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Abstract

In this paper, we introduce a new image representation based on a multilayer kernel
machine. Unlike traditional kernel methods where data representation is decoupled
from the prediction task, we learn how to shape the kernel with supervision. We
proceed by first proposing improvements of the recently-introduced convolutional
kernel networks (CKNs) in the context of unsupervised learning; then, we derive
backpropagation rules to take advantage of labeled training data. The resulting
model is a new type of convolutional neural network, where optimizing the filters
at each layer is equivalent to learning a linear subspace in a reproducing kernel
Hilbert space (RKHS). We show that our method achieves reasonably competitive
performance for image classification on some standard “deep learning” datasets
such as CIFAR-10 and SVHN, and also for image super-resolution, demonstrating
the applicability of our approach to a large variety of image-related tasks.

1 Introduction

In the past years, deep neural networks such as convolutional or recurrent ones have become highly
popular for solving various prediction problems, notably in computer vision and natural language
processing. Conceptually close to approaches that were developed several decades ago (see, [13]),
they greatly benefit from the large amounts of labeled data that have been made available recently,
allowing to learn huge numbers of model parameters without worrying too much about overfitting.
Among other reasons explaining their success, the engineering effort of the deep learning community
and various methodological improvements have made it possible to learn in a day on a GPU complex
models that would have required weeks of computations on a traditional CPU (see, e.g., [10, 12, 23]).

Before the resurgence of neural networks, non-parametric models based on positive definite kernels
were one of the most dominant topics in machine learning [22]. These approaches are still widely
used today because of several attractive features. Kernel methods are indeed versatile; as long as a
positive definite kernel is specified for the type of data considered—e.g., vectors, sequences, graphs,
or sets—a large class of machine learning algorithms originally defined for linear models may be
used. This family include supervised formulations such as support vector machines and unsupervised
ones such as principal or canonical component analysis, or K-means and spectral clustering. The
problem of data representation is thus decoupled from that of learning theory and algorithms. Kernel
methods also admit natural mechanisms to control the learning capacity and reduce overfitting [22].

On the other hand, traditional kernel methods suffer from several drawbacks. The first one is their
computational complexity, which grows quadratically with the sample size due to the computation of
the Gram matrix. Fortunately, significant progress has been achieved to solve the scalability issue,
either by exploiting low-rank approximations of the kernel matrix [28, 31], or with random sampling
techniques for shift-invariant kernels [21]. The second disadvantage is more critical; by decoupling
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learning and data representation, kernel methods seem by nature incompatible with end-to-end
learning—that is, the representation of data adapted to the task at hand, which is the cornerstone of
deep neural networks and one of the main reason of their success. The main objective of this paper is
precisely to tackle this issue in the context of image modeling.

Specifically, our approach is based on convolutional kernel networks, which have been recently
introduced in [18]. Similar to hierarchical kernel descriptors [3], local image neighborhoods are
mapped to points in a reproducing kernel Hilbert space via the kernel trick. Then, hierarchical
representations are built via kernel compositions, producing a sequence of “feature maps” akin to
convolutional neural networks, but of infinite dimension. To make the image model computationally
tractable, convolutional kernel networks provide an approximation scheme that can be interpreted as
a particular type of convolutional neural network learned without supervision.

To perform end-to-end learning given labeled data, we use a simple but effective principle consisting
of learning discriminative subspaces in RKHSs, where we project data. We implement this idea
in the context of convolutional kernel networks, where linear subspaces, one per layer, are jointly
optimized by minimizing a supervised loss function. The formulation turns out to be a new type of
convolutional neural network with a non-standard parametrization. The network also admits simple
principles to learn without supervision: learning the subspaces may be indeed achieved efficiently
with classical kernel approximation techniques [28, 31].

To demonstrate the effectiveness of our approach in various contexts, we consider image classification
benchmarks such as CIFAR-10 [12] and SVHN [19], which are often used to evaluate deep neural
networks; then, we adapt our model to perform image super-resolution, which is a challenging inverse
problem. On the SVHN and CIFAR-10 datasets, we obtain a competitive accuracy, with about 2% and
10% error rates, respectively, without model averaging or data augmentation. For image up-scaling,
we outperform recent approaches based on classical convolutional neural networks [7, 8].

We believe that these results are highly promising. Our image model achieves competitive perfor-
mance in two different contexts, paving the way to many other applications. Moreover, our results are
also subject to improvements. In particular, we did not use GPUs yet, which has limited our ability
to exhaustively explore model hyper-parameters and evaluate the accuracy of large networks. We
also did not investigate classical regularization/optimization techniques such as Dropout [12], batch
normalization [11], or recent advances allowing to train very deep networks [10, 23]. To gain more
scalability and start exploring these directions, we are currently working on a GPU implementation,
which we plan to publicly release along with our current CPU implementation.

Related Deep and Shallow Kernel Machines. One of our goals is to make a bridge between kernel
methods and deep networks, and ideally reach the best of both worlds. Given the potentially attractive
features of such a combination, several attempts have been made in the past to unify these two schools
of thought. A first proof of concept was introduced in [5] with the arc-cosine kernel, which admits an
integral representation that can be interpreted as a one-layer neural network with random weights
and infinite number of rectified linear units. Besides, a multilayer kernel may be obtained by kernel
compositions [5]. Then, hierarchical kernel descriptors [3] and convolutional kernel networks [18]
extend a similar idea in the context of images leading to unsupervised representations [18].

Multiple kernel learning [24] is also related to our work since is it is a notable attempt to introduce
supervision in the kernel design. It provides techniques to select a combination of kernels from a pre-
defined collection, and typically requires to have already “good” kernels in the collection to perform
well. More related to our work, the backpropagation algorithm for the Fisher kernel introduced in [25]
learns the parameters of a Gaussian mixture model with supervision. In comparison, our approach
does not require a probabilistic model and learns parameters at several layers. Finally, we note that a
concurrent effort to ours is conducted in the Bayesian community with deep Gaussian processes [6],
complementing the Frequentist approach that we follow in our paper.

2 Learning Hierarchies of Subspaces with Convolutional Kernel Networks

In this section, we present the principles of convolutional kernel networks and a few generalizations
and improvements of the original approach of [18]. Essentially, the model builds upon four ideas that
are detailed below and that are illustrated in Figure 1 for a model with a single layer.
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Idea 1: use the kernel trick to represent local image neighborhoods in a RKHS.
Given a set X , a positive definite kernel K : X ×X → R implicitly defines a Hilbert spaceH, called
reproducing kernel Hilbert space (RKHS), along with a mapping ϕ : X → H. This embedding is
such that the kernel value K(x,x′) corresponds to the inner product 〈ϕ(x), ϕ(x′)〉H. Called “kernel
trick”, this approach can be used to obtain nonlinear representations of local image patches [3, 18].

More precisely, consider an image I0 : Ω0 → Rp0 , where p0 is the number of channels, e.g., p0 = 3
for RGB, and Ω0 ⊂ [0, 1]2 is a set of pixel coordinates, typically a two-dimensional grid. Given two
image patches x,x′ of size e0 × e0, represented as vectors in Rp0e

2
0 , we define a kernel K1 as

K1(x,x′) = ‖x‖ ‖x′‖κ1

(〈
x
‖x‖ ,

x′

‖x′‖

〉)
if x,x′ 6= 0 and 0 otherwise, (1)

where ‖.‖ and 〈., .〉 denote the usual Euclidean norm and inner-product, respectively, and κ1(〈., .〉) is
a dot-product kernel on the sphere. Specifically, κ1 should be smooth and its Taylor expansion have
non-negative coefficients to ensure positive definiteness [22]. For example, the arc-cosine [5] or the
Gaussian (RBF) kernels may be used: given two vectors y,y′ with unit `2-norm, choose for instance

κ1(〈y,y′〉) = eα1(〈y,y′〉−1) = e−
α1
2 ‖y−y′‖22 . (2)

Then, we have implicitly defined the RKHSH1 associated to K1 and a mapping ϕ1 : Rp0e
2
0 → H1.

Idea 2: project onto a finite-dimensional subspace of the RKHS with convolution layers.
The representation of patches in a RKHS requires finite-dimensional approximations to be computa-
tionally manageable. The original model of [18] does that by exploiting an integral form of the RBF
kernel. Specifically, given two patches x and x′, convolutional kernel networks provide two vectors
ψ1(x), ψ1(x′) in Rp1 such that the kernel value 〈ϕ1(x), ϕ1(x′)〉H1

is close to the Euclidean inner
product 〈ψ1(x), ψ1(x′)〉. After applying this transformation to all overlapping patches of the input
image I0, a spatial map M1 : Ω0 → Rp1 may be obtained such that for all z in Ω0, M1(z) = ψ1(xz),
where xz is the e0 × e0 patch from I0 centered at pixel location z.2 With the approximation scheme
of [18], M1 can be interpreted as the output feature map of a one-layer convolutional neural network.

A conceptual drawback of [18] is that data points ϕ1(x1), ϕ1(x2), . . . are approximated by vectors
that do not live in the RKHS H1. This issue can be solved by using variants of the Nyström
method [28], which consists of projecting data onto a subspace of H1 with finite dimension p1.
For this task, we have adapted the approach of [31]: we build a database of n patches x1, . . . ,xn
randomly extracted from various images and normalized to have unit `2-norm, and perform a spherical
K-means algorithm to obtain p1 centroids z1, . . . , zp1 with unit `2-norm. Then, a new patch x is
approximated by its projection onto the p1-dimensional subspace F1 =Span(ϕ(z1), . . . , ϕ(zp1)).

The projection of ϕ1(x) ontoF1 admits a natural parametrization ψ1(x) in Rp1 . The explicit formula
is classical (see [28, 31] and Appendix A), leading to

ψ1(x) := ‖x‖κ1(Z>Z)−1/2κ1

(
Z>

x

‖x‖

)
if x 6= 0 and 0 otherwise, (3)

where we have introduced the matrix Z = [z1, . . . , zp1
], and, by an abuse of notation, the function κ1

is applied pointwise to its arguments. Then, the spatial map M1 : Ω0 → Rp1 introduced above can
be obtained by (i) computing the quantities Z>x for all patches x of the image I (spatial convolution
after mirroring the filters zj); (ii) contrast-normalization involving the norm ‖x‖; (iii) applying the
pointwise non-linear function κ1; (iv) applying the linear transform κ1(Z>Z)−1/2 at every pixel
location (which may be seen as 1×1 spatial convolution); (v) multiplying by the norm ‖x‖making ψ1

homogeneous. In other words, we obtain a particular convolutional neural network, with non-standard
parametrization. Note that learning requires only performing a K-means algorithm and computing
the inverse square-root matrix κ1(Z>Z)−1/2; therefore, the training procedure is very fast.

Then, it is worth noting that the encoding function ψ1 with kernel (2) is reminiscent of radial basis
function networks (RBFNs) [4], whose hidden layer resembles (3) without the matrix κ1(Z>Z)−1/2

and with no normalization. The difference between RBFNs and our model is nevertheless significant.
The RKHS mapping, which is absent from RBFNs, is indeed a key to the multilayer construction
that will be presented shortly: a network layer takes points from the RKHS’s previous layer as input
and use the corresponding RKHS inner-product. To the best of our knowledge, there is no similar
multilayer and/or convolutional construction in the radial basis function network literature.

2To simplify, we use zero-padding when patches are close to the image boundaries, but this is optional.
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Figure 1: Our variant of convolutional kernel networks, illustrated between layers 0 and 1. Local
patches (receptive fields) are mapped to the RKHS H1 via the kernel trick and then projected to
the finite-dimensional subspace F1 =Span(ϕ(z1), . . . , ϕ(zp1

)). The small blue crosses on the right
represent the points ϕ(z1), . . . , ϕ(zp1

). With no supervision, optimizing F1 consists of minimizing
projection residuals. With supervision, the subspace is optimized via back-propagation. Going from
layer k to layer k + 1 is achieved by stacking the model described here and shifting indices.

Idea 3: linear pooling inF1 is equivalent to linear pooling on the finite-dimensional mapM1.
The previous steps transform an image I0 : Ω0 → Rp0 into a map M1 : Ω0 → Rp1 , where each
vector M1(z) in Rp1 encodes a point in F1 representing information of a local image neighborhood
centered at location z. Then, convolutional kernel networks involve a pooling step to gain invariance
to small shifts, leading to another finite-dimensional map I1 : Ω1 → Rp1 with smaller resolution:

I1(z) =
∑
z′∈Ω0

M1(z′)e−β1‖z′−z‖22 . (4)

The Gaussian weights act as an anti-aliasing filter for downsampling the map M1 and β1 is set
according to the desired subsampling factor (see [18]), which does not need to be integer. Then, every
point I1(z) in Rp1 may be interpreted as a linear combination of points in F1, which is itself in F1

since F1 is a linear subspace. Note that the linear pooling step was originally motivated in [18] as an
approximation scheme for a match kernel, but this point of view is not critically important here.

Idea 4: build a multilayer image representation by stacking and composing kernels.
By following the first three principles described above, the input image I0 : Ω0 → Rp0 is transformed
into another one I1 : Ω1 → Rp1 . It is then straightforward to apply again the same procedure to
obtain another map I2 : Ω2 → Rp2 , then I3 : Ω3 → Rp3 , etc. By going up in the hierarchy, the
vectors Ik(z) in Rpk represent larger and larger image neighborhoods (aka. receptive fields) with
more invariance gained by the pooling layers, akin to classical convolutional neural networks.

The multilayer scheme produces a sequence of maps (Ik)k≥0, where each vector Ik(z) encodes
a point—say fk(z)—in the linear subspace Fk of Hk. Thus, we implicitly represent an image at
layer k as a spatial map fk : Ωk → Hk such that 〈Ik(z), I ′k(z′)〉 = 〈fk(z), f ′k(z′)〉Hk for all z, z′.
As mentioned previously, the mapping to the RKHS is a key to the multilayer construction. Given Ik,
larger image neighborhoods are represented by patches of size ek × ek that can be mapped to a
point in the Cartesian product space Hek×ekk endowed with its natural inner-product; finally, the
kernel Kk+1 defined on these patches can be seen as a kernel on larger image neighborhoods than Kk.

3 End-to-End Kernel Learning with Supervised CKNs

In the previous section, we have described a variant of convolutional kernel networks where linear
subspaces are learned at every layer. This is achieved without supervision by a K-means algorithm
leading to small projection residuals. It is thus natural to introduce also a discriminative approach.

4



3.1 Backpropagation Rules for Convolutional Kernel Networks

We now consider a prediction task, where we are given a training set of images I1
0 , I

2
0 , . . . , I

n
0

with respective scalar labels y1, . . . , yn living either in {−1; +1} for binary classification and R
for regression. For simplicity, we only present these two settings here, but extensions to multiclass
classification and multivariate regression are straightforward. We also assume that we are given a
smooth convex loss function L : R× R→ R that measures the fit of a prediction to the true label y.

Given a positive definite kernel K on images, the classical empirical risk minimization formulation
consists of finding a prediction function in the RKHSH associated to K by minimizing the objective

min
f∈H

1

n

n∑
i=1

L(yi, f(Ii0)) +
λ

2
‖f‖2H, (5)

where the parameter λ controls the smoothness of the prediction function f with respect to the
geometry induced by the kernel, hence regularizing and reducing overfitting [22]. After training a
convolutional kernel network with k layers, such a positive definite kernel may be defined as

KZ(I0, I
′
0) =

∑
z∈Ωk

〈fk(z), f ′k(z)〉Hk =
∑
z∈Ωk

〈Ik(z), I ′k(z)〉, (6)

where Ik, I ′k are the k-th finite-dimensional feature maps of I0, I ′0, respectively, and fk, f
′
k the

corresponding maps in Ωk → Hk, which have been defined in the previous section. The kernel is
also indexed by Z , which represents the network parameters—that is, the subspaces F1, . . . ,Fk, or
equivalently the set of filters Z1, . . . ,Zk from Eq. (3). Then, formulation (5) becomes equivalent to

min
W∈Rpk×|Ωk|

1

n

n∑
i=1

L(yi, 〈W, Iik〉) +
λ

2
‖W‖2F, (7)

where ‖.‖F is the Frobenius norm that extends the Euclidean norm to matrices, and, with an abuse of
notation, the maps Iik are seen as matrices in Rpk×|Ωk|. Then, the supervised convolutional kernel
network formulation consists of jointly minimizing (7) with respect to W in Rpk×|Ωk| and with respect
to the set of filters Z1, . . . ,Zk, whose columns are constrained to be on the Euclidean sphere.

Computing the derivative with respect to the filters Z1, . . . ,Zk.
Since we consider a smooth loss function L, e.g., logistic, squared hinge, or square loss, optimizing (7)
with respect to W can be achieved with any gradient-based method. Moreover, when L is convex,
we may also use fast dedicated solvers, (see, e.g., [16], and references therein). Optimizing with
respect to the filters Zj , j = 1, . . . , k is more involved because of the lack of convexity. Yet, the
objective function is differentiable, and there is hope to find a “good” stationary point by using
classical stochastic optimization techniques that have been successful for training deep networks.

For that, we need to compute the gradient by using the chain rule—also called “backpropagation” [13].
We instantiate this rule in the next lemma, which we have found useful to simplify the calculation.

Lemma 1 (Perturbation view of backpropagration.)
Consider an image I0 represented here as a matrix in Rp0×|Ω0|, associated to a label y in R and
call IZk the k-th feature map obtained by encoding I0 with the network parameters Z . Then, consider
a perturbation E = {ε1, . . . , εk} of the set of filters Z . Assume that we have for all j ≥ 0,

IZ+E
j = IZj + ∆IZ,Ej + o(‖E‖), (8)

where ‖E‖ is equal to
∑k
l=1 ‖εl‖F, and ∆IZ,Ej is a matrix in Rpj×|Ωj | such that for all matrices U

of the same size,
〈∆IZ,Ej ,U〉 = 〈εj , gj(U)〉+ 〈∆IZ,Ej−1 , hj(U)〉, (9)

where the inner-product is the Frobenius’s one and gj , hj are linear functions. Then,

∇ZjL(y, 〈W, IZk 〉) = L′(y, 〈W, IZk 〉) gj(hj+1(. . . hk(W)), (10)

where L′ denote the derivative of the smooth function L with respect to its second argument.

The proof of this lemma is straightforward and follows from the definition of the Fréchet derivative.
Nevertheless, it is useful to derive the closed form of the gradient in the next proposition.
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Proposition 1 (Gradient of the loss with respect to the the filters Z1, . . . ,Zk.)
Consider the quantities introduced in Lemma 1, but denote IZj by Ij for simplicity. By construction,
we have for all j ≥ 1,

Ij = Ajκj(Z
>
j Ej(Ij−1)S−1

j )SjPj , (11)

where Ij is seen as a matrix in Rpj×|Ωj |; Ej is the linear operator that extracts all overlapping
ej−1 × ej−1 patches from a map such that Ej(Ij−1) is a matrix of size pj−1e

2
j−1 × |Ωj−1|; Sj is a

diagonal matrix whose diagonal entries carry the `2-norm of the columns of Ej(Ij−1); Aj is short
for κj(Z>j Zj)

−1/2; and Pj is a matrix of size |Ωj−1|× |Ωj | performing the linear pooling operation.
Then, the gradient of the loss with respect to the filters Zj , j = 1, . . . , k is given by (10) with

gj(U) = Ej(Ij−1)B>j −
1

2
Zj
(
κ′j(Z

>
j Zj)� (Cj + C>j )

)
hj(U) = E?j

(
ZjBj + Ej(Ij−1)

(
S−2
j �

(
M>j UP>j −Ej(Ij−1)>ZjBj

)))
,

(12)

where U is any matrix of the same size as Ij , Mj = Ajκj(Z
>
j Ej(Ij−1)S−1

j )Sj is the j-th feature
map before the pooling step, � is the Hadamart (elementwise) product, E?j is the adjoint of Ej , and

Bj = κ′j
(
Z>j Ej(Ij−1)S−1

j

)
�
(
AjUP>j

)
and Cj = A

1/2
j IjU

>A3/2
j . (13)

The proof is presented in Appendix B. Most quantities that appear above admit physical interpretations:
multiplication by Pj performs downsampling; multiplication by P>j performs upsampling; multipli-
cation of Ej(Ij−1) on the right by S−1

j performs `2-normalization of the columns; Z>j Ej(Ij−1) can
be seen as a spatial convolution of the map Ij−1 by the filters Zj ; finally, E?j “combines” a set of
patches into a spatial map by adding to each pixel location the respective patch contributions.

Computing the gradient requires a forward pass to obtain the maps Ij through (11) and a backward
pass that composes the functions gj , hj as in (10). The complexity of the forward step is dominated
by the convolutions Z>j Ej(Ij−1), as in convolutional neural networks. The cost of the backward
pass is the same as the forward one up to a constant factor. Assuming pj≤|Ωj−1|, which is typical
for lower layers that require more computation than upper ones, the most expensive cost is due to
Ej(Ij−1)B>j and ZjBj which is the same as Z>j Ej(Ij−1). We also pre-compute A

1/2
j and A

3/2
j

by eigenvalue decompositions, whose cost is reasonable when performed only once per minibatch.
Off-diagonal elements of M>j UP>j −Ej(Ij−1)>ZjBj are also not computed since they are set to
zero after elementwise multiplication with a diagonal matrix. In practice, we also replace Aj by
(κj(Z

>
j Zj) + εI)−1/2 with ε= 0.001, which corresponds to performing a regularized projection

onto Fj (see Appendix A). Finally, a small offset of 0.00001 is added to the diagonal entries of Sj .

Optimizing hyper-parameters for RBF kernels. When using the kernel (2), the objective is
differentiable with respect to the hyper-parameters αj . When large amounts of training data are
available and overfitting is not a issue, optimizing the training loss by taking gradient steps with
respect to these parameters seems appropriate instead of using a canonical parameter value. Otherwise,
more involved techniques may be needed; we plan to investigate other strategies in future work.

3.2 Optimization and Practical Heuristics

The backpropagation rules of the previous section have set up the stage for using a stochastic gradient
descent method (SGD). We now present a few strategies to accelerate it in our context.

Hybrid convex/non-convex optimization. Recently, many incremental optimization techniques
have been proposed for solving convex optimization problems of the form (7) when n is large but
finite (see [16] and references therein). These methods usually provide a great speed-up over the
stochastic gradient descent algorithm without suffering from the burden of choosing a learning rate.
The price to pay is that they rely on convexity, and they require storing into memory the full training
set. For solving (7) with fixed network parameters Z , it means storing the n maps Iik, which is often
reasonable if we do not use data augmentation. To partially leverage these fast algorithms for our
non-convex problem, we have adopted a minimization scheme that alternates between two steps: (i)
fix Z , then make a forward pass on the data to compute the n maps Iik and minimize the convex
problem (7) with respect to W using the accelerated MISO algorithm [16]; (ii) fix W, then make one
pass of a projected stochastic gradient algorithm to update the k set of filters Zj . The set of network
parameters Z is initialized with the unsupervised learning method described in Section 2.
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Preconditioning on the sphere. The kernels κj are defined on the sphere; therefore, it is natural
to constrain the filters—that is, the columns of the matrices Zj—to have unit `2-norm. As a result,
a classical stochastic gradient descent algorithm updates at iteration t each filter z as follows z←
Proj‖.‖2=1[z−ηt∇zLt], where∇zLt is an estimate of the gradient computed on a minibatch and ηt is
a learning rate. In practice, we found that convergence could be accelerated by preconditioning, which
consists of optimizing after a change of variable to reduce the correlation of gradient entries. For
unconstrained optimization, this heuristic involves choosing a symmetric positive definite matrix Q
and replacing the update direction ∇zLt by Q∇zLt, or, equivalently, performing the change of
variable z = Q1/2z′ and optimizing over z′. When constraints are present, the case is not as simple
since Q∇zLt may not be a descent direction. Fortunately, it is possible to exploit the manifold
structure of the constraint set (here, the sphere) to perform an appropriate update [1]. Concretely, (i)
we choose a matrix Q per layer that is equal to the inverse covariance matrix of the patches from the
same layer computed after the initialization of the network parameters. (ii) We perform stochastic
gradient descent steps on the sphere manifold after the change of variable z = Q1/2z′, leading to the
update z← Proj‖.‖2=1[z− ηt(I− (1/z>Qz)Qzz>)Q∇zLt]. Because this heuristic is not a critical
component, but simply an improvement of SGD, we relegate mathematical details in Appendix C.

Automatic learning rate tuning. Choosing the right learning rate in stochastic optimization is
still an important issue despite the large amount of work existing on the topic, see, e.g., [13] and
references therein. In our paper, we use the following basic heuristic: the initial learning rate ηt
is chosen “large enough”; then, the training loss is evaluated after each update of the weights W.
When the training loss increases between two epochs, we simply divide the learning rate by two, and
perform “back-tracking” by replacing the current network parameters by the previous ones.

Active-set heuristic. For classification tasks, “easy” samples have often negligible contribution to
the gradient (see, e.g., [13]). For instance, for the squared hinge loss L(y, ŷ) = max(0, 1− yŷ)2, the
gradient vanishes when the margin yŷ is greater than one. This motivates the following heuristic: we
consider a set of active samples, initially all of them, and remove a sample from the active set as soon
as we obtain zero when computing its gradient. In the subsequent optimization steps, only active
samples are considered, and after each epoch, we randomly reactivate 10% of the inactive ones.

4 Experiments

We now present experiments on image classification and super-resolution. All experiments were
conducted on 8-core and 10-core 2.4GHz Intel CPUs using C++ and Matlab.

4.1 Image Classification on “Deep Learning” Benchmarks

We consider the datasets CIFAR-10 [12] and SVHN [19], which contain 32 × 32 images from 10
classes. CIFAR-10 is medium-sized with 50 000 training samples and 10 000 test ones. SVHN is
larger with 604 388 training examples and 26 032 test ones. We evaluate the performance of a 9-layer
network, designed with few hyper-parameters: for each layer, we learn 512 filters and choose the RBF
kernels κj defined in (2) with initial parameters αj=1/(0.52). Layers 1, 3, 5, 7, 9 use 3×3 patches
and a subsampling pooling factor of

√
2 except for layer 9 where the factor is 3; Layers 2, 4, 6, 8 use

simply 1× 1 patches and no subsampling. For CIFAR-10, the parameters αj are kept fixed during
training, and for SVHN, they are updated in the same way as the filters. We use the squared hinge
loss in a one vs all setting to perform multi-class classification (with shared filters Z between classes).
The input of the network is pre-processed with the local whitening procedure described in [20]. We
use the optimization heuristics from the previous section, notably the automatic learning rate scheme,
and a gradient momentum with parameter 0.9, following [12]. The regularization parameter λ and
the number of epochs are set by first running the algorithm on a 80/20 validation split of the training
set. λ is chosen near the canonical parameter λ = 1/n, in the range 2i/n, with i = −4, . . . , 4, and
the number of epochs is at most 100. The initial learning rate is 10 with a minibatch size of 128.

We present our results in Table 1 along with the performance achieved by a few recent methods
without data augmentation or model voting/averaging. In this context, the best published results are
obtained by the generalized pooling scheme of [14]. We achieve about 2% test error on SVHN and
about 10% on CIFAR-10, which positions our method as a reasonably “competitive” one, in the same
ballpark as the deeply supervised nets of [15] or network in network of [17].
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Table 1: Test error in percents reported by a few recent publications on the CIFAR-10 and SVHN
datasets without data augmentation or model voting/averaging.

Stoch P. [29] MaxOut [9] NiN [17] DSN [15] Gen P. [14] SCKN (Ours)
CIFAR-10 15.13 11.68 10.41 9.69 7.62 10.20

SVHN 2.80 2.47 2.35 1.92 1.69 2.04

Due to lack of space, the results reported here only include a single supervised model. Preliminary
experiments with no supervision show also that one may obtain competitive accuracy with wide
shallow architectures. For instance, a two-layer network with (1024-16384) filters achieves 14.2%
error on CIFAR-10. Note also that our unsupervised model outperforms original CKNs [18]. The best
single model from [18] gives indeed 21.7%. Training the same architecture with our approach is two
orders of magnitude faster and gives 19.3%. Another aspect we did not study is model complexity.
Here as well, preliminary experiments are encouraging. Reducing the number of filters to 128 per
layer yields indeed 11.95% error on CIFAR-10 and 2.15% on SVHN. A more precise comparison
with no supervision and with various network complexities will be presented in another venue.

4.2 Image Super-Resolution from a Single Image

Image up-scaling is a challenging problem, where convolutional neural networks have obtained
significant success [7, 8, 27]. Here, we follow [8] and replace traditional convolutional neural
networks by our supervised kernel machine. Specifically, RGB images are converted to the YCbCr
color space and the upscaling method is applied to the luminance channel only to make the comparison
possible with previous work. Then, the problem is formulated as a multivariate regression one. We
build a database of 200 000 patches of size 32× 32 randomly extracted from the BSD500 dataset [2]
after removing image 302003.jpg, which overlaps with one of the test images. 16× 16 versions of the
patches are build using the Matlab function imresize, and upscaled back to 32× 32 by using bicubic
interpolation; then, the goal is to predict high-resolution images from blurry bicubic interpolations.

The blurry estimates are processed by a 9-layer network, with 3× 3 patches and 128 filters at every
layer without linear pooling and zero-padding. Pixel values are predicted with a linear model applied
to the 128-dimensional vectors present at every pixel location of the last layer, and we use the square
loss to measure the fit. The optimization procedure and the kernels κj are identical to the ones used
for processing the SVHN dataset in the classification task. The pipeline also includes a pre-processing
step, where we remove from input images a local mean component obtained by convolving the images
with a 5× 5 averaging box filter; the mean component is added back after up-scaling.

For the evaluation, we consider three datasets: Set5 and Set14 are standard for super-resolution;
Kodim is the Kodak Image database, available at http://r0k.us/graphics/kodak/, which con-
tains high-quality images with no compression or demoisaicing artefacts. The evaluation procedure
follows [7, 8, 26, 27] by using the code from the author’s web page. We present quantitative results
in Table 2. For x3 upscaling, we simply used twice our model learned for x2 upscaling, followed by a
3/4 downsampling. This is clearly suboptimal since our model is not trained to up-scale by a factor 3,
but this naive approach still outperforms other baselines [7, 8, 27] that are trained end-to-end. Note
that [27] also proposes a data augmentation scheme at test time that slightly improves their results. In
Appendix D, we also present a visual comparison between our approach and [8], whose pipeline is
the closest to ours, up to the use of a supervised kernel machine instead of CNNs.

Table 2: Reconstruction accuracy for super-resolution in PSNR (the higher, the better). All CNN
approaches are without data augmentation at test time. See Appendix D for the SSIM quality measure.

Fact. Dataset Bicubic SC [30] ANR [26] A+[26] CNN1 [7] CNN2 [8] CSCN [27] SCKN

x2
Set5 33.66 35.78 35.83 36.54 36.34 36.66 36.93 37.07

Set14 30.23 31.80 31.79 32.28 32.18 32.45 32.56 32.76
Kodim 30.84 32.19 32.23 32.71 32.62 32.80 32.94 33.21

x3
Set5 30.39 31.90 31.92 32.58 32.39 32.75 33.10 33.08

Set14 27.54 28.67 28.65 29.13 29.00 29.29 29.41 29.50
Kodim 28.43 29.21 29.21 29.57 29.42 29.64 29.76 29.88
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A Orthogonal Projection on the Finite-Dimensional Subspace F1

First, we remark that the kernel K1 is homogeneous such that for every patch x and scalar γ > 0,

ϕ1(γx) = γϕ1(x).

Thus, we may assume x to have unit `2-norm without loss of generality and perform the projection
on F1 = Span(ϕ(z1), . . . , ϕ(zp1

)) of the normalized patch, before applying the inverse rescaling.

Then, let us denote by fx the orthogonal projection of a patch x with unit `2-norm defined as

fx := arg min
f∈F1

‖ϕ1(x)− f‖2H1
,

which is equivalent to

fx :=

p1∑
j=1

α?jϕ1(zj) with α? ∈ arg min
α∈Rp1

∥∥∥∥∥∥ϕ1(x)−
p1∑
j=1

αjϕ1(zj)

∥∥∥∥∥∥
2

H1

.

After short calculation, we obtain

fx =

p1∑
j=1

α?jϕ1(zj) with α? ∈ arg min
α∈Rp1

[
1− 2α>κ1(z>x) +α>κ1(Z>Z)α

]
,

since the vectors zj provided by the spherical K-means algorithm have unit `2-norm. Assuming
κ1(Z>Z) to be invertible, we haveα? = κ1(Z>Z)−1κ1(Z>x). After projection, normalized patches
x, x′ may be parametrized by α? = κ1(Z>Z)−1κ1(Z>x) and α′? = κ1(Z>Z)−1κ1(Z>x′),
respectively. Then, we have

〈fx, fx′〉H1 = α?>κ1(Z>Z)α′? = 〈ψ1(x), ψ1(x′)〉,
which is the desired result.

When κ1(Z>Z) is not invertible or simply badly conditioned, it is also common to use instead

ψ1(x) =
(
κ1(Z>Z) + εI

)−1/2
κ1(Z>x),

where ε > 0 is a small regularization that improves the condition number of κ1(Z>Z). Such
a modification can be interpreted as performing a slightly regularized projection onto the finite-
dimensional subspace F1.

B Computation of the Gradient with Respect to the Filters

To compute the gradient of the loss function, we use Lemma 1 and start by analyzing the effect of
perturbing every quantity involved in (11) such that we may obtain the desired relations (8) and (9).
Before proceeding, we recall the definition of the set Z + E = {Z1 + ε1, . . . ,Zk + εk} and the
precise definition of the Landau notation o(‖E‖), which we use in (8). Here, it simply means a
quantity that is negligible in front of the norm ‖E‖ =

∑k
j=1 ‖εj‖F—that is,

lim
E→0

∥∥∥IZ+E
j − IZj −∆IZ,Ej

∥∥∥
F

‖E‖ = 0.

Then, we start by initializing a recursion: IZ0 is unaffected by the perturbation and thus ∆IZ,E0 = 0.
Consider now an index j > 0 and assume that (8) holds for j − 1 with ∆IZ,Ej−1 = O(‖E‖).

First, we remark that

Ej(I
Z+E
j−1 ) = Ej(I

Z
j−1) + Ej(∆I

Z,E
j−1) + o(‖E‖).

Then, the diagonal matrix Sj becomes after perturbation

Sj + S−1
j �

(
Ej(I

Z
j−1)>Ej(∆I

Z,E
j−1)

)
︸ ︷︷ ︸

∆Sj

+o(‖E‖).
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The inverse diagonal matrix S−1
j becomes

S−1
j −S−3

j �
(
Ej(I

Z
j−1)>Ej(∆I

Z,E
j−1)

)
︸ ︷︷ ︸

∆S−1
j

+o(‖E‖),

and the matrix Aj becomes

κj
(
(Zj+εj)

>(Zj+εj)
)− 1

2 = κj
(
Z>j Zj+ε

>
j Zj+Z>j εj + o(‖εj‖F))

)− 1
2

=
(
κj
(
Z>j Zj

)
+κ′j

(
Z>j Zj

)
�
(
Z>j εj+ε

>
j Zj

)
+o(‖E‖)

)− 1
2

= A
1
2
j

(
I+Aj

(
κ′j
(
Z>j Zj

)
�
(
Z>j εj+ε

>
j Zj

))
Aj+o(‖E‖)

)−1/2
A

1
2
j

= Aj −
1

2
A

3
2
j

(
κ′j
(
Z>j Zj

)
�
(
Z>j εj+ε

>
j Zj

))
A

3
2
j︸ ︷︷ ︸

∆Aj

+o(‖E‖),

where we have used the relation (I + Q)−1/2 = I − 1
2Q + o(‖Q‖F). Note that the quantities

∆Aj ,∆Sj ,∆S−1
j that we have introduced are all O(‖E‖). Then, by replacing the quantities

Aj ,Sj ,S
−1
j , Ij−1 by their perturbed versions in the definition of Ij given in (11), we obtain that

IZ+E
j is equal to

(Aj+∆Aj)κj

(
(Zj+εj)

>
(
Ej(I

Z
j−1)+Ej(∆I

Z,E
j−1)

)
(S−1
j +∆S−1

j )
)

(Sj+∆Sj)Pj+o(‖E‖).

Then, after short calculation, we obtain the desired relation IZ+E
j = IZ+E

j + ∆IZ,Ej + o(‖E‖) with

∆IZ,Ej =∆Ajκj(Z
>
j Ej(I

Z
j−1)S−1

j )SjPj

+ Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )� (ε>j Ej(I
Z
j−1))

)
Pj

+ Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )� (Z>j Ej(∆I
Z,E
j−1))

)
Pj

+ Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )� (Z>j Ej(I
Z
j−1)∆S−1

j Sj)
)
Pj

+ Ajκj(Z
>
j Ej(I

Z
j−1)S−1

j )∆SjPj .

First, we remark that ∆IZ,Ej = O(‖E‖), which is one of the induction hypothesis we need. Then,
after plugging in the values of ∆Aj ,∆Sj ,∆S−1

j , and with further simplification, we obtain

∆IZ,Ej = −1

2
A

3
2
j

(
κ′j
(
Z>j Zj

)
�
(
Z>j εj + ε>j Zj

))
A

1
2
j I
Z
j

+ Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )�
(
ε>j Ej(I

Z
j−1)

))
Pj

+ Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )�
(
Z>j Ej(∆I

Z,E
j−1)

))
Pj

−Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )�
(
Z>j Ej(I

Z
j−1)

(
S−2
j �

(
Ej(I

Z
j−1)>Ej(∆I

Z,E
j−1)

))))
Pj

+MZj
(
S−2
j �

(
Ej(I

Z
j−1)>Ej(∆I

Z,E
j−1)

))
Pj ,

where MZj is the j-th feature map of I0 before the j-th linear pooling step—that is, IZj = MZj Pj .
We now see that ∆IZ,Ej is linear in εj and ∆IZ,Ej−1 , which guarantees that there exist two linear
functions gj , hj that satisfy (9). More precisely, we want for all matrix U of the same size as ∆IZ,Ej

〈εj , gj(U)〉 =

〈
−1

2
A

3
2
j

(
κ′j
(
Z>j Zj

)
�
(
Z>j εj + ε>j Zj

))
A

1
2
j I
Z
j ,U

〉
+
〈
Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )�
(
ε>j Ej(I

Z
j−1)

))
Pj ,U

〉
,
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and

〈∆IZ,Ej−1 , hj(U)〉 =
〈
Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )�
(
Z>j Ej(∆I

Z,E
j−1)

))
Pj ,U

〉
−
〈
Aj

(
κ′j(Z

>
j Ej(I

Z
j−1)S−1

j )�
(
Z>j Ej(I

Z
j−1)

(
S−2
j �

(
Ej(I

Z
j−1)>Ej(∆I

Z,E
j−1)

))))
Pj ,U

〉
+
〈
MZj

(
S−2
j �

(
Ej(I

Z
j−1)>Ej(∆I

Z,E
j−1)

))
Pj ,U

〉
.

Then, it is easy to obtain the form of gj , hj given in (12), by using in the right order the following
elementary calculus rules: (i) 〈UV,W〉 = 〈U,WV>〉 = 〈V,U>W〉, (ii) 〈U,V〉 = 〈U>,V>〉,
(iii) 〈U � V,W〉 = 〈U,V �W〉 for any matrices U,V,W of appropriate sizes, and also (iv)
〈Ej(U),V〉 = 〈U,E?j (V)〉, by definition of the adjoint operator. We conclude by induction.

C Preconditioning Heuristic on the Sphere

In this section, we present a preconditioning heuristic for optimizing over the sphere Sp−1, inspired
by second-order (Newton) optimization techniques on smooth manifolds [1]. Following [1], we will
consider gradient descent steps on the manifold. A fundamental operation is thus the projection
operator Pz onto the tangent space at a point z. This operator is defined for the sphere by

Pz[u] = (I− zz>)u,

for any vector u in Rp. Another important operator is the Euclidean projection on Sp−1, which was
denoted by Proj‖.‖2=1 in previous parts of the paper.

Gradient descent on the sphere Sp−1 is equivalent to the projected gradient descent in Rp.
When optimizing on a manifold, the natural descent direction is the projected gradient Pz∇L(z). In
the case of the sphere, a gradient step on the manifold is equivalent to a classical projected gradient
descent step in Rp with particular step size:

Proj‖.‖2=1[z− ηPz[∇L(z)]] = Proj‖.‖2=1

[
z− η

(
I− zz>

)
∇L(z)

]
= Proj‖.‖2=1

[(
1 + ηz>∇L(z)

)
z− η∇L(z)

]
= Proj‖.‖2=1

[
z− η

1 + ηz>∇L(z)
∇L(z)

]
.

In Rp with no constraint, pre-conditioning is equivalent to performing a change of variable.
For unconstrained optimization in Rp, faster convergence is usually achieved when one has access to
an estimate of the inverse of the Hessian ∇2L(z)—assuming twice differentiability—and using the
descent direction (∇2L(z))−1∇L(z) instead of ∇L(z); then, we obtain a Newton method. When
the exact Hessian is not available, or too costly to compute and/or invert, it is however common to use
instead a constant estimate of the inverse Hessian, denoted here by Q, which we call pre-conditioning
matrix. Finding an appropriate matrix Q is difficult in general, but for learning linear models, a
typical choice is to use the inverse covariance matrix of the data (or one approximation). In that case,
the preconditioned gradient descent step consists of the update z− ηQ∇L(z). Such a matrix Q is
defined similarly in the context of convolutional kernel networks, as explained in the main part of the
paper. A useful interpretation of preconditioning is to see it as optimizing after a change of variable.
Define indeed the objective

L̃(w) = L(Q1/2w).

Then, minimizing L̃ is equivalent to minimizing L with respect to z, with the relation z = Q1/2w.
Moreover, when there is no constraint on z and w, the regular gradient descent algorithm on L̃ is
equivalent to the preconditioned gradient descent on L:

w← w − η∇L̃(w)⇐⇒ w← w − ηQ1/2∇L(Q1/2w)

⇐⇒ z← z− ηQ∇L(z) with z = Q1/2w.

We remark that the Hessian ∇2L̃(w) is equal to Q1/2∇2L(Q1/2w)Q1/2, which is equal to identity
when Q coincides with the inverse Hessian of L. In general, this is of course not the case, but the hope
is to obtain a Hessian∇2L̃ that is better conditioned than∇2L, thus resulting in faster convergence.
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Preconditioning on a smooth manifold requires some care.
Unfortunately, using second-order information (or simply a pre-conditioning matrix) when optimizing
over a constraint set or over a smooth manifold is not as simple as optimizing in Rp since the quantities
Q∇L(z), Pz[Q∇L(z)],QPz[∇L(z)] may not be feasible descent directions. However, the point of
view that sees pre-conditioning as a change of variable will give us the right direction to follow.

Optimizing L on Sp−1 is in fact equivalent to optimizing L̃ on the smooth manifold

S̃p−1 =
{
w ∈ Rp : ‖Q1/2w‖2 = 1

}
,

which represents an ellipsoid. The tangent plane at a point w of S̃p−1 being defined by the normal
vector Qw/‖Qw‖2, it is then possible to introduce the projection operator P̃w on the tangent space:

P̃w[u] =

(
I− Qww>Q

w>Q2w

)
u.

Then, we may define the gradient descent step rule on S̃p−1 as

w← ProjS̃p−1

[
w − ηP̃w

[
∇L̃(w)

]]
= ProjS̃p−1

[
w − η

(
I− Qww>Q

w>Q2w

)
Q1/2∇L(Q1/2w)

]
.

With the change of variable z = Q1/2w, this is equivalent to

z← Proj‖.‖2=1

[
z− η

(
I− Qzz>

z>Qz

)
Q∇L(z)

]
.

This is exactly the update rule we have chosen in our paper, as a heuristic in a stochastic setting.

D Additional Results for Image Super-Resolution

We present a quantitative comparison in Table 3 using the structural similarity index measure (SSIM),
which is known to better reflect the quality perceived by humans than the PSNR; it is commonly
used to evaluate the quality of super-resolution methods, see [8, 26, 27]. Then, we present a visual
comparison between several approaches in Figures 2, 3, and 4. We focus notably on the classical
convolutional neural network of [8] since our pipeline essentially differs in the use of our supervised
kernel machine instead of convolutional neural networks. After subjective evaluation, we observe
that both methods perform equally well in textured areas. However, our approach recovers better thin
high-frequency details, such as the eyelash of the baby in the first image. By zooming on various parts,
it is easy to notice similar differences in other images. We also observed a few ghosting artefacts near
object boundaries with the method of [8], which is not the case with our approach.

Table 3: Reconstruction accuracy of various super-resolution approaches. The numbers represent the
structural similarity index (SSIM), the higher, the better.

Fact. Dataset Bicubic SC [30] ANR [26] A+[26] CNN1 [7] CNN2 [8] CSCN [27] SCKN

x2
Set5 0.9299 0.9492 0.9499 0.9544 0.9521 0.9542 0.9552 0.9580

Set14 0.8689 0.8989 0.9004 0.9056 0.9037 0.9067 0.9074 0.9115
Kodim 0.8684 0.8990 0.9007 0.9075 0.9043 0.9068 0.9104 0.9146

x3
Set5 0.8677 0.8959 0.8959 0.9088 0.9025 0.9090 0.9144 0.9165

Set14 0.7741 0.8074 0.8092 0.8188 0.8148 0.8215 0.8238 0.8297
Kodim 0.7768 0.8066 0.8084 0.8175 0.8109 0.8174 0.8222 0.8283
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Bicubic Sparse coding [30] CNN2 [8] SCKN (Ours)

Figure 2: Visual comparison for x3 image up-scaling. Each column corresponds to a different method
(see bottom row). RGB images are converted to the YCbCr color space and the up-scaling method is
applied to the luminance channel only. Color channels are up-scaled using bicubic interpolation for
visualization purposes. CNN2 and SCKN perform similarly in textured areas, but SCKN provides
significantly sharper artefact-free edges (see in particular the butterfly image). Best seen by zooming
on a computer screen with an appropriate PDF viewer that does not smooth the image content.
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Bicubic Sparse coding [30] CNN2 [8] SCKN (Ours)

Figure 3: Another visual comparison for x3 image up-scaling. See caption of Figure 2. Best seen
by zooming on a computer screen with an appropriate PDF viewer that does not smooth the image
content.
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Bicubic Sparse coding [30] CNN2 [8] SCKN (Ours)

Figure 4: Another visual comparison for x3 image up-scaling. See caption of Figure 2. Best seen
by zooming on a computer screen with an appropriate PDF viewer that does not smooth the image
content.
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