
Supplementary Information for “An Error Detection and Correction
Framework for Connectomics” by Zung et al.

A Baseline Neuronal Boundary Detection

In this section, we describe our baseline segmentation pipeline, which is similar to what is described
in [8]. The major difference is our novel densely multiscale 3D convolutional network architecture
for neuronal boundary detection, which will be described in detail in the following section. (The
same class of architecture was employed in error detection and error correction. See main text.)

A.1 Network architecture

Our proposed densely multiscale 3D convolutional network for neuronal boundary detection is
illustrated in Figure 1. Our model is built upon U-Net [12] with several interesting architectural
augmentation. Our model can be viewed as a pyramidal stack of the basic computational module
(diamond-shaped box in Figure 1). This diamond-shaped module can be interpreted as a residual
building block (see Figure 2 in [5]) with two residual pathways, one top-down and the other bottom-up.
Thus our model is fully residual in the sense that every computational pathway involving horizontal
information flow is passing through the residual module. Moreover, every residual module refines
its input representation by integrating both top-down and bottom-up information, thus allowing for
dense intermixing of multiscale features. Our model’s dense and fully residual architecture allows
an incremental and iterative top-down/bottom-up refinement of internal representation, which is in
contrast to U-Net and variants’ more restricted coarse-to-fine top-down refinement [11, 9].

From a different point of view, Figure 2 illustrates another important motivation for our densely
multiscale convolutional net architecture. Our model can be viewed as a feedback recurrent convolu-
tional network unrolled in time (Figure 2). Weight-sharing across time makes a our model exactly
equivalent to a convolutional net with recurrent feedback connections unfolded through time, and this
novel perspective provides a better framework for understanding one of the unique characteristics

Input (1 channel)
158x158x32 Output (3 channels)

158x158x32

24

28

32

48

64

12

24 24

12 12 12

24 24

28 28 28

32 32

48

4x
4x

8

4x
4x

4

4x
4x

2

4x
4x

1

4x
4x

1

Summation 
joining

Strided convolution

Skip connection

Strided transposed 
convolution

2x
2x

1

2x
2x

1

2x
2x

1

2x
2x

1

2x
2x

1

Residual 
module

Figure 1: Architecture for the baseline neuronal boundary detection. Each node represents a layer
and the number inside represents the number of feature maps. The layers closer to the top of the
diagram have lower resolution than the layers near the bottom. The diagonal arrows represent strided
convolutions, while the horizontal arrows represent skip connections. Associated with the diagonal
arrows, black numbers indicate filter size and red numbers indicate strides in x× y × z. The target
for our boundary detection net is a 3D affinity graph [13, 8, 3], thus outputting three channels of each
corresponding to x (green), y (red), and z (blue) affinity map, respectively.

1



t = 0

t = 1

t = 2

t = 3

t = 4

Unfold through time

Figure 2: Feedback recurrent convolutional network unrolled in time. See the text in Section A.1 for
further details.

of our model, i.e., the incremental refinement of internal representation by interative integration of
top-down and bottom-up information. Our net’s internal representation is incremetally and iteratively
refined over time by integrating the top-down contextual information conveyed through the feedback
recurrent connnections and the higer spatial-frequency information relayed through the bottom-up
feedforward connections.

A.1.1 Architectural details

Due to the anisotropy of the resolution of the images in our dataset, we design our networks such that
the first convolutions are exclusively 2D while later convolutions are 3D (see Figure 1). The field of
view of a unit in the higher layers is therefore roughly cubic. To limit the number of parameters in
our model, we factorize all 3D convolutions into a 2D convolution followed by a 1D convolution in
z-dimension. We employ exponential linear units (ELUs, [2]) for nonlinearity, except for the output
layer with logistic activation functions.

A.2 Dataset

Our dataset is a sample of mouse primary visual cortex (V1) acquired using transmission electron
microscopy at the Allen Institute for Brain Science. The voxel resolution is 3.6 nm×3.6 nm×40 nm.

A team of tracers produced multiple volumes of gold standard dense reconstruction, in total 20
volumes of size 512 × 512 × 100. We trained our boundary detector using 19 volumes and used
the last volume for training validation. We then applied the trained boundary detector on a new
image volume of size 2048 × 2048 × 100 to obtain a preliminary segmentation, which was then
proofread by the tracers to generate a bootstrapped ground truth volume. This volume was used
to optimize the parameters for watershed and mean affinity agglomeration. Finally, the optimized
segmentation pipeline was applied to generate further bootstrapped ground truth for the error detection
and correction.

2



A.3 Training procedures

Our boundary detection networks were implemented based on the Caffe deep learning framework [6].
To train our models, we minimized the binomial cross-entropy loss with class-rebalancing using
the Adam optimizer [7], initialized with α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 0.01. The
network weights were initialized following He et al. [4]. The learning rate (or step size parameter
α in the Adam optimizer) was halved when validation loss plateaued out, five times in total at 35K,
175K, 250K, 300K, and 480K training iterations. We used a single patch of size 158× 158× 32 (i.e.
minibatch of size 1) to compute gradients at each training iteration. The training lasted for 800K
iterations until convergence, which took about five days on a single NVIDIA Titan X Pascal GPU.

A.4 Inference and postprocessing

We perform overlap-blending inference followed by watershed and mean affinity agglomeration [8].
We refer the interested readers to [8] for further details.

B Per-object VI score

Recall that the variation of information between two segmentations may be computed as

V Isplit = − 1∑
i,j rij

∑
i,j

rij log(rij/pi),

V Imerge = − 1∑
i,j rij

∑
i,j

rij log(rij/qj),

pi =
∑
j

rij ,

qj =
∑
i

rij ,

where rij is the number of voxels in common between the ith segment of the ground truth segmentation
and the jth segment of the proposed segmentation [10].

We define the split and merge scores for ground truth segment i as

V Isplit(i) = −
∑
j

rij/pi log(rij/pi),

V Imerge(i) = −
∑
j

rij/pi log(rij/qj),

Both quantities have units of bits. V Isplit(i) is zero iff ground truth segment i is contained within
a segment in the proposed segmentation, while V Imerge(i) is zero iff ground truth segment i is the
union of one or more segments in the proposed segmentation. The total score V Isplit or V Imerge is a
weighted sum of the per-object scores V Isplit(i), V Imerge(i) respectively.

C Training details

The error-detecting and error-correcting networks were implemented in TensorFlow [1] and trained
using 4 TitanX Pascal GPUs with synchronous gradient descent. We used the Adam optimizer,
initialized with α = 0.001, β1 = 0.95, β2 = 0.9995, and ε = 0.1 [7]. Both nets were trained until
the loss on a validation set plateaued. The error-detecting net was trained for 700K iterations (ap-
proximately one week), while the error-correcting net was trained for 1.7M iterations (approximately
three weeks).

3



References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/.
Software available from tensorflow.org.

[2] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep
Network Learning by Exponential Linear Units (ELUs). CoRR, abs/1511.07289, 2015. URL
http://arxiv.org/abs/1511.07289.

[3] Jan Funke, Fabian David Tschopp, William Grisaitis, Chandan Singh, Stephan Saalfeld, and
Srinivas C Turaga. A deep structured learning approach towards automating connectome
reconstruction from 3d electron micrographs. arXiv preprint arXiv:1709.02974, 2017.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. CoRR, abs/1502.01852,
2015. URL http://arxiv.org/abs/1502.01852.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

[6] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, Jan 2017.
URL https://arxiv.org/abs/1412.6980.

[8] Kisuk Lee, Jonathan Zung, Peter Li, Viren Jain, and H. Sebastian Seung. Superhuman accuracy
on the SNEMI3D connectomics challenge. CoRR, abs/1706.00120, 2017. URL http://arxiv.
org/abs/1706.00120.

[9] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In CVPR, 2017.

[10] Juan Nunez-Iglesias, Ryan Kennedy, Toufiq Parag, Jianbo Shi, and Dmitri B. Chklovskii.
Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images. PLOS ONE, 8
(8):1–11, 08 2013. doi: 10.1371/journal.pone.0071715. URL https://doi.org/10.1371/
journal.pone.0071715.

[11] Pedro H. O. Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár. Learning to Refine Ob-
ject Segments. CoRR, abs/1603.08695, 2016. URL http://arxiv.org/abs/1603.08695.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation, May 2015. URL https://arxiv.org/abs/1505.04597.

[13] S C Turaga, J F Murray, V Jain, F Roth, M Helmstaedter, K Briggman, W Denk, and H S Seung.
Convolutional networks can learn to generate affinity graphs for image segmentation., Feb 2010.
URL https://www.ncbi.nlm.nih.gov/pubmed/19922289.

4

http://tensorflow.org/
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.00120
http://arxiv.org/abs/1706.00120
https://doi.org/10.1371/journal.pone.0071715
https://doi.org/10.1371/journal.pone.0071715
http://arxiv.org/abs/1603.08695
https://arxiv.org/abs/1505.04597
https://www.ncbi.nlm.nih.gov/pubmed/19922289


In
pu

t (
2 

ch
an

ne
ls

)
31

8x
31

8x
33

18

24

28

32

48

2

18
18

24
24

24

28
32

32

4x
4x

4

4x
4x

4

4x
4x

4

4x
4x

1

4x
4x

1

64

24

28
28

32

48

4x
4x

4

32

64

48

64

2x
2x

1

2x
2x

1

2x
2x

2

2x
2x

2

2x
2x

2

2x
2x

2

S
um

m
at

io
n 

jo
in

in
g

S
tri

de
d 

co
nv

ol
ut

io
n

S
ki

p 
co

nn
ec

tio
n

S
tri

de
d 

tra
ns

po
se

d 
co

nv
ol

ut
io

n

O
ut

pu
t (

1 
ch

an
ne

l)
31

8x
31

8x
33

18

24

28

32

48

2

18
18

24
24

24

28
32

3264

24

28
28

32

48

28

32

48

64
64

2432

28

64

48
48

Fi
gu

re
3:

E
rr

or
-c

or
re

ct
in

g
ne

tw
or

k
ar

ch
ite

ct
ur

e

5


	Baseline Neuronal Boundary Detection
	Network architecture
	Architectural details

	Dataset
	Training procedures
	Inference and postprocessing

	Per-object VI score
	Training details

