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A Proof of Lower Bound

This appendix completes the proof of the bound in the text that

−
∫
p0(z) log pθ(z) ≤ KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)]− E [log p0(z)] (1)

where p0 is the standard normal density, and pθ(z) =
∫
pθ(z|x)p(x) dx. As described in the text,

introducing a a variational distribution qγ(x|z) yields

−
∫
p0(z) log pθ(z) dz ≤ −

∫∫
p0(z)qγ(x|z) log

pθ(z|x)p(x)
qγ(x|z)

dx dz. (2)

Starting from (2), we obtain a new upper bound by adding a trivial KL divergence to the right hand
side of the above inequality

−
∫
p0(z) log pθ(z) dz ≤ −

∫∫
p0(z)qγ(x|z) log

pθ(z|x)p(x)
qγ(x|z)

dx dz

=

∫∫
p0(z)qγ(x|z) log

qγ(x|z)
pθ(z|x)p(x)

dx dz +

∫
p0(z) log

p0(z)

p0(z)
dz (3)

Now for the upper term in the KL, we have that∫
p0(z) log p0(z) dz =

∫
p0(z) log p0(z)

(∫
qγ(x|z) dx

)
dz =

∫∫
p0(z)qγ(x|z) log p0(z) dx dz.
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Combining with (3) yields

H(Z,Fθ(X)) ≤
∫∫

p0(z)qγ(x|z) log
qγ(x|z)

pθ(z|x)p(x)
dx dz +

∫∫
p0(z)qγ(x|z) log p0(z) dx dz

−
∫
p0(z) log p0(z) dz

=

∫∫
p0(z)qγ(x|z) log

qγ(x|z)p0(z)
pθ(z|x)p(x)

dx dz −
∫
p0(z) log p0(z) dz

= KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)]−
∫
p0(z) log p0(z) dz,

which completes the proof.

B Proof of Proposition 1

Proposition 1. Suppose that there exist parameters θ∗, γ∗ such that O(γ∗, θ∗) = H[p0], where H
denotes Shannon entropy. Then (γ∗, θ∗) minimizes O, and we further have that

pθ∗(z) :=

∫
pθ∗(z|x)p(x) dx = p0(z)

qγ∗(x) :=

∫
qγ∗(x|z)p0(z) dz = p(x).

Proof. From information theory, we know that KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)] ≥ 0. Additionally,
we have that E [d(z, Fθ(x))] ≥ 0,. Moreover, by definition of E [] in the proposition,

−E [log p0(z)] = −
∫∫

p0(z)qγ(x|z) log p0(z) dzdx = −
∫
p0(z) log p0(z) dz

∫
qγ(x|z) dx

= −
∫
p0(z) log p0(z) dz,

which is the definition of the Shannon entropy H[p0] of p0.

This implies that

O(γ, θ) = KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)]− E [log p0(z)] + E [d(z, Fθ(x))]

≥ −E [log p0(z)]

= H[p0].

This bound is attained with equality when qγ(x|z)p0(z) = pθ(z|x)p(x), and when Fθ inverts Gγ on
the data distribution, i.e., when Fθ(Gγ(z)) = z for all z. (Note that this statement does not require G
to be invertible outside of its range.)

Now, if O(γ∗, θ∗) = H[p0], subtracting the entropy from both sides implies that
KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)] = 0. Because the optimum of the KL divergence is unique, we then
have that qγ∗(x|z)p0(z) = pθ∗(z|x)p(x).
Integrating both sides over x yields the first equality in the proposition, and integrating over z yields
the second.

C Discriminator Architecture for ALI and VEEGAN

When using ALI and VEEGAN, the original DCGAN discriminator needs to be augmented in order
allow it to operate on pairs of images and noise vectors. In order to achieve this, we flatten the
final convolutional layer of DCGAN’s discriminator and concatenate it with the input noise vector.
Afterwards, we run the concatenation through a hidden layer, and then compute Dω(z, x) through a
linear transformation.
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Table 1: ALI and VEEGAN Discriminator Architecture.
Operation #Output BN? Activation

Dω(x)
Conv 64 False Leaky ReLU
Conv 128 True Leaky ReLU
Conv 256 True Leaky ReLU
Conv 512 True Leaky ReLU

Flatten - - -
σ(Dω(z, x)) Concatenate Dω(x) and z along the first axis.

Fully Connected 512 False Leaky ReLU
Fully Connected 1 False Sigmoid

Figure 1: VEEGAN method can be used like ALI to perform inference. The means output from the
reconstructor network for the real images in the top row are used as the latent features to samples the
generated images in the bottom row.

D Inference

While not the focus of this work, our method can also be used for inference as in the case of ALI
and BiGAN models. Figure 1 shows an example of inference on MNIST. The top row samples are
from the dataset. We extract the latent representation vector for each of the real images by running
them through the trained reconstructor and then use the resulting vector in the generator to get the
generated samples shown in the bottom row of the figure.

E Adversarial Methods for Autoencoders

In order to quantify contrast the effect of autoencoding of noise in VEEGAN with autoencoding of
data in DAE methods [1, 3] we train DAE version of VEEGAN by simply using the reconstructor
network as an inference network. As mentioned before, careful tuning of the weighing parameter λ
is needed to ensure that the `2 loss is only working as a regularizer. Therefore, we run a parameter
sweep for λ. As shown in figure 2 we were not able to obtain any meaningful images for any of the
tested values.

Figure 2: CIFAR 10 samples from GANs with data Autoencoders. We did a parameter sweep over
the value of λ but were unable to generate any meaningful images for any of the values. Figure 2d is
generated entirely from the `2 loss.

(a) λ = 0.007 (b) λ = 0.01 (c) λ = 0.05 (d) Only `2
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F Stacked MNIST Qualitative Results

Qualitative results from the Stacked MNIST dataset for all the 4 methods.

Figure 3: Samples from trained models for Stacked MNIST dataset.

(a) True Data (b) DCGAN (c) ALI (d) Unrolled (e) VEEGAN

G CelebA Random Sample from ALI and VEEGAN

Additionally, we compared ALI and VEEGAN models on the much bigger CelebA dataset [4] of
faces. Our goal is to test how robust each method is when used without extensive tuning of model
architecture and hyperparameters on a new dataset. Therefore we use the same model architectures
and hyperparameters as we did on the CIFAR-10 data. While ALI failed to produce any meaningful
images, VEEGAN generates high quality images of faces. Please note that this does not mean that ALI
fails on CelebA in general. Indeed, as [2] show, given higher capacity reconstructor and discriminator
with the right hyperparameters, it is possible to generate good quality images on this dataset. Rather,
this experiment only suggests that for the simple network that we use for Stacked MNIST and CIFAR
experiments, VEEGAN learning method was able to produce reasonable images without any further
tuning or hyper parameter search.

Figure 4: ALI on CelebA with simple DCGAN architecture and without tweaking of hyperparameters.
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Figure 5: VEEGAN on CelebA with simple DCGAN architecture and default hyperparameters.

H CIFAR 10 Random Sample from VEEGAN

Randomly generated samples for CIFAR 10 dataset for all the 4 methods.

Figure 6: DCGAN on CIFAR 10 Dataset
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Figure 7: ALI on CIFAR 10 Dataset

Figure 8: Unrolled GAN on CIFAR 10 Dataset
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Figure 9: VEEGAN on CIFAR 10 Dataset
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