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A Proof of Lemma 1

Let Nt be a shorthand for Nt(�, X). Since � uniformly distributed on the set of sequences with
empirical distribution ⇡, and Nt counts the number of locations where Xj = 1 and �j = t, we
have Nt ⇠ Hypergeometric(⇡tp,m(X), p), where m(X) denotes the number of ones in X , and
Hypergeometric(k,m, p) denotes the distribution of the number of “special items” when k items are
drawn from a population of p items (m of which are special) without replacement.

As a result, by Hoeffding’s inequality for sampling without replacement [17], we have P[|N1 �
E[N1]| > �p]  2e�2�2p. Choosing � =

q
log p
p yields (17).

B Proofs of general results for the noisy setting

Throughout this section, the random variables X and � are always discrete, whereas we allow the
observations Y to be either discrete or continuous. In the continuous case, entropy terms should be
interpreted as being the differential entropy [9, Ch. 8].

B.1 Proof of Theorem 2

Throughout the proof, we make use of the definitions in Section 2.2 in terms of a given vector of
integers ` = (`1, . . . , `d) with 0  `t  ⇡tp. Note that we only consider choices of ` such that
k`k0 � 2, since otherwise the recovery problem would be trivial (e.g., if only a single `t is positive,
then one achieves zero error probability be estimating all unknown labels to be t).

Step 1: Fano’s inequality and a genie argument. As outlined in Section 3, a natural starting point
is to apply Fano’s inequality [9, Sec. 2.10] to obtain

I(�;Y|X) � log |B(⇡)| · (1� �)� log 2. (27)

Unfortunately, this bound alone is not sufficient to attain the desired result. To do that, we apply a
genie argument, considering the following modified setting:

• The items [p] are split into S` (cf., Section 2.2) and Sc
` = [p]\S`;

• A genie reveals to the decoder the labels of all items in Sc
` , or equivalently, the vector �Sc

`

defined in (9);
• The decoder is left to identify only the entries in � indexed by S`, i.e., to “fill in” the indices

of �Sc
`

that are equal to ?.

Clearly the additional information at the decoder only makes the recovery problem easier, and thus
any lower bound for the genie-aided setting is also a lower bound for the original setting.

Let us condition on particular realizations of �Sc
`
= bSc

`
, and X = x, and let �(bSc

`
,x) denote the

corresponding conditional error probability. For any such realizations, the entries of � indexed by
S` (i.e., locations where bSc

`
equals ?) are uniform on the set of all possible subsequences that are

consistent with ⇡, of which there are |B`(⇡)| in total. Hence, Fano’s inequality [9, Sec. 2.10] gives

I(�;Y|�Sc
`
= bSc

`
,X = x) � log |B`(⇡)| ·

�
1� �(bSc

`
,x)

�
� log 2, (28)

and averaging both sides over (�Sc
`
,X) gives the following generalization of (27):

I(�;Y|�Sc
`
,X) � log |B`(⇡)| · (1� �)� log 2, (29)
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where we recall that � is the target error probability. This provides the starting point of our analysis.

Step 2: Bounding the mutual information. We upper bound the conditional mutual information
in (29) as

I(�;Y|�Sc
`
,X) = H(Y|�Sc

`
,X)�H(Y|�,�Sc

`
,X) (30)

= H(Y|�Sc
`
,X)�

nX

i=1

H(Y (i)|�,�Sc
`
,X) (31)

= H(Y|�Sc
`
,X)�

nX

i=1

H(Y (i)|�,�Sc
`
, X(i)) (32)


nX

i=1

H(Y (i)|�Sc
`
, X(i))�

nX

i=1

H(Y (i)|�,�Sc
`
, X(i)) (33)

=

nX

i=1

I(�;Y (i)|�Sc
`
, X(i)), (34)

where:

• (31) follows since we have assumed that the observations are conditionally independent;
• (32) follows since given (�,�Sc

`
), Y (i) depends on X only through X(i);

• (33) follows from the sub-additivity of entropy and the fact that conditioning reduces entropy
(e.g., see [9, Ch. 2]).

Substituting (34) into (29), re-arranging, and maximizing over ` (which was arbitrary in the above
analysis), we obtain Theorem 2.

B.2 Proof of Corollary 1

In the case that the entries of X are i.i.d. Bernoulli, each mutual information term
I(�;Y (i)|�Sc

`
, X(i)) is identical, and (10) becomes

n � max
` : k`k

0

�2

�
log |B`(⇡)|

�
(1� �)� log 2

I(�;Y |�Sc
`
, X)

, (35)

where we define (X,Y ) = (X(i), Y (i)) for some arbitrary fixed i 2 {1, . . . , n}.

Let X0,` (respectively, X1,`) be formed from X by taking the sub-vector of X indexed by S` (re-
spectively, Sc

`) and re-ordering it so that the indices corresponding to class 1 appear first, then class
2, and so on. Since the entries of X are i.i.d. Bernoulli, this means that the triplet (X0,`, X1,`, Y )
follows the joint distribution described in Theorem 2. We have

I(�;Y |�Sc
`
, X) = H(Y |�Sc

`
, X)�H(Y |�,�Sc

`
, X) (36)

= H(Y |X1,`,�Sc
`
, X)�H(Y |X0,`, X1,`,�,�Sc

`
, X) (37)

 H(Y |X1,`)�H(Y |X0,`, X1,`,�,�Sc
`
, X) (38)

= H(Y |X1,`)�H(Y |X0,`, X1,`) (39)
= I(X0,`;Y |X1,`), (40)

where:

• (37) follows since X1,` is a function of (�Sc
`
, X) and (X0,`, X1,`) is a function of

(�,�Sc
`
, X);

• (38) follows since conditioning reduces entropy;
• (39) follows since Y and (�,�Sc

`
, X) are conditionally independent given (X0,`, X1,`).

This is because the model is of the form (3), and the values {Nt}dt=1 are already determined
by (X0,`, X1,`).

Substituting (40) into (35) completes the proof.
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C Applications of Theorem 2 to specific models

C.1 Noiseless setting with arbitrary testing

Here we prove the first claim given in the application to the noiseless model following Theorem 2.

In the noiseless setting, Y (i) is a deterministic function of (�, X(i)), and hence
I(�;Y (i)|�Sc

`
, X(i)) = H(Y (i)|�Sc

`
, X(i)). It turns out to suffice to let ` = (`1, . . . , `d) be

such that each `t either equals its minimum value zero or its maximum value p⇡t. We let G ✓ [d]
index those equaling the maximum value, and let Gc = [d]\G index those equaling zero. As a
result, �Sc

`
in (9) is precisely equal to �Gc in (25), and we are left to bound H(Y (i)|�Gc , X(i)). For

notational simplicity, we focus on an arbitrary fixed value of i and omit the superscripts (·)(i).
Recall that Y = (Y1, . . . , Yd) according to (2). Given G, we let G0 be an arbitrary subset of G with
a single element removed, and we write YG = (Yt)t2G, and similarly for YGc and YG0 . With these
definitions, we have

H(Y |�Gc , X) = H(YG, YGc |�Gc , X) (41)
= H(YG0 , YGc |�Gc , X) (42)
= H(YG0 |�Gc , X) (43)


X

t2G0

H(Yt|�Gc , X), (44)

where (42) follows since any single entry of Y can be uniquely determined as equaling the number
of ones in X minus the other d� 1 entries, (43) follows since YGc is deterministic given (�Gc , X),
and (44) follows from the sub-additivity of entropy.

We proceed by characterizing the conditional distribution of Yt for given values of (�Gc , X). Let
mG denote the total number of ones in X among the indices where �Gc equals ? (i.e., the indices
of items whose labels are in G). We denote these indices by SG. Moreover, recall that � is uniform
on B(⇡), so once �Gc is known, the remaining entries are uniform on the set of possible outcomes
consistent with both ⇡ and �Sc

`
.

From these definitions and observations, we see that the items within SG having label t are obtained
by randomly selecting ⇡tp indices uniformly at random without replacement from a total of pG :=P

t2G ⇡tp indices. Since Yt represents the number of such locations where X equals one, we have

(Yt|�Gc , X) ⇠ Hypergeometric(⇡tp,mG, pG). (45)

Note that for G = [d], this matches the distribution derived in Appendix A. Before proceeding, we
present the following lemma regarding the entropy of an integer-valued random variable.
Lemma 2. [18] For any integer-valued random variable U , we have

H(U)  1

2
log

✓
2⇡e

⇣
Var[U ] +

1

12

⌘◆
. (46)

Note that the right-hand side of (46) is the differential entropy of a Gaussian random variable with
variance Var[U ] + 1

12 [9, Ch. 8]. For continuous random variables, an analogous result holds true
without the addition of 1

12 , i.e., the Gaussian distribution maximizes entropy for a given variance.

For U ⇠ Hypergeometric(k,m, p), we have

Var[U ] = k · m
p

· p�m

p
· p� k

p� 1
 k

4
, (47)

where we have applied p�k
p�1  1 and m(p � m)  p2

4 . Hence, under the distribution in (45), the
conditional variance of Yt is upper bounded by ⇡tp/4, and Lemma 2 yields

H(Yt|�Gc , X)  1

2
log

✓
2⇡e

⇣⇡tp

4
+

1

12

⌘◆
(48)

=

✓
1

2
log p

◆
(1 + o(1)), (49)
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where in (49) we used the fact that ⇡ does not depend on p (and hence ⇡t = ⇥(1) for all t). Substitut-
ing (49) into (44) and noting that |G0| = |G|�1, we obtain H(Y |�Gc , X) 

� |G|�1
2 log p

�
(1+o(1)).

Putting it all together, we have shown that I(�;Y (i)|�Gc , X(i)) 
� |G|�1

2 log p
�
(1 + o(1)) for all

i = 1, . . . , n. In addition, we have analogously to (21) that log |B`(⇡)| = pG(H(⇡G) + o(1)) under
our choice of ` (depending on G). Hence, substituting into (10), maximizing over G, and changing
variables from |G| to r analogously to Section 3.1, we obtain (8) with 1� �� o(1) in place of 1� ⌘.

C.2 Noiseless setting with Bernoulli testing

Here we derive (11) for the noiseless model with Bernoulli testing. We follow the same arguments
as those used in Section C.1 for general tests, and therefore only describe the differences. We restrict
the choices of ` as in Section C.1, indexing them by G ✓ [d] and using the definition of �Gc in (25).
Moreover, we write (XG, XGc) in place of (X0,`, X1,`).

The mutual information term I(XG;Y |XGc) simplifies to H(Y |XGc) in the noiseless setting, and
analogously to (44), we have

H(Y |XGc) =
X

t2G0

H(Yt|XGc), (50)

where G0 is an arbitrary subset of G with a single element removed. Next, we observe that each Yt

for t 2 G0 is in fact independent of XGc , and is distributed as Binomial(p⇡t, q). The corresponding
variance is p⇡tq(1� q), and applying Lemma 2, we conclude that the entropy is upper bounded by
1
2 log

�
2⇡e

�
p⇡tq(1� q)+ 1

12

��
. Since we have assumed that pq and p(1� q) both grow unbounded

as p ! 1, and recalling that ⇡t = ⇥(1), this simplifies to
�
1
2 log(pq(1� q))

�
(1 + o(1)).

Once this upper bound on the entropy of each Yt is established, we deduce (12) using (11) and the
same argument as that following (49).

C.3 Gaussian noise with large signal-to-noise ratio

Here we derive the first bound (15) for the Gaussian noise model.

We again restrict the choices of ` as in Section C.1, indexing them by G ✓ [d] and using the
definition of �Gc in (25). Letting H(·) denote the differential entropy [9, Ch. 8] of a continuous
random variable, we have

I(�;Y |�Gc , X) = H(Y |�Gc , X)�H(Y |�,�Gc , X) (51)

= H(Y |�Gc , X)� d

2
log(2⇡ep�2) (52)


dX

t=1

H(Yt|�Gc , X)� d log(2⇡ep�2), (53)

=
X

t2G

H(Yt|�Gc , X)� (d� |Gc|) log(2⇡ep�2), (54)

where

• (52) follows since the only uncertainty in Y given (�,�Gc , X) is that of the d additive
N(0, p�2) terms, each of which has differential entropy 1

2 log(2⇡ep�
2) [9, Ch. 8];

• (53) follows from the sub-additivity of entropy;

• (54) follows since for t 2 Gc, the only uncertainty in Yt given (�Gc , X) is that of the
additive N(0, p�2) noise term.

For t 2 G, each Yt is of the form Nt+Zt, where Nt is (conditionally) distributed as in (45), and Zt ⇠
N(0, p�2) is independent of Nt. Using (47), we deduce that Var[Yt|�Gc , X]  p⇡t/4+p�2 for any
realizations of (�Gc , X), which in turn implies H(Yt|�Gc , X)  1

2 log
�
2⇡e(p⇡t/4 + p�2)

�
since

the Gaussian distribution maximizes the differential entropy for a given variance [9, Thm. 8.6.5].
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Substituting into (54) and noting that d� |Gc| = |G|, we obtain

I(�;Y |�G, X) 
X

t2G

1

2
log

�
2⇡e(p⇡t/4 + p�2)

�
� |G| log(2⇡ep�2) (55)

=
X

t2G

1

2
log

✓
1 +

⇡t

4�2

◆
. (56)

In addition, as we already stated in the noiseless case, it holds that log |B`(⇡)| = pG(H(⇡G)+o(1))
under our choice of ` (depending on G). Substituting into (10) and maximizing over G, we obtain
the desired bound in (15).

C.4 Gaussian noise with constant signal-to-noise ratio

Here we derive the second bound (16) for the Gaussian model.

We choose ` in (8) with `1 = p⇡1, `2 = 1, and `t = 0 for t = 3, . . . , d. Since only p⇡1+1 entries of
� remain unspecified (i.e., the corresponding entries of �Sc

`
are equal to ?), and those become fully

specified once we assign the single remaining item with label 2 (since this means the rest must have
label 1), we have

|B`(⇡)| = p⇡1 + 1. (57)

The main step is to bound the mutual information terms appearing in (8). We again focus on a single
test indexed by i, and write (X,Y ) in place of (X(i), Y (i)). We have

I(�;Y |�Sc
`
, X) = I(�;Y1, Y2|�Sc

`
, X) (58)

= H(Y1, Y2|�Sc
`
, X)�H(Y1, Y2|�,�Sc

`
, X) (59)

= H(Y1, Y2|�Sc
`
, X)� log(2⇡e(p�2)) (60)

 H(Y1|�Sc
`
, X) +H(Y2|�Sc

`
, X)� log(2⇡e(p�2)), (61)

where

• (58) follows since Y3, . . . , Yd are conditionally independent of � given (�Sc
`
, X) (specifically,

they are pure Gaussian noise due to the choice of `);
• (60) follows since Y1 and Y2 are also pure Gaussian noise given (�,�Sc

`
, X), so they each have

entropy 1
2 log(2⇡e(p�

2));
• (61) follows from the sub-additivity of entropy.

To bound H(Y1|�Sc
`
, X), we recall that Y1 = N1+Z1, where N1 counts the number of tested items

with label 1, and Z1 ⇠ N(0, p�2). We write this as Y1 = Ntotal � ⇠ + Z1, where Ntotal is the total
number of unspecified items included in the test (i.e., the number of j 2 [p] such that (�Sc

`
)j = ?

and Xj = 1), and ⇠ 2 {0, 1} indicates whether the single unspecified item with label 2 is tested.

Since the quantity Ntotal is deterministic given (�Sc
`
, X), the conditional variance of Y1 is simply

Var[Y1|�Sc
`
, X] = Var[�⇠ + Z1] (62)

= Var[⇠] + Var[Z1] (63)

 1

4
+ p�2, (64)

where (63) follows since ⇠ and Z1 are independent, and (64) follows since a random variable on
{0, 1} has variance at most 1

4 , and since Z1 is Gaussian with variance p�2. Finally, since the Gaus-
sian distribution maximizes entropy for a given variance, we deduce that

H(Y1|�Sc
`
, X)  1

2
log

✓
2⇡e

⇣1
4
+ p�2

⌘◆
. (65)

For Y2, we apply the same argument, noting that Y2 = N2,other + ⇠ + Z2, where N2,other counts
the number of indices where (�Sc

`
)j = 2 and Xj = 1. We see that N2,other is deterministic given

14



(�Sc
`
, X), and it follows that Y2 satisfies the same conditional variance bound as Y1, and hence the

same conditional entropy bound as (65).

Substituting (65) (and the analog for Y2) into (61), we obtain

I(�;Y |�Sc
`
, X)  log(2⇡e(1/4 + p�2))� log(2⇡e(p�2)) (66)

= log
⇣
1 +

1

4p�2

⌘
(67)

 1

4p�2
, (68)

where (68) follows from the inequality log(1 + ↵)  ↵. Finally, substituting (57) and (68) into (10)
and writing log(p⇡1 + 1) = (log p)(1 + o(1)), we obtain the desired result (16).

D Extensions to approximate recovery

Throughout the paper, we have considered the exact recovery criterion in (4), in which one insists
on estimating every entry of � correctly. However, both Theorems 1 and 2 extend readily to the
approximate recovery setting, as we describe below. We note that relaxed recovery criteria are
known to considerably reduce the number of measurements in certain problems such as compressive
sensing [19, 20], while having a smaller effect in other problems including group testing [16, 21].

Suppose that we only require the recovery of � up to a Hamming distance of qmax 2 {0, . . . , p}.
Then the error probability is given by

Pe(qmax) = P
 pX

j=1

1{�̂j 6= �j} > qmax

�
. (69)

One should certainly expect this criterion to reduce the number of measurements for certain values
of qmax: If d = 2 and qmax � max{p⇡1, p⇡2} then we can achieve Pe(qmax) = 0 with no tests, by
simply declaring each entry of �̂ to equal the most common label.

Nevertheless, the following generalization of Theorem 1 reveals that in the noiseless setting, the
asymptotic reduction in the number of tests is insignificant when qmax is not too large.
Theorem 3. (Approximate recovery, noiseless) Consider the noiseless pooled data problem under
the approximate recovery criterion (69), with a given number of labels d and label proportion vector
⇡ (not depending on the dimension p), and a given maximum Hamming distance qmax. Then for any
decoder, in order to achieve Pe(qmax) 6! 1 as p ! 1, it is necessary that

n � 1

log p

✓
max

r2{1,...,d�1}

2
�
pH(⇡)� pH(⇡r)� log

Pq
max

j=0

�
p
j

�
(d� 1)j

�

d� r

◆
(1� ⌘) (70)

for arbitrarily small ⌘ > 0.

Proof. The proof is identical to that of Theorem 1 up until (19), at which point the condition
�̂(Y(b)) = b should be replaced by dH(�̂(Y(b)), b)  qmax, where dH denotes the Hamming
distance. The number of sequences within a Hamming distance qmax of a given b 2 [d]p is up-
per bounded by

Pq
max

j=0

�
p
j

�
(d � 1)j , which follows by counting the number of ways of choosing

j  qmax locations and assigning one of d� 1 new values to each.

As a result, the right-hand side of (20) needs to be multiplied by
P↵⇤p

j=0

�
p
j

�
(d � 1)j , and following

the remainder of the proof with this factor incorporated, we obtain (70).

For any qmax = o(p), the term log
Pq

max

j=0

�
p
j

�
(d � 1)j is dominated by pH(⇡) � pH(⇡r), and

hence the approximate recovery threshold is identical to the exact recovery threshold. Hence, a
key implication of Theorem 3 is that asymptotically, recovering all labels is essentially as easy as
recovering all but a vanishing fraction of the labels.
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In contrast, if qmax = ↵⇤p for fixed ↵⇤ 2 (0, 1), the term log
Pq

max

j=0

�
p
j

�
(d � 1)j behaves as ⇥(p),

and Theorem 3 indicates that the approximate recovery criterion may permit improved constant fac-
tors in the required number of tests. However, the scaling laws are unchanged when ↵⇤ is sufficiently
small (in particular, small enough to avoid the above-mentioned trivial cases).

Theorem 2 also extends naturally to the approximate recovery criterion, yielding the following.
Theorem 4. (Approximate recovery, noisy) Consider the pooled data problem under a general
observation model of the form (3) and the approximate recovery criterion (69), with a given number
of labels d, label proportion vector ⇡, and maximum Hamming distance qmax. Then for any decoder,
in order to achieve Pe(qmax)  � for a given � 2 (0, 1), it is necessary that

n � max
` : k`k

0

�2

�
log |B`(⇡)|� log

Pq
max

j=0

�
p
j

�
(d� 1)j

�
(1� �)� log 2

1
n

Pn
i=1 I(�;Y

(i)|�Sc
`
, X(i))

. (71)

Proof. The proof is nearly identical to that of Theorem 2, except that we replace Fano’s inequality
by its counterpart for approximate recovery, analogously to previous works on problems such as
support recovery [20, Appendix A] and graphical model selection [22, Lemma 1] (see also [23]).
Similarly to the proof of Theorem 3, the term log

Pq
max

j=0

�
p
j

�
(d � 1)j represents the number of

different �̂ that remain feasible given that � is fixed and an error does not occur.

An approximate recovery analog of Corollary 1 follows naturally from Theorem 4, as do bounds of
the form (12)–(15) with analogous modifications to those given in (70).

On the other hand, Theorem 4 does not recover any meaningful analog of (16). This is because
the proof of (16) is based on a choice of ` with log |B`(⇡)|  log p, which is dominated by
log

Pq
max

j=0

�
p
j

�
(d � 1)j in (71) unless qmax = 0. Stated differently, the proof of (16) essentially

involves leaving the decoder with the difficulty of estimating one specific label, which is trivial in
the approximate recovery setting.

Nevertheless, in the constant signal-to-noise ratio regime with either qmax = o(p) or qmax = ↵⇤p
for sufficiently small ↵⇤ 2 (0, 1), one can still use the analog of (15) to prove an ⌦(p) lower bound.
While this is not as strong as the ⌦(p log p) bound proved for exact recovery, it still shows that noise
increases the number of tests from sub-linear in the dimension to at least linear.
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