
A Proofs of lower bounds

A.1 Softmax output layers

Let f be a linear classifier. For an observation x and any class c 6= f(x), we can compute the norm of
the smallest perturbation r such that f(x+ r) = c. Let us denote this perturbation by ∆adv(x; f, c):

∆adv(x; f, c) = min
r∈Rd
{‖r‖ | f(x+ r) = c}. (5)

It is easily seen that

∆adv(x; f) = min
c6=f(x)

{∆adv(x; f, c)}. (6)

The restriction that c 6= f(x) is important, since otherwise we would get a degenerate solution of
∆adv(x; f) = 0 for all x. Intuitively, ∆adv(x; f) is the norm of the projection of x onto the class
“closest” to x but distinct from f(x). A necessary condition for any adversarial perturbation q is
given by the following
Lemma A.1. Let f be a linear classifier and let q be an adversarial perturbation for an instance x
where f(x) = c and f(x+ q) = c′ 6= c. There exists an α ∈ (0, 1) such thatwc · (x+ αq) + bc =
wc′ · (x+ αq) + bc′ .

Proof. A little algebra shows

α =
(wc′ −wc) · x+ bc′ − bc

(wc −wc′) · q
. (7)

It remains to be proven that 0 < α < 1. Note that, by assumption, wc · x + bc > wc′ · x + bc′
and wc · (x + q) + bc < wc′ · (x + q) + bc′ . This implies (wc′ − wc) · x + bc′ − bc < 0 and
(wc −wc′) · q < 0, so α > 0. Furthermore, sincewc · (x+ q) + bc < wc′ · (x+ q) + bc′ , we find
α < 1.

In other words, Lemma A.1 states that for any linear classifier f , if we want to adversarially perturb
an input x so its assigned label changes from c to c′, we must cross the boundary where f assigns
equal probability to those two classes. Note that this condition is only necessary, not sufficient: it is
perfectly possible to cross this boundary for the classes c and c′ at a point where some other class c′′
is still more likely than either c or c′, but we must cross this boundary nonetheless. Using Lemma A.1
we find
Lemma A.2. Let f be a linear classifier and let x be any input such that f(x) = c′. Then for all
classes c 6= c′,

∆adv(x; f, c) ≥ |(wc
′ −wc) · x+ bc′ − bc|
‖wc′ −wc‖

.

Proof. We can find the norm of the smallest perturbation r such thatwc · (x+ r) + bc = wc′ · (x+
r) + bc′ using the following Lagrangian:

L = ‖r‖2 + λ((wc′ −wc) · (x+ r) + bc′ − bc)

The solution to this optimization problem is given by

r =
(wc′ −wc) · x+ bc′ − bc

‖wc′ −wc‖2
(wc −wc′).

Taking norms we get

‖r‖ =
|(wc′ −wc) · x+ bc′ − bc|

‖wc′ −wc‖
.

By Lemma A.1 and the construction of r, any adversarial perturbation q must satisfy ‖q‖ > ‖r‖.
In particular, any adversarial perturbation q such that f(x + q) = c satisfies ‖q‖ > ‖r‖. Hence
∆adv(x; f, c) ≥ ‖r‖.

11

The following result is a trivial consequence of Lemma A.2:
Theorem A.3. Let f be a linear classifier. Then for all inputs x where f(x) = c,

∆adv(x; f) ≥ min
c′ 6=c

|(wc′ −wc) · x+ bc′ − bc|
‖wc′ −wc‖

.

Note how Theorem A.3 confirms the intuition that the smallest adversarial perturbation to an instance
x is bounded from below by the orthogonal projection of x onto the class closest to x but distinct
from f(x), since this is exactly the quantity on the right-hand side of the inequality.
Theorem A.4. The bound of Theorem A.3 is tight.

Proof. Let f be a classifier for C = d ≥ 2 classes where

f(x) =


1 if x1 > x2, . . . , xC
2 if x2 > x1, x3, . . . , xC
...
C if xC > x1, . . . , xC−1

.

This classifier is linear since it can be characterized by linear functions of the form
fi(x) = ei · x = xi.

Hence, it is subject to the bound of Theorem A.3, which in this case simplifies to
∆adv(x; f) ≥ min

c′ 6=c
|xc′ − xc|.

It is easily seen, however, that this bound is exact for this particular classifier, i.e.
∆adv(x; f) = min

c′ 6=c
|xc′ − xc|.

The reason being that f classifies an input x into the class corresponding to the index of the maximal
component of x. Thus, f(x) = c if and only if xc is the maximal component of x. To find the norm
of the minimal perturbation r such that f(x+ r) 6= c, one simply takes r = (xc − xc′)ec′ where c′
is the index of the second-highest component of x. Clearly f(x+ r) = c′ 6= c and ‖r‖ = |xc′ − xc|
is minimal.

A.2 Fully-connected layers

Applying Taylor’s theorem to hL we obtain
hL(x+ r) = hL(x) + J(x)r + ε,

where

‖ε‖ ≤ M

2

√
n ‖r‖2 .

Here, M is a real number bounding the absolute value of all second-order derivatives of hL from
above. Thus q = J(x)r + ε and

‖q‖ ≤ ‖J(x)‖ ‖r‖+
M

2

√
n ‖r‖2 .

This is a quadratic inequality in ‖r‖ whose solution is given by

‖r‖ ≥

√
‖J(x)‖2 + 2M

√
n ‖q‖ − ‖J(x)‖

M
√
n

.

By Theorem A.3 we know

‖q‖ ≥ min
c′ 6=c

|(wc −wc′) · h(x)|
‖wc −wc′‖

.

Hence the theorem follows.

One might rightly ask how realistic this result actually is. After all, we needed to assume that the
function hL was twice differentiable and had bounded second-order derivatives. In this section,
we will try to show that these assumptions are quite realistic by deriving them from other realistic
assumptions on the activation functions. Specifically, we have the following

12

Theorem A.5. Consider fully-connected layers h1, . . . ,hL whose activation functions gi are twice
differentiable on R. Assume also that for each gi there exist Ni > 0 and Mi > 0 such that
|g′i(x)| ≤ Ni and |g′′i (x)| ≤ Mi for all x. Then hL(x) = [h

(1)
L (x), . . . , h

(n)
L (x)]T satisfies the

following properties:

1. each h(i)L is twice differentiable;

2. |∂αh(i)L (x)| ≤M for all i, |α| = 2 and some M > 0;

3. |∂αh(i)L (x)| ≤ N for all i, |α| = 1 and some N > 0.

Proof. The proof proceeds by induction on L. The case where L = 0 is trivial, so suppose

1. each h(i)L is twice differentiable;

2. |∂αh(i)L (x)| ≤M ′ for all i, |α| = 2 and some M ′ > 0;

3. |∂αh(i)L (x)| ≤ N ′ for all i, |α| = 1 and some N ′ > 0.

We need to show thathL+1 : Rd → Rn : x 7→ [h
(1)
L+1(x), . . . , h

(n)
L+1(x)]T then satisfies the following

properties:

1. h(i)L+1 is twice differentiable for all i;

2. there exists an M > 0 such that |∂αh(i)L+1(x)| ≤M for all x, |α| = 2 and i;

3. there exists an N > 0 such that |∂αh(i)L+1(x)| ≤ N for all x, |α| = 1 and i.

Since hL+1(x) = gL+1(VL+1hL(x) + bL+1) we find

h
(i)
L+1(x) = gL+1

∑
j

vL+1,i,jh
(j)
L (x) + bL+1,i

 .

Clearly, since gL+1 is twice differentiable by assumption and h(j)L is twice differentiable for all j by
the induction hypothesis, h(i)L+1 is twice differentiable for all i. This shows Item 1. To show Item 2,
we distinguish two cases. First, let

αj =

{
2 j = k
0 otherwise

for some k ∈ {1, . . . , d}. Then

∂αh
(i)
L+1 =

∂2h
(i)
L+1

∂x2k
=

∂

∂xk

g′L+1

∑
j

vL+1,i,jh
(j)
L (x) + bL+1,i

∑
j

vL+1,i,j
∂

∂xk
h
(j)
L (x)


= g′′L+1

∑
j

vL+1,i,jh
(j)
L (x) + bL+1,i

∑
j

vL+1,i,j
∂

∂xk
h
(j)
L (x)

2

+

g′L+1

∑
j

vL+1,i,jh
(j)
L (x) + bL+1,i

∑
j

vL+1,i,j
∂2

∂x2k
h
(j)
L (x).

Taking absolute values and applying the induction hypothesis, this yields

|∂αh(i)L+1| ≤ML+1

N ′∑
j

|vL+1,i,j |

2

+NL+1M
′
∑
j

|vL+1,i,j |.

13

Hence we may choose

M = ML+1 (N ′s)
2

+NL+1M
′s,

where

s = max
i

∑
j

|vL+1,i,j |.

For the second case, let

αj =

{
1 j ∈ {k1, k2}
0 otherwise

for k1, k2 ∈ {1, . . . , d} and k1 < k2. Of course, this case only applies when d > 1. We find

∂αh
(i)
L+1 =

∂2h
(i)
L+1

∂xk1∂xk2
=

∂

∂xk2

g′L+1

∑
j

vL+1,i,jh
(j)
L (x) + bL+1,i

∑
j

vL+1,i,j
∂

∂xk1
h
(j)
L (x)


= g′′L+1

∑
j

vL+1,i,jh
(j)
L (x) + bL+1,i

∑
j

vL+1,i,j
∂

∂xk2
h
(j)
L (x)

∑
j

vL+1,i,j
∂

∂xk1
h
(j)
L (x)

+ g′L+1

∑
j

vL+1,i,jh
(j)
L (x) + bL+1,i

∑
j

vL+1,i,j
∂2

∂xk1∂xk2
h
(j)
L (x)

Again, taking absolute values and applying the induction hypothesis:

|∂αh(i)L+1(x)| ≤ML+1

N ′∑
j

|vL+1,i,j |

2

+NL+1M
′
∑
j

|vL+1,i,j |

The result is identical to the first case.

Finally, to show Item 3, we let

αj =

{
1 j = k
0 otherwise

for some k ∈ {1, . . . , d}. Then

∂αh
(i)
L+1 =

∂h
(i)
L+1

∂xk
= g′L+1

∑
j

vL+1,i,jh
(j)
L (x) + bL+1,i

∑
j

vL+1,i,j
∂

∂xk
h
(j)
L (x).

Again taking absolute values and applying the induction hypothesis, we find

|∂αh(i)L+1| ≤ NL+1N
′
∑
j

|vL+1,i,j |.

Hence we may choose

N = (NL+1N
′)max

i

∑
j

|vL+1,i,j |.

This completes the proof.

By Theorem A.5, in order for Theorem 4.1 to hold it is sufficient that the activation functions of
the MLP in question be twice differentiable and have bounded first and second derivatives. These
assumptions are not unrealistic: they are satisfied by the logistic sigmoid function, for example. The
logistic sigmoid is in fact just a scaled and shifted version of the hyperbolic tangent:

sigm(x) =
1

2
tanh

(x
2

)
+

1

2
. (8)

14

Since tanh is twice differentiable, so is sigm. Moreover, the first and second derivatives of tanh are
bounded by 1, so the first and second derivatives of sigm are bounded as well. In fact, | tanh(x)| ≤ 1
for all x.

The ReLU activation function presents some problems, however, as it is not differentiable at zero.
Gradient-based optimization requires all activation functions be differentiable, though, so in practice
either a smooth approximation to ReLU is used which is differentiable, such as the softplus function
ln(1+exp(x)), or the value of the derivative is simply set to zero at the origin (Glorot et al. [2011]). In
both cases it can be seen that ReLU (as it is used in practice) also satisfies the necessary assumptions
for Theorem 4.1 to hold.

Note also how the proof of Theorem A.5 yields an efficient algorithm for approximating the M
parameter used in the lower bound. Algorithm A.1 shows how this can be done in O(n) time where
n is the number of parameters of the neural network.

Algorithm A.1: Computation of M

Data: MLP f with L hidden layers, activation functions gi satisfying |g′i(x)| ≤ Ai and
|g′′i (x)| ≤ Bi for all x.

Result: a value M satisfying |∂αh(i)L (x)| ≤M for all x, |α| = 2 and i
begin

M0 ← 0
N0 ← 1
for i from 1 to L do

s← max
j

∑
k |vi,j,k|

Mi ← BiN
2
i−1s

2 +AiMi−1s
Ni ← AiNi−1s

end
return ML

end

A.3 Convolutional layers

Using Lemma B.1 we find1

‖ReLU(W ? (X + R) + b)‖F = ‖ReLU(W ? X + W ? R + b)‖F
≤ ‖ReLU(W ? X + b) + ReLU(W ? R)‖F
≤ ‖ReLU(W ? X + b)‖F + ‖ReLU(W ? R)‖F .

This yields

‖ReLU(W ? R)‖F ≥ κ.

A necessary condition for this equality to hold is (Lemma B.1)

‖W ? R‖F = κ. (9)

Thanks to Lemma B.3, we may rewrite Equation (9) as

‖R‖F ≥
κ

‖W‖F
.

A.4 Pooling layers

Assuming any adversarial perturbation Q to the input of the next layer needs to satisfy ‖Q‖F ≥ κ,
Assumption 4.3 implies we have to solve the following equation:

‖Z(R)‖F ≥ κ. (10)

1Note that even though W ? (X+ R) + b does not represent a real convolution in this context, the linearity
property of Lemma B.1 still applies.

15

A necessary condition for Equation (10) to hold is to have

|zijk(R)| ≥ κ

t
(11)

for at least one element zijk(R). How this can be done depends on the precise nature of the pooling
operation.

A.4.1 MAX-pooling

MAX-pooling reduces the dimensionality of the input by taking the maximum of all q × q regions
within the receptive field:

zijk(X) = max{xinm | (n,m) ∈ I(j, k)}.
Proof that MAX-pooling satisfies Assumption 4.3 is given in Lemma B.4. In order to satisfy
Equation (11), it is clearly necessary to set at least one component of R equal to or greater than κ/t in
absolute value. This yields

‖R‖F ≥
κ

t
. (12)

A.4.2 Lp pooling

An Lp pooling layer produces as output the Lp norm of its input:

zijk(X) =

 ∑
(n,m)∈I

|xinm|p
 1

p

.

We will write vijk for the vector whose Lp norm is taken in the computation of zijk. Proof that
Lp-pooling satisfies Assumption 4.3 is given in Lemma B.5. In order to satisfy Equation (11), we
must have

‖vijk(R)‖p ≥
κ

t
(13)

for some i, j, k. For Equation (13) to be satisfied, there must be at least one element rlmn in some
receptive field of R such that

|rlmn| ≥
κ

tq2/p
.

Since there will be at least one receptive field, at least one element of R must satisfy this requirement
and hence

‖R‖F ≥
κ

tq2/p
. (14)

Note the nice property that as p→∞ we find

‖R‖F ≥
κ

t
,

which is the bound for MAX-pooling.

A.4.3 Average pooling

An average pooling layer takes the average of all its inputs:

zijk(X) =
1

q2

∑
(n,m)∈I

xinm.

Proof that average pooling satisfies Assumption 4.3 is given in Lemma B.6. Note that, contrary to all
the other pooling operations studied here, Assumption 4.3 holds with equality in the case of average
pooling. To satisfy Equation (11), it is necessary that at least one element of R be greater than or
equal to κ/t in absolute value. We thus find

‖R‖F ≥
κ

t
. (15)

16

B Auxiliary results

Lemma B.1.

1. Let a, b ∈ R, then

ReLU(a+ b) ≤ ReLU(a) + ReLU(b).

2. Let W,X,R be tensors and s ∈ N, then

W ?s (X + R) = W ?s X + W ?s R.

3. Let X be any real-valued tensor, then

‖ReLU(X)‖F ≤ ‖X‖F .

Proof.

1. We distinguish four cases:

• a, b > 0:

ReLU(a+ b) = a+ b = ReLU(a) + ReLU(b).

• a > 0 and b ≤ 0:

ReLU(a+ b) ≤ a+ b ≤ a = ReLU(a) + ReLU(b).

• a ≤ 0 and b > 0:

ReLU(a+ b) ≤ a+ b ≤ b = ReLU(a) + ReLU(b).

• a, b < 0:

ReLU(a+ b) = 0 = ReLU(a) + ReLU(b).

2. Suppose W ∈ Rn1×···×nd and X,R ∈ Rm1×...md , then

(W ?s (X + R))i1...id =
∑

j1,...,jd

wj1...jd(xi1+s(j1−1),...,id+s(jd−1) + ri1+s(j1−1),...,id+s(jd−1))

=
∑

j1,...,jd

wj1...jdxi1+s(j1−1),...,id+s(jd−1) +
∑

j1,...,jd

wj1...jdri1+s(j1−1),...,id+s(jd−1)

= (W ?s X)i1...id + (W ?s R)i1...id .

3. Let X ∈ Rn1×···×nd . We compute:

‖ReLU(X)‖2F =
∑

i1,...,id

max{0, xi1...id}2 ≤
∑

i1,...,id

x2i1...id = ‖X‖2F .

Lemma B.2. Let ai, bi be non-negative real numbers for i = 1, . . . , n. Then∑
i

aibi ≤

(∑
i

ai

)(∑
i

bi

)
.

Proof. This is easy to see by direct computation:(∑
i

ai

)(∑
i

bi

)
=
∑
i

ai

∑
j

bj

 .

Since all terms are non-negative, we have

bi ≤
∑
j

bj

for all i. Hence the result follows.

17

Lemma B.3. Let W and R be as above, then

‖W ? R‖F ≤ ‖W‖F ‖R‖F .

Proof. We compute:

‖W ? R‖2F =
∑
i

‖Wi ? R‖2F =
∑
i,j,k

(Wi ? R)2jk

=
∑

i,j,k,l,m,n

w2
ilmnr

2
l,m+s(j−1),n+s(k−1).

Using Lemma B.2:∑
w2
ilmnr

2
l,m+s(j−1),n+s(k−1) ≤

(∑
w2
ilmn

)(∑
r2l,m+s(j−1),n+s(k−1)

)
≤
(∑

w2
ilmn

)(∑
r2lmn

)
= ‖W‖2F ‖R‖

2
F .

We can thus conclude

‖W ? R‖F ≤ ‖W‖F ‖R‖F .

Lemma B.4. MAX-pooling satisfies Assumption 4.3.

Proof. We compute:

zijk(X + R) = max{xinm + rinm | (n,m) ∈ I(j, k)}
≤ max{xinm | (n,m) ∈ I(j, k)}+ max{rinm | (n,m) ∈ I(j, k)}
= zijk(X) + zijk(R).

Lemma B.5. Lp pooling satisfies Assumption 4.3.

Proof. Define vijk(X) to be the vector whose Lp norm is taken in the computation of zijk(X). We
find

zijk(X + R) = ‖vijk(X + R)‖p = ‖vijk(X) + vijk(R)‖p
≤ ‖vijk(X)‖p + ‖vijk(R)‖p = zijk(X) + zijk(R).

Lemma B.6. Average pooling satisfies Assumption 4.3.

Proof. We have

zijk(X + R) =
1

q2

∑
(n,m)∈I

(xinm + rinm)

=
1

q2

∑
(n,m)∈I

xinm +
1

q2

∑
(n,m)∈I

rinm

= zijk(X) + zijk(R).

18

	Proofs of lower bounds
	Softmax output layers
	Fully-connected layers
	Convolutional layers
	Pooling layers
	MAX-pooling
	Lp pooling
	Average pooling

	Auxiliary results

