.e., the jth
column of X. Let I(xj) := (i1, i2 . . . , in) be an ordering of [n] such that xi1j ≤ xi2j ≤ · · · ≤ xinj
and let sor(y, xj) := yI(xj) ∈ Rn; this is an operator that sorts y relative to xj .

DStump proceeds as follows: Evaluate

yk := sor(y, xk) = sor
(∑
j∈S

fj(xj) + w, xk
)

(3)

for k = 1, . . . , p. Let m := n/2. For each k, consider the midpoint split of yk into yk[m] and

yk[n]\[m] and evaluate the impurity of the left-half, using empirical variance as impurity:

imp(yk[m]) :=
1(
m
2

) ∑
1≤i<j≤m

1

2
(yki − ykj )2 (4)

Let imp(yk[m]) be the score of feature k, and output the s features with the least scores

(corresponding to maximal reduction in impurity). The choice of the midpoint is justified by
our assumption of the uniform distribution for the features (Zi). The choice of the left-half is
for convenience; a similar analysis applies if we take the impurity to be that of the sum of both
halves (or their maximum).
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2 Analysis of DStump

The problem boils down to understanding the behavior of yk. Let ỹk be obtained from yk

by random reshuffling of its left half yk[m], i.e., rearranging the entries according to a random

permutation. This reshuffling has no effect on the impurity, that is, imp(ỹk[m]) = imp(yk[m]) and

is done so that ỹk[m] has an exchangeable distribution (cf. Lemma 1). Throughout, we assume
m ≥ 2.

2.0.1 Understanding the distribution of yk

If k /∈ S, the ordering according to which we sort y is independent of y (since xk is independent
of y), hence the sorted version, before and after reshuffling has the same distribution as y. Thus,
each entry of ỹk is an IID draw from the same distribution as the pre-sort version:

ỹki
iid∼ W0 :=

∑
j∈S

fj(Zj) + w1, i = 1, . . . , n. (5)

On the other hand, if k ∈ S, then for i = 1, . . . , n

yki = fk(x(i)k) + rki , rki
iid∼ Wk :=

∑
j∈S\{k}

fj(Zj) + w1. (6)

Here x(i)k is the ith order statistic of xk, that is, x(1)k ≤ x(2)k ≤ · · · ≤ x(n)k. Note that the
residual terms are still IID since they gather the covariates (and the noise) that are independent
of the kth one and hence its ordering. Note also that rki is independent of the first term fk(x(i)k).

Using the convention fk ≡ 0 for k /∈ S, we can combine (5) and (6) into a single equation
that works for all k ∈ [p], (and i ∈ [m]),

yki = fk(x(i)k) + rki , rki
iid∼ Wk :=

∑
j 6=k

fj(Zj) + w1. (7)

for all k ∈ [p]. Note that Wk = W0 =
∑

j∈S fj(Zi) for all k /∈ S.

Recall that we split at the midpoint and focus on the left split, i.e., we look at yk[n/2] =

(yk1 , y
k
2 , . . . , y

k
n/2), and its reshuffled version ỹk[n/2] = (ỹk1 , ỹ

k
2 , . . . , ỹ

k
n/2). Intuitively, we would like

to claim that the signal part of ỹk[n/2] has entries that are approximately IID draws from fk(12U)

where U ∼ unif(0, 1). Unfortunately this is not true, in the sense that the distribution cannot
be accurately approximated by Unif(0, 1 − δ) for any δ (Lemma 1). However, we show that
the distribution can be approximated by an infinite mixture of IID uniforms of reduced range
(Lemma 2). Proofs of Lemma 1 and 2 appear in Appendix 5.

2.0.2 Truncating the range

Let U(1) ≤ U(2) ≤ · · · ≤ U(n) be the order statistics obtained by ordering an IID sample

Ui ∼ unif(0, 1), i = 1, . . . , n. Recall that m := n/2 and let Ũ := (Ũ1, Ũ2 . . . , Ũm) be obtained
from (U(1), . . . , U(m)) by random permutation. Then, Ũ has an exchangeable distribution.
Using (7), we can write for k ∈ [p],

ỹki = fk(ũ
k
i ) + r̃ki , ũk ∼ Ũ , r̃ki

iid∼ Wk, i = 1, . . . ,m (8)
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where the m-vectors ũk = (ũki , i ∈ [m]) and r̃k = (r̃ki , i ∈ [m]) are also independent. We have

the following result regarding the distribution of Ũ :

Lemma 1. The density of Ũ (w.r.t Lebesgue measure on Rm) is given by

(u1, . . . , um) 7→
(

2m

m

)
(1−max{u1, . . . , um})m (9)

over [0, 1]m. Furthermore the distribution of Ũ is a mixture of IID unif(0, γ) m-vectors with
mixing variable γ ∼ Beta(m,m+ 1).

Note that Beta(m,m+ 1) has mean = m/(2m+ 1) = 1
2(1 + o(1)) as m→∞, and variance

= O(m−1). Thus, Lemma 1 makes our intuition precise in the sense that the distribution of Ũ
is a “range mixture” of IID uniform distributions, with the range concentrating around 1/2.
We now provide a reduced range, finite sample approximation in terms of the total variation
distance dTV(Ũ , Û) between the distributions of random vectors Ũ and Û .

Lemma 2. Let Û be distributed according to a mixture of IID Unif(0, γ̂) m-vectors with γ̂
distributed as a Beta(m,m+ 1) truncated to (0, 1− δ) for δ = e−α/8 and α > 0. With Ũ as in
Lemma 1, we have dTV(Ũ , Û) ≤ 2 exp(−αm).

For k ∈ [p], let ûk = (ûki , i ∈ [m]) be drawn from the distribution of Û described in Lemma 2,
independently of anything else in the model, and let γ̂k be its corresponding mixing variable,
which has a Beta distribution truncated to (0, 1− δ). Let us define

ŷki = fk(û
k
i ) + r̃ki , i ∈ [m] (10)

where r̃k = (r̃ki ) is as before. This construction provides a simple coupling between ỹk[m] and

ŷk[m] giving the same bound on the their total variation distance as in Lemma 2. Hence, we

can safely work with ŷk[m] instead of ỹk[m], and pay a price of at most 2 exp(−αm) in probability
bounds.

2.0.3 Concentration of the empirical impurity

We will focus on ŷk[m] due the discussion above. We would like to control imp(ŷk[m]), the empirical

variance impurity of ŷk[m] which is defined as in (4) with yk[m] replaced with ŷk[m]. The idea is

to analyze E[ imp(ŷk[m]) ], or proper bounds on it, and then show that imp(ŷk[m]) concentrates

around its mean. Let us consider the concentration first. (4) is a U-statistic of order 2 with
kernel h(u, v) = 1

2(u − v)2. The classical Hoeffding inequality guarantees concentration if
h is uniformly bounded and the underlying variables are IID. Instead, we use a version of
Hanson–Wright concentration inequality derived in [RV13]:

Theorem 1 (Hanson–Wright, Rudelson–Vershynin). Let v = (v1, . . . , vm) ∈ Rm be a random
vector with independent components wi, each of which satisfies Evi = 0 and ‖vi‖ψ2 ≤ K. Let A
be an m×m matrix. Then, for any t ≥ 0,

P
(∣∣vTAv − EvTAv

∣∣ > t
)
≤ 2 exp

[
−c min

( t2

K4‖A‖2F
,

t

K2‖A‖op

)]
. (11)
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As a consequence we can get a concentration bound for the empirical variance, for general
sub-Gaussian vectors, avoiding the boundedness assumption:

Corollary 1. Let v = (v1, . . . , vm) ∈ Rm be a random vector with independent components vi
which satisfy Evi = µ and ‖vi − µ‖ψ2 ≤ K. Let imp(v) :=

(
m
2

)−1∑
1≤i<j≤m(vi − vj)2 be the

empirical variance of v. Then, for u ≥ 0,

P
(∣∣ imp(v)− E imp(v)

∣∣ > K2u
)
≤ 2 exp

{
−c (m− 1) min(u, u2)

}
. (12)

Proof. Since empirical variance is invariant to a constant shift, without loss of generality we can
consider only the case µ = 0. We have imp(v) =

(
m
2

)−1[1
2(m− 1)

∑
i v

2
i −

∑
i<j vivj

]
= vTAv,

where A =
(
m
2

)−1
(12mI −

1
211

T ). Letting Ã = 2
m

(
m
2

)
A = I − 1

m11T , we note that Ã has one
eigenvalue equal 0, and m− 1 eigenvalues equal 1. It is positive semidefinite matrix with same
singular values. Hence, ‖Ã‖op = 1 and ‖Ã‖F =

√
m− 1. Applying Theorem 1 to Ã and setting

t = (m− 1)K2u gives the result after some algebra.

We can immediately apply this result when k /∈ S. However, for k ∈ S, a more careful
application is needed since we can only guarantee an exchangeable distribution for ŷk[m] in this
case. The following lemma summarizes the conclusions:

Let Îm,k = imp(ŷk[m]) and recall that δ was introduced in the definition of ŷki in (10). We

also recall the definitions of variances and sub-Gaussian norms from (1), and the gaps gf,k(δ)
from (2).

Lemma 3. There exist absolute constants C1, C2, c such that if log p/m ≤ C1, then with
probability at least 1− p−c,

Îm,k ∈
(
I0k − εm, I1k + εm

)
, ∀k ∈ [p] (13)

where

I1k = −gf,k(δ) + v2
f,∗

+ v2w, I0k := −v2
f,k

+ v2
f,∗

+ v2w, εm := C2(σ
2
f,∗ + σ2w)

√
log p/m. (14)

Note that we can replace p with p̌ := p− s in the bounds at the expense of constants since
p̌ ≤ p ≤ 2p̌ assuming s ≤ p/2.

Proof of Lemma 3. Fix k ∈ [p], and recall (10) and the underlying mixing variable γ̂k. Then,
conditioned on γ̂k, ŷki , i ∈ [m] is an IID sequence by the definition:

ŷki | γ̂k
iid∼ fk(V ) +Wk, i = 1, . . . ,m

where V ∼ Unif(0, γ̂k), independent of Wk =
∑

j 6=k fj(Zj) + w1. We also write V = γ̂kU for

U ∼ unif(0, 1). Note that V is defined conditionally on γ̂k, and whenever we are working with
V and quantities involving it, we have the implicit conditioning on γ̂k (without writing it down).

To simplify notation, let Rk := fk(V ) +Wk. Using (SG-1), we have

‖Rk‖2ψ2
:= ‖fk(V ) +Wk‖2ψ2

≤ C
[
‖fk(V )‖2ψ2

+
∑
j 6=k
‖fj(Zj)‖2ψ2

+ ‖w1‖2ψ2

]
≤ C

[∑
j

σ2f,j + σ2w

]
= C(σ2f,∗ + σ2w)

(15)
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In the second inequality, we have used Assumption (F1) to write ‖fk(V )‖2ψ2
= ‖fk(γ̂kU)‖2ψ2

≤
σ2f,k, since γ̂k ≤ 1 − δ < 1 by definition (and we are working conditioned on γ̂k, making it

a constant.) In addition, ‖w1‖2ψ2
≤ σ2w and by Assumption (F1), ‖fj(Zj)‖ψ2 ≤ σ2f,j , which

combined gives (15) (recalling that σ2f,∗ =
∑

j σ
2
f,j).

Note that conditioned on γ̂k, Îm,k is of the form imp(w) for wi
iid∼Rk, i = 1, . . . ,m, and we

have ‖Rk − ERk‖2ψ2
≤ 4C(σ2f,∗ + σ2w) by (15) and (SG-2). Hence, the conditions of Corollary 1

are met and we obtain, for k ∈ [p],

P
(∣∣Îm,k − E[Îm,k|γ̂k]

∣∣ > 4C(σ2f,∗ + σ2w)u
∣∣∣ γ̂k) ≤ 2 exp

[
−c(m− 1) min{u, u2}

]
.

Moreover, we can bound the expectation as follows:

E[Îm,k|γ̂k] = var(fk(V ) +Wk) = var(fk(V )) + var(Wk)

= var(fk(V )) +
∑

j 6=k var[fj(Zj)] + v2w

≤ var[fk((1− δ)U)] +
∑

j 6=k v
2
f,j + v2w

= −gf,k(δ) +
∑

j v
2
f,j + v2w

where the inequality follows since var(fk(V )) = var[fk(γ̂kU)] ≤ var[fk((1−δ)U)], using γ̂k ≤ 1−δ
and Assumption (F2). The last equality follows by adding and subtracting var[fk(U)] and using
the definition of gf,j(δ) := var[fk(U)]− var[fk((1− δ)U)]. Thus, recalling the definition of v

f,∗

from (1),

E[Îm,k|γ̂k] ≤ −gf,k(δ) + v2
f,∗

+ v2w = I1k .

Similarly E[Îm,k|γ̂k] ≥
∑

j 6=k v
2
f,j

+ σ2w = −v2
f,k

+ v2
f,∗

+ v2w = I0k . It follows that{
Îm,k /∈

(
I0k − t, I1k + t

)}
⊂
{
Îm,k /∈

(
E[Îm,k|γ̂k]− t,E[Îm,k|γ̂k] + t

)}
for any t. Letting εm(u) := 4C(σ2f,∗ + σ2w)u, we obtain

P
(
Îm,k /∈

(
I0k − εm(u), I1k + εm(u)

)∣∣∣ γ̂k) ≤ P
(∣∣Îm,k − E[Îm,k|γ̂k]

∣∣ > εm(u)
∣∣∣ γ̂k)

≤ 2 exp
[
−c(m− 1) min{u, u2}

]
.

Notably, I0k , I
1
k , C, σ

2
f,∗, σ

2
w, u, and m are all constant w.r.t. to γ̂k, so taking the expectation of

the left and right terms, we get the same bound unconditionally. Applying the union bound,

P
(
∃k ∈ [p], Îm,k /∈

(
I0k − εm(u), I1k + εm(u)

))
≤ p exp

[
−c(m− 1) min{u, u2}

]
. (16)

It follows that Îm,k ∈
(
I0k − εm(u), I1k + εm(u)

)
for all k ∈ [p], with probability at least

1 − 2p exp[−1
2cmmin{u, u2}], where we have used 1

2m ≤ m − 1 for m ≥ 2. Take u =√
2(c1 + 1) log p/(cm) and assume that u ≤ 1, so that u2 is dominant in the bound. The

proof is complete.

Combined with Lemma 2, we can transfer the results to Ĩm,k := imp(ỹk[m]).
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Corollary 2. The conclusion of Lemma 3 holds for Ĩm,k in place of Îm,k, with probability at
least 1− p̌−c − 2e−αm for α = log 1

8δ .

Note that for δ < 1/8, the bound holds with high probability. Consider the hard sparsity
case, where σ2f,k = 0 for k /∈ S, hence according to Corollary 2, Ĩm,k > I0 − εm for k /∈ S, where

I0 := v2
f,∗

+ σ2w. On the other hand Ĩm,k < I1k + εm for k ∈ S. Thus, as long as I0 − I1k > 2εm,
the selection algorithm correctly favors the kth feature in S, over the inactive ones (recall that
lower impurity is better). We have our main result after substituting n/2 for m:

Theorem 2. Assume an additive model with (F1)–(F2). Let α = log 1
8δ for δ ∈ (0, 1/8). The

DStump algorithm, which selects the “s” least impure features at the root, succeeds in model
selection, with probability at least 1− p̌−c − 2e−αn/2 if log p̌/n ≤ C1 and

min
k∈S

gf,k(δ) ≥ C(σ2f,∗ + σ2)

√
log p̌

n
(17)

Note that v2
f,∗

does not directly appear in the result, only σ2f,∗. Let us state the consequence
of Theorem 2 for the special case of linear models, namely the case where fk(x) = βkx for
some coefficient vector β = (βk, k ∈ [p]). Let κ21 := 1

12 be the variance of U ∼ unif(0, 1) and
κ22 := ‖U‖2ψ2

(another universal constant). Then (F1) holds with σ2f,k = κ22β
2
k. Note also that

v2
f,k

= κ21β
2
k. Thus, in this case σ2f,∗ � v2f,∗ � ‖β‖

2
2.

Assumption (F2) holds trivially for any β since it states α2κ21β
2
k ≤ (1 − δ)2κ21β2k for all

α ≤ 1− δ. The gap in (2) reduces to gf,k(δ) = κ21[1− (1− δ)2]. Thus, we obtain the following
corollary of Theorem 2.

Corollary 3. Assume a linear (additive) model with fk(x) = βkx. Let α = log 1
8δ and

ξ = 1− (1− δ)2 for δ ∈ (0, 1/8). The DStump algorithm, which selects the “s” least impure
features at the root, succeeds in model selection, with probability at least 1− p̌−c − 2e−αn/2 if
log p̌/n ≤ C1 and

min
k∈S

β2k ≥
C

ξ
(‖β‖22 + σ2)

√
log p̌

n
(18)

The quantity |βS |2min := mink∈S β
2
k appearing in Corollary 3 is a well-known parameter

controlling hardness of subset recovery. Although Corollary 3 applies to a general β, it
is worthwhile to see its consequence in a special regime of interest where |βS |2min � 1/s,
corresponding to ‖β‖2 � 1. We get the following immediate corollary:

Corollary 4. Assume |βS |2min � 1/s, σ2 � 1 and log p̌/n = O(1). Then DStump succeeds with
high probability if n & s2 log p̌.

The minimax optimal threshold for support recovery in the regime of Corollary 4 is known
to be n � s log p̌ [Wai09b], and achieved by LASSO [Wai09a]. Although this result is obtained
for Gaussian design, the same argument goes through for our uniform ensemble. Compared
to the optimal threshold, using DStump we pay a small factor of s in the sample complexity.
However, DStump is not tied to the linear model and we expect that a similar performance
can be extended to much more general nonlinear settings. In other words, we expect to pay a
price due to flexibility of DStump, and not being tailored to the linear setting.
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3 Class of valid f

Let us consider the class of functions f : [0, 1] → R that satisfy conditions (F1)–(F2). Since
variance impurity is invariant to a shift, without loss of generality, we will assume f(0) = 0,
and consider the class:

F := {f : [0, 1]→ R : f(0) = 0, E[f(U)]2 <∞}. (19)

Note that E[f(U)]2 = αE[f(αU)]2 +(1−α)E[f(1−αU)]2 for all α ∈ [0, 1]. Then, for any f ∈ F ,
we have E[f(αU)]2 <∞ for all α ∈ [0, 1] (the case α = 0 is trivial).

Condition (F1) is relatively mild and is satisfied by a large class of functions:

Lemma 4. Let f ∈ F . Then (F1) is satisfied if f is Lipschitz or bounded.

For a Lipschitz function, we have |f(x) − f(y)| ≤ Lf |x − y| for all x, y ∈ [0, 1]. Then,
|f(x)| = |f(x)− f(0)| ≤ Lf |x|, hence

‖f(αU)‖2ψ2
≤ α2L2

f‖U‖2ψ2
≤ L2

f‖U‖2ψ2
, ∀α ∈ [0, 1]

giving the desired uniform bound on the sub-Gaussian norm. For a bounded function |f(x)| ≤
B, ∀x ∈ [0, 1]. Then ‖f(αU)‖2ψ2

≤ B2 for all α ∈ [0, 1] by (SG-3).

Condition (F2) is more stringent. A slightly stronger condition is that α 7→ var[f(αU)] is
nondecreasing on [0, 1]. For example, we have:

Lemma 5. Assume that f can be extended to a continuously differentiable function on an open
interval I ⊃ [0, 1], i.e., f = F |[0,1] where F : I → R is continuously differentiable. Then (F2)
holds if both x 7→ xf ′(x) and f are monotone of the same kind.

Proof. Let us justify validity of interchanging differentiation (w.r.t. α) and expectation, for
example, for ψ(α) := [f(αU)]2 where ψ′(α) = 2Uf ′(αU)f(αU). Then, ψ(α) is integrable for
all α ∈ [0, 1] (see the comment following definition of F) and so is supα∈[0,1] |ψ′(α)| (since

x 7→ |f ′(x)f(x)| is continuous hence bounded on [0, 1]). It follows that α 7→ E[f(αU)]2 is
continuously differentiable with derivative Eψ′(α). A similar argument works for justifying
differentiating Ef(αU) under expectation.

Letting v(α) := var[f(αU)] = E[f(αU)]2 − [Ef(αU)]2, it follows that

v′(α) = 2 cov
(
Uf ′(αU), f(αU)

)
, α ∈ (0, 1).

Since the functions xf ′(x) and f(x) are both monotone of the same kind, αUf ′(αU) and f(αU)
are positively correlated according to Lemma 7, i.e. v′ ≥ 0 over (0, 1), hence v is nondecreasing,
implying (F2).

The conditions of Lemma 5 are satisfied for example for C1 convex nondecreasing functions.
To see this note that both f and f ′ are nondecreasing for such functions. Since f(0) = 0, we
have f ≥ 0, from which it follows that f ′(0) ≥ 0, hence f ′ ≥ 0. Then, if x1 ≤ x2, both in [0, 1],
we have x1f

′(x1) ≤ x1f ′(x2) ≤ x2f ′(x2), where the second inequality uses f ′ ≥ 0. Hence xf ′(x)
is also nondecreasing, as desired. By noting that the variances of f and −f are equal, the same
holds for C1 concave nonincreasing functions.
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Figure 1: Plot of the function in Lemma 6 (left) and the corresponding α 7→ var[f(αU)] (right), for a = ε = 10.
Note that the function violates (F2) over, say, [0.2, 1].

However, conditions of the Lemma 5 could also hold for functions beyond those two categories.
For example, consider f(x) = (x+ ε)r for r ∈ (0, 1) and ε ∈ (0, 1). The function is concave and
increasing on [0, 1], however xf ′(x) = rx(x + ε)r−1 is also increasing, hence satisfies (F2) by
Lemma 5.

On the other hand, it is not hard to construct functions that violate (F2). For example,
consider the wedge f(x) = 1

2 − |x −
1
2 | and let vf (α) := var[f(αU)]. Then, vf (12) = 1/48 >

11/576 = vf (34), so (F2) is violated for δ = 1/4. It is also possible to construct a monotone
function that violates (F2). For example, the following concave increasing function violates (F2)
over any desired sub-interval (γ, 1), for γ > 0, by taking a and ε large enough (cf. Figure 1):

Lemma 6. Let f(x) = min{ax, 1a(x + ε)} for a, ε > 0, and assume x0 := ε/(a2 − 1) ∈ (0, 1).
Then, with ρ := x0/α, we have

vf (α) := var[f(αU)] =
x20
12

[
a2ρ+ a−2ρ−2(1− ρ)3

]
+

1

4a2
(ρε+ x0)

2(ρ−1 − 1), for ρ ≤ 1,

and =
x20
12ρ
−2 for ρ > 1.

Proof. Let x0 := ε/(a2 − 1), the point where the two branches of f switch. Assume α ≥ x0.
Take U1 and U2 to have uniform distributions on (0, x0/α) and (x0/α, 1). A mixture of these
two distributions with weights x0/α and (1 − x0/α) is the unif(0, 1). Thus, letting U =
ZU1 + (1−Z)U2 where Z ∼ Ber(x0/α) independent of U1 and U2, we have U ∼ unif(0, 1). Note
that given Z = 1, αU = αU1 ∼ unif(0, x0). We have var[f(αU)|Z = 1] = var[a(αU1)] = κ21a

2x20.
Similarly, var[f(αU)|Z = 0] = var[ 1a(αU2 + ε)] = κ21(α− x0)2/a2, hence with ρ := x0/α,

E var[f(αU) | Z] = κ21x
2
0

[
a2ρ+ a−2ρ−2(1− ρ)3

]
.

On the other hand E[f(αU)|Z = 1] = E[a(αU1)] = ax0/2 =: A and E[f(αU)|Z = 0] =
E[ 1a(αU2 + ε)] = a−1(ε+ (x0 + α)/2) =: B. Then,

varE[f(αU) | Z] = var[(A−B)Z] =
1

4a2
[a2x0 − (2ε+ x0 + α)]2ρ(1− ρ)

=
1

4a2
(ε+ α)2ρ(1− ρ).

The desired result follows from law of total variance.
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Finally, let us comment on the gap condition. Using the notation vf (α) := var[f(αU)],
we have gf (δ) = vf (1) − vf (1 − δ). Thus, a sufficient condition for a positive gap is that vf
be (strictly) increasing, which for example follows from Lemma 5 if the functions there are
strictly monotone. Strict monotonicity of vf is however is a lot stronger than what we need.
One just needs a positive gap at some point 1− δ ∈ (7/8, 1) for Theorem 2 to imply a sample
complexity bound for recovery. The gap condition is in general weaker that (F2). In fact, for
any sufficiently regular function f , first-order linear approximation of f near x = 1 gives a
positive gap as long as the slope of the line is nonzero. The larger the slope is (in absolute
value), the larger the gap is and hence the easier it is to detect that f .

3.1 Technical lemmas

Lemma 7. Let f(·) and g(·) be nondecreasing real-valued functions on X , and for a random
element X ∈ X , let us write f = f(X) and g = g(X). Assume that f , g and fg are integrable.
Then, cov(f, g) ≥ 0.

Proof. Let X ′ be an independent copy of X. Then, [f(X)− f(X ′)][g(X)− g(X ′)] ≥ 0. Taking
expectations gives the result.

4 Details of correlated linear setting

We take the following approach to generalize our result to the correlated case: (1) We show a
version of Theorem 1, which holds for an “approximately sparse” parameter β̃ with uncorrelated
design. (2) We derive conditions on M such that the correlated case can be turned into the
uncorrelated case with approximate sparsity. The following theorem details Step 1:

Theorem 3. Assume Model 1(i)-(ii) with M = I, but instead of (iii) let β = β̃, a general
vector in Rp. Let S be any subset of [p] of cardinality s. The DStump algorithm, which selects
the “s” least impure features at the root, recovers S, with probability at least 1− p̌−c − 2e−αn/2

if log p̌/n ≤ C1 and ξ|β̃S |2min − ‖β̃Sc‖2∞ > C(‖β̃‖22 + σ2)
√

(log p̌)/n.

The theorem holds for any β̃ and S, but the gap condition required is likely to be violated
unless β̃ is approximately sparse w.r.t. S. Going back to Model 1, we see that setting
β̃ = Mβ transforms the model with correlated design X, and exact sparsity on β, to the model
with uncorrelated design X̃, and approximate sparsity on β̃. The following corollary gives
sufficient conditions on M , so that Theorem 3 is applicable. Recall the usual (vector) `∞ norm,
‖x‖∞ = maxi |xi|, the matrix `∞ → `∞ operator norm |||A|||∞ = maxi

∑
j |Aij | , and the `2 → `2

operator norm |||A|||2.

Corollary 5. Consider a general ICA-type Model 1 with β and M satisfying

‖βS‖∞ ≤ γ|βS |min, |||MSS − I|||∞ ≤
1− ρ
γ

, |||MScS |||∞ ≤
ρ

γ

√
ξ(1− κ) (20)

for some ρ, κ ∈ (0, 1] and γ ≥ 1. Then, the conclusion of Theorem 3 holds, under the gap
condition for the uncorrelated setting with C/ξ replaced with C|||MSS |||22/(κ ξ ρ2).

C|||MSS |||22/(κ ξ ρ2) plays the role of a new constant. There is a hard bound on how big ξ can
be, which via (20) controls how much correlation between off-support and on-support features
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are tolerated. For example, taking δ = 1/9, we have α = log(9/8) ≈ 0.1, ξ = 17/81 ≈ 0.2 and√
ξ ≈ 0.45 and this is about as big as it can get (the maximum we can allow is ≈ 0.48). κ can

be arbitrarily close to 0, relaxing the assumption (20), at the expense of increasing the constant
in the threshold. γ controls deviation of |βj |, j ∈ S from uniform: in case of equal weights on
the support, i.e., |βj | = 1/

√
s for j ∈ S, we have γ = 1. Theorem 1 for the uncorrelated design

is recovered, by taking ρ = κ = 1.

Proof of Theorem 3. All the analysis of the linear case goes through with a general β̃ and a
general candidate support set S, providing concentration of the impurities around their mean.
What will be different is the mean impurity values. Recall that Îm,k is the impurity reduction
of variable k, expected to be low on the candidate support S and high off the support. We have
support recovery if maxk∈S Îm,k < mink/∈S Îm,k. Using Lemma 3, it is enough to have

max
k∈S

I1k + εm < min
k/∈S

I0k − εm (21)

which in turn is equivalent to

2εm < min
k/∈S

I0k −max
k∈S

I1k = κ21
[

min
k/∈S

(−β̃2k)−max
k∈S

(−ξβ̃2k)
]

= κ21
[
−max

k/∈S
β̃2k + ξmin

k∈S
β̃2k
]

That is, we have support recovery w.h.p. if 2κ−21 εm < ξ|β̃S |2min − ‖β̃Sc‖2∞ as desired.

Proof of Corollary 5. Under assumption (20),

‖β̃S − βS‖∞ ≤ |||MSS − I|||∞‖βS‖∞ ≤ (1− ρ)|βS |min.

Since |β̃j | ≥ |βj | − |β̃j − βj | ≥ |βj | − ‖β̃S − βS‖∞ for all j ∈ S, we have

|β̃S |min ≥ |βS |min − ‖β̃S − βS‖∞ ≥ ρ|βS |min

On the other hand ‖β̃Sc‖∞ ≤ |||MScS |||∞‖βS‖∞ ≤ ρ
√
ξ(1− κ) |βS |min. It follows that ξ|β̃S |2min−

‖β̃Sc‖2∞ ≥ ρ2ξκ|β̃S |2min.

5 Proof of Lemma 1 and 2

Calculating the density. Recall that the density of (U(1), . . . , U(n)) is constant and equal to n!
over {(u1, . . . , un) : 0 < u1 < u2 < · · · < un−1 < un < 1}. Letting u0 := 0, we can write the
density as f̌(u) := n!

∏n
i=1 1{ui−1 < ui}, over [0, 1]n. Here, 1{·} is the indicator of a set. To

simplify notation let us write gk,j(u) :=
∏j
i=k 1{ui−1 < ui}. First, let us find the density of

(U(1), . . . , U(m)), where m = n/2, by induction. We would like to compute∫
[0,1]m

f̌(u) dum+1 . . . dun = n! g1,m(u)I(u) (22)

11



where I(u) :=
∫
[0,1]m gm+1,n(u) dum+1 . . . dun. We have

I(u) =

∫
[0,1]m−1

gm+1,n−1(u)
[ ∫ 1

0
1{un−1 < un}dun

]
dum+1 . . . dun−1 (23)

=

∫
[0,1]m−1

gm+1,n−1(u)
[
1− un−1

]
dum+1 . . . dun−1. (24)

Proceeding by induction, assume that we have shown

I(u) =

∫
[0,1]m−j

gm+1,n−j(u)
1

j!
(1− un−j)j dum+1 . . . dun−j . (25)

Then, we have

I(u) =

∫
[0,1]m−j−1

gm+1,n−j−1(u)
[ ∫ 1

0
1{un−j−1 < un−j}

1

j!
(1− un−j)jdun−j

]
dum+1 . . . dun−j−1.

(26)

The integral inside brackets is
∫ 1
un−j−1

1
j!(1 − w)jdw = 1

(j+1)!(1 − un−j−1)
j+1. It follows from

the induction that I(u) = 1
m!(1− um)m. In other words, recalling n = 2m, we have shown that

the density of (U(1), . . . , U(m)) is

(2m)!

m!
(1− um)m 1{u1 < u2 < · · · < um} (27)

over [0, 1]m. To obtain the density of Ũ , we have to average the above over all possible m!

permutations, giving (2m)!
m!m! (1−max{u1, . . . , um})m over [0, 1]m.

Obtaining the infinite mixture. Hereafter, let u = (u1, . . . , um). We also refer to a distribu-
tion and its density (w.r.t. Lebesgue measure) interchangeably. Ideally, we would like to approx-
imate the distribution derived above, whose density we denote by f(u) :=

(
2m
m

)
(1− ‖u‖∞)m,

with the distribution of an IID sequence of Unif(0, 1− δ) of length m. Unfortunately, this is not
possible with vanishing error as m→∞. Instead, we take a clue from di Finetti theorem. Since
f is an exchangeable distribution, it can be written as a mixture of IID ones. Let us assume that
we can approximate f with a mixture of IID unif(0, r), where r varies according to some density
F . A bit more precisely, noting that the density of an m-vector with IID Unif(0, r) entries can
be written as u 7→ r−m1{‖u‖∞ < r}, we approximate f(u) with the following mixture density

h(u) :=

∫ 1

0

1{‖u‖∞ < r}
rm

F (r)dr. (28)

Let us compute the total variation distance between distributions corresponding to f and
h. Equivalently, we look at the L1 norm of f − h. Since f − h is only a function of ‖u‖∞,
we can integrate by looking at shells of the `∞ ball of radius t restricted to the nonnegative
orthant. Note that vol(tBm∞ ∩ Rm+ ) = tm, hence the volume of the corresponding shell is
d vol(tBm∞ ∩ Rm+ ) = mtm−1dt. It follows that

dTV(f, h) =

∫
[0,1]m

|f(u)− h(u)|du =

∫ 1

0
|f̃(t)− h̃(t)|mtm−1dt (29)
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where

f̃(t) =

(
2m

m

)
(1− t)m, and h̃(t) =

∫ 1

0

1{t < r}
rm

F (r)dr (30)

Note that we can make the total variation vanish if we can choose F so that f̃ = h̃. Differentiating
this identity, notating that h̃(t) =

∫ 1
t r
−mF (r)dr, and using fundamental theorem of calculus,

we get

−m
(

2m

m

)
(1− t)m−1 = −t−mF (t) =⇒ F (t) = m

(
2m

m

)
tm(1− t)m−1 (31)

We note that m
(
2m
m

)
= 1/B(m,m+ 1) = 1/B(m+ 1,m). The above F is in fact the density of

the Beta distribution with parameters m and m+ 1. Thus, we have shown that f is a mixture
of IID unif(0, γ) m-vectors with mixing variable γ ∼ Beta(m,m+ 1), completing the proof of
Lemma 1.

Approximation by truncating range. The last step is to show that we can replace the exact
distribution f with one that has strictly smaller range. Consider a mixture of the form

ĥδ(u) :=

∫ 1

0

1{‖u‖∞ < r}
rm

F̂δ(r)dr, F̂δ(r) :=
1

c(δ)
F (r) 1{r < 1− δ} (32)

where F is as in (31) and δ > 0. Here, c(δ) =
∫ 1−δ
0 F (r)dr is the normalizing constant. Let us

also define the unnormalized version ȟδ(u) := c(δ) ĥδ(u). The total variation distance of ȟδ
with f is

‖f − ȟδ‖L1(Rm) =

∫ 1

0

∣∣∣ ∫ 1

0

1{t < r}
rm

F (r)dr −
∫ 1−δ

0

1{t < r}
rm

F (r)dr
∣∣∣mtm−1dt

=

∫ 1

0

∫ 1

1−δ

1{t < r}
rm

F (r)drmtm−1dt

=

∫ 1

1−δ

[ ∫ 1

0
1{t < r}mtm−1dt

]F (r)

rm
dr,

by Fubini theorem. The inner integral is
∫ r
0 mt

m−1dt = rm. It follows that ‖f − ȟδ‖L1(Rm) =∫ 1
1−δ F (r)dr = 1− c(δ). On the other hand, ‖ĥδ − ȟδ‖L1(Rm) = (1− c(δ))‖ĥδ‖L1(Rm) = 1− c(δ),

since ĥδ is a normalized density. Hence, ‖f − ĥδ‖L1(Rm) ≤ 2[1 − c(δ)]. It remains to bound
1− c(δ). We have

1− c(δ) =

∫ 1

1−δ
F (r)dr = m

(
2m

m

)∫ 1

1−δ
rm(1− r)m−1. (33)

Using rm(1− r)m−1 ≤ δm−1 over (1− δ, 1), and
(
n
k

)
≤ (en/k)k, we have

1− c(δ) ≤ m
(

2m

m

)
δm ≤ m

(2me

m

)m
δm = m(2eδ)m ≤ (8δ)m (34)

(We can replace 8 with 2e1/e+1 ≈ 7.86.) Taking δ = e−α/8 for α > 0, we have 1 − c(δ) ≤
exp(−αm). The proof is complete.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Support recovery performance in a linear regression model augmented with possible nonlinearities
for n = 128. (a) Linear case with uncorrelated design. (b) Linear case with correlated design. (c) Nonlinear
additive model with exponentials of covariates and uncorrelated design. (d) Nonlinear model with interaction
terms and uncorrelated design. (e) Nonlinear additive model with exponentials of covariates, interaction terms,
and uncorrelated design. (f) Nonlinear additive model with exponentials of covariates, interaction terms, and
correlated design.

6 Additional Simulation Results

In this section we present simulation results to supplement the results from the main text. First,
we replicated the simulations for different sample sizes, i.e. n = 128 and n = 10, 000. The
results are presented in Figure 2 and Figure 3. We observe that all methods are sensitive to
small sample sizes, with more complex algorithms like SpAM more prone to failure. In the
presence of sufficiently large sample sizes, we can observe the asymptotic efficiency of different
methods. Under a correlated design, DStump and SIS close the gap with Lasso and SpAM,
while TreeWeight shows inferior performance. In contrast, TreeWeight widens its margin
over other methods in settings with interaction terms.

The results presented thus far evaluate various methods based on the fraction of support
recovered. We next report results under the same modeling settings, but using a different
evaluation metric. Specifically, we report the probability of exact support recovery. As illustrated
in Figure 4, this metric shows qualitatively similar behavior as our previous experimental results,
though the performance of each method degrades much more drastically, as this metric is more
stringent than our initial evaluation metric.

Finally, recall that our reported results are averages over 100 replicates. Here we present the
results from Figure 1 in the main text with 95% confidence intervals in order to demonstrate
the statistical significance of these results. The results are shown in Figure 5, where dashed

14



(a) (b) (c)

(d) (e) (f)

Figure 3: Support recovery performance in a linear regression model augmented with possible nonlinearities
for n = 10000. (a) Linear case with uncorrelated design. (b) Linear case with correlated design. (c) Nonlinear
additive model with exponentials of covariates and uncorrelated design. (d) Nonlinear model with interaction
terms and uncorrelated design. (e) Nonlinear additive model with exponentials of covariates, interaction terms,
and uncorrelated design. (f) Nonlinear additive model with exponentials of covariates, interaction terms, and
correlated design.

lines represent the confidence end points.
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(a) (b) (c)

(d) (e) (f)

Figure 4: The probability of full support Support recovery in a linear regression model augmented with possible
nonlinearities for n = 1024. (a) Linear case with uncorrelated design. (b) Linear case with correlated design.
(c) Nonlinear additive model with exponentials of covariates and uncorrelated design. (d) Nonlinear model
with interaction terms and uncorrelated design. (e) Nonlinear additive model with exponentials of covariates,
interaction terms, and uncorrelated design. (f) Nonlinear additive model with exponentials of covariates,
interaction terms, and correlated design.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Support recovery performance in a linear regression model augmented with possible nonlinearities for
n = 1024. Dashed lines represent the 95% confidence intervals. (a) Linear case with uncorrelated design. (b)
Linear case with correlated design. (c) Nonlinear additive model with exponentials of covariates and uncorrelated
design. (d) Nonlinear model with interaction terms and uncorrelated design. (e) Nonlinear additive model
with exponentials of covariates, interaction terms, and uncorrelated design. (f) Nonlinear additive model with
exponentials of covariates, interaction terms, and correlated design.
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