A Proof of Main Theorems

In this section, we provide the proof for our main theories.

We start by defining some notations. Note that the estimator in (3.7) can be rewritten as

A = argmin U(A) + GA(A), (A.1)

where (A) = 1/2tr(ASy AS y) — tr(A(f]X —33y)), GA(A) is the nonconvex penalty defined
in Section 3 and A is a non-negative regularization parameter. By the definition and decomposition of
nonconvex penalty in Section 3, we can written the estimator as

o~

A = argmin [5(A) + A All1,1, (A2)
AeRdxd

where £5(A) = ((A) + HA(A), and H\(A) = Z?,k:l hx(Ajyi) is the concave part of G(A).

To simplify the proof, we further make some transformations on the notations. By some linear
algebra identities [13], we have tr(A T B) = vec(A) "vec(B) and tr(ATBCD ") = vec(A) T (D®
B)vec(C) for any matrices A, B, C and D with commensurate dimensions. Using these identities,
we can rewrite the quasi log likelihood in (3.6) as

L(B) = %ﬁTQB ~-b'B, (A.3)

where 8 = vec(A) e RY, Q = Bx ® 8y € R %% and b = vec(Ex — By) € RY. Then the
estimator in (A.1) can be rewritten as

~

B = argmin L(B) + GA(8), (A4)
perR?
where £(8) = 1/287 QB — b B is the counterpart of loss function £(A) = 1/2tr(ASy AS y) —

tr(A(Ex — Zy)), G (8) = Zil gx(B;) is the nonconvex penalty defined in Section 3 and \ is a
non-negative regularization parameter. Therefore, the optimization problem in (A.2) turns to be

~

B = argmin £,(8) + A|B]|1, (A.5)
BeRd?

where £(8) = L(8) + H(8), and Hx(8) = Zil hx(B;) is the concave part of G(3).

Denote vec(S) := supp(3*), where 8* = vec(A*) and S = supp(A*) is the support of the true
differential graph. Finally, the vectorized oracle estimator of 3* in (4.1) turns to be

Bo= argmin L(B), (A.6)
supp(B) Cvec(S)

where £(8) = 137QB8 - b7 8.
Now, we are ready to prove our main results. In order to make the proof concise, we first prove

Theorem 4.6, followed which we prove Theorem 4.4. Note that the proof of Theorem 4.4 relies on
the proof of Theorem 4.6.

Proof of Theorem 4.6. Supposez € J|| 8 |l1. In particular, the estimator Bin (A.5) satisfies optimality
condition for unconstrained problem

(B— B, VLA(B) + Xz) <0, (A7)
for any 3'.

First, we want to show that there exists some Zo € 0||Bo 1. such that Z satisfies the optimality
condition as follows

(Bo — B, VLx(Bo) + Nzo) <0, (A8)
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for any 3. Since £ (8) = L(8) + Hx(8), we have
(Bo — B'.VLA(Bo) + Xzo) = Z (Bo — B')i - (VLA(Bo) + XZo),

i€vec(S)

M
+ > (Bo—B)i- (VLr(Bo) +Xeo),. (A9

i€vec(S)e

(i)
For term (i) in (A.9), by Lemma B.3, we have with probability at least 1 — 3/s that

~ 1
1Bo = Bl < COBoxov My 222,

where C' is an absolute constant. Recall the assumption on entry magnitude of B*, i.e.,
Minevec(s) |8 = v + CO%03 0x0y My/logs/n, we have with probability at least 1 — 3/s
that

min_|(Bo)i| = min_|(Bo —B* + 8| > min_{|(8):| - |(Bo — B")i|}

i€vec(S) i€vec(S) i€vec(S)
2= Bo — B")i| + mi )il
2 - guax |(Bo = 47|+ min, 187
(A.10)

The right hand side of (A.10) can be further lower bounded by

~ /1 1
l’rélg'l!(ﬂo)l| > —CQ%H%axoyM 058 +u+09§(0§/axayM OTgLS.

Following condition (a) in Assumption 4.3 for G(3), we have
(VHA(Bo) + X20)i = (VG(Bo)): = 95 ((Bo):) =0,
for ¢ € vec(S). Hence we have
Y (Bo=B)(VLA(Bo) +X20)i = Y (Bo—B"i- (VL(Bo) + VHA(Bo) + X20),,
ievec(S) i€vec(S)
= > (Bo —B'): - (Vﬁ(éo))i'
i€vec(S)

Recall that BO is the global solution to the problem in (A.6). Hence we have BO satisfies the
optimality condition as follows

Z (Bo — ﬂl)i(V£(ﬁO))i <0,
i€vec(S)
which leads to

>~ (Bo—8)i(VLA(Bo) + Mo), < 0. (A1)

ievec(S)
For term (ii) in (A.9), notice that (,@o)i = 0 for i € vec(.S)°. By the regularity condition (c), we have
(VH/\(BO))i =1\ ((Bo)i) =0,
for ¢ € vec(S)°. This leads to

Y (Bo—B)i- (VLA(Bo) +X20), = D (Bo—B"i-(VL(Bo)+ VHA(Bo) + Neo)i,

i€vec(S)¢ i€vec(S)e

= Z (Bo — B)i - (VL(Bo) + \ao);.

i€vec(S)e
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Since VL(3) = Qﬁ — b and note that Q*B* = b*, we have
IVLBo)||. =|QBo — QB" +QB" — Q'B" +b" —b| _
<|[Qll;-[I8o =Bl +1Q = Q[ oo - 87l + [[b" =Bl

/1 /1
1-\/3% Ogd+67r ogd7
n n

where in the last inequality the first term is due to Lemma B.3, the second term is from (B.3), and
the last term is due to Lemma C.1 and (B.6). In addition, we have ||Q||1 < |IEx|- 1By <

lo

g S +H,3*

<||Qll, - COx b} oxoy M=

4%l - 12311 when n is sufficient large, and thus ||(§H1 < 40x0y by Assumption 4.1. By
Assumption 4.2, we have Hﬁ*

| < M. Therefore, for any i € vec(S)¢, we obtain

~ ~ logd
|(V£(Bo)),| < [V£(Bo)|. < Cobiebiyoay 21y 2,

n

where Cj is an absolute constant. By Assumption , it follows that |(v£(1§0))¢| < /2 for any
i € vec(S)°. Since we have Zo € ||Boll1. hence |(Zo):| < 1 fori € vec(S)¢. By setting
(zo)i = —(VL(Bo))i/ fori € vec(S)¢, we can enforce the following equality to hold
(VL(Bo) + XZo), =0,
for i € vec(S)°. Hence, we have
Z (Bo — B')i - (VLA(Bo) + \Zp), = Z (Bo — B - (VL(Bo) + AZp), = 0.

i€vec(S)e i€vec(S)e
(A.12)

By using (A.11) and (A.12), we obtain (A.8).

Now we are ready to provide proof on ﬁ = Bo- Recall that supp(Bo) = vec(5), and Lemma B.2
shows that under suitable condition, we have
p— G

L£7(B) = L(Bo) + (VLx(Bo), B — Bo) + =

p— (-
2

18 - Boll2, (A.13)

Lx(Bo) > LA(B) + (VLA(B),Bo — B) + 1Bo — B2, (A.14)

hold with high probability.

By convexity of ¢; norm || -

1, we have following two inequality hold
MBIl = NlBoll + B = Bo,Zo), (A.15)
MiBollx = MBIl + A(Bo — B.2). (A.16)
By adding Equations (A.13)-(A.16), we have
0> (Bo — B, VLA(B) + A2) + (B — Bo, VLx(Bo) + Xzo) +(p — ¢-)IIB — Boll3.
(a) (b)

Recall that E satisfies the optimality condition
(B~ Bo,VLA(B) +z) <0,
hence we have term (a) > 0.
Similarly, by (A.8), we have
(Bo — B, VLA(Bo) + Nao) <0,

which leads to term (b) > 0. Therefore, we have (p — ¢_)||8 — Bo||2 < 0, which implies 3 = Bo.
Thus we can conclude that, under suitable condition, the proposed estimator 3 is the oracle estimator
Bo, which exactly recover the true support of 3* with probability at least 1 — 3/s. O
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Next, we are able to prove Theorem 4.4.

Proof of Theorem 4.4. Recall that in Theorem 4.6, we have proved that under certain conditions
B = Bo holds. Then by Lemma B.3 we have

/1 1
oo < 670x 0y 058 + 2V 1077(9%9%0’){0’)/]\4 083

n

18-8.=1Bo -8

holds with probability at least 1 — 3/s, where the second term dominates the first one.

Next, we just need to bound | Bo — B*

|- By definition in (A.6),we have

1 ~ ~
Bo= argmin -B'QB-b'E.
supp(8) Cvec(S)
By definition we have Q = f)x ® ZAJY € R¥*4* For any j,k,p,g=1,...,d, we use Q(j’kﬂpﬁq) to
denote the entry in Q that is obtained from the product of the (7, k)-th entry in Sy and the (p, q)-th
entry in Xy. Specifically, we have

0 — kS _ o (TaX o (Tay
Q(jkpg) = By Xy = sin (ETjk) Sl (ET”Q)
1 T X ~Y 1 T ~x ~Y
=3 cos (E(Tjk - qu)) ~3 cos (g(Tjk + qu)).
Furthermore, we define fijk.pq = 7,5 — 7py and fi;..,. = 755 + 7y, All the notations above can be
easily extended to Q*. Then we have

-~ . 1 ™ T
s~ U o () (50

1 7T/\/ m Ix
o 5 e) o (i)
We only need to bound the first term, and the second term is very similar and the bound should be

exactly the same. Note that
T T T (T, - N
cos (5/”’%“1) —cos (gﬂjk;pq) D R (§“jk;pq) (Fjkipa = Hkipq)
2 T . . 2

- g s <§Njk;pq> (Fjkipg = Hikipg) s
where [i;.pq lies between fijz.pq and p5,. . Let L € R? %" be the matrix with the same structure
as Q whose (4, k,p, q)-th entry is cos(7/2[Lk;pq). Similar notations are defined for L* and L. Then
for any x € RY’ we have

2 ~ ~ ~

|xT (Q-Q")x| < g‘x—r {sin (gL) o(L— L*)}x‘ + %’XT [cos (gL) o(L-L*)o(L- L*)}x‘.

Recall the results in Lemma C.2 and Lemma C.3, following a similar proof we can show that with
probability at least 1 — 1/s

~ N slogs log s + slog9
\|Sl\|1£1 |XT (Qss — QSS)X| < 27T2Tg +81VC %,

(A.17)

where C is an absolute constant. We have the closed form solution 3* = Q*~'b*. It follows that
180 = 87|, = [ Qssb — Q" 'b7||, = [|Qgsb — Qggb” + Qgib” — Q'b7|,
< |1Qsslly - [I[b =BTl + Qs — Qs l, - D52,
@ (i)

(A.18)

where we use the fact that vec(S) = supp(8*) = supp(Q*~'b*). Note that |b*[|2 = [|Z% —
vl = 1IB5AS |r < 1B% 2 - 1Z% ]2 - |1A*|F < M/(k1k2), here we used the fact that
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[A*|F < [|A*]|1,1 < M and A\pax(X%) < 1/k1 by Assumption 4.1 and 4.2. Then term (ii) in
(A.18) can be bounded as

IN

Q53— Q' b3 = - Q5H, - 1@ss - Qsl, 5,

2
S471;)]\34510gs_|_1671;))]\/[30 /logs—i—slogQ7 (A.19)
Kiks n K3k n

where the second inequality uses the bound in (A.17) and the fact that ||Qfg§1 H2 < 1/(k1k2) by

Assumption 4.1 and |‘Q§é”2 < 2“(22;1 H2 when n is sufficient large.

For term (i) in (A.18), with probability at least 1—1/d—2/d2 we have || £ x — X% ||2 < 2r2dlog d/n+
87/ C'/(log d + dlog9)/n by Lemma C.3. The dominating term is y/d/n. Similar bound for ¥y

holds. It immediately implies
Q34 10— 5Tl < (1S — Bl + By - 51l < ny /2
s5ll2 sllz = e Xlsllz v Yisli2) = o\ 0
(A.20)

where C'; is an absolute constant. Submitting (A.19) and (A.20) into (A.18), we obtain

472 M sl 64(1+ vo5)mM /1 +slog9
8o~ 5, < 1oy f2 4 2R elogs  SHLE VMM, flogs 4 slog),
27 Kika Kk n KiKS n

which holds with probab111ty atleast 1 — 1/d — 1/d*®. In Theorem 4.6, we have proved that under
certain conditions ﬂ ,Go holds, which further implies that

C1(k2+K3) [s A4AnloxoyM slogs 64(1++5)rM [logs + slog9
H,B 6”2— K3K3 —+ 3,3 + 3,3
K3 n KRS n RIK3 n
s

CoM
<
R1K2

holds with probability at least 1 — 1/s — 1/s25 > 1 — 2/s, where Cy is an absolute constant. [

Finally, we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. Letz € 9||B|; and Z € 8||3|)1 denote the subgradient. Recall that, 3 is the
global solution to (A.5). Hence we have

(B — B, VLA(B) + \2) <0, (A21)
for any 3’. By Lemma B.2, under suitable condition, with high probability, we have

ErB) 2 Ex(8") + (VEx(8"),B - B°) + P |5 - 7[5 (A22)
Lx(8") = Lx(B) + (VLA(B). 8" — B) + © (A.23)
By convexity of 1 norm || - |1, we have
MBI > N8l + B - 87", (A24)
AIB 1 = B[l + A(B" — B,2). (A.25)

Adding up (A.22) to (A.25), we have

0> (8" = B,VLA(B) + \2) + (B — B*, VLA(B") + \z*) + (p — ¢)|1B — B*II3-
Meanwhile, (A.21) leads to

(VLA(B) + 22,8 — B) >0
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Hence, we have

(p=CIIB=B"I3 < (B" = B,VLA(B") + \z"). (A.26)

Recall that £ A(B) is restricted strongly convex provided p = k1k2/2. With (_ < k1ko/4 and
(A.26), we have

Hlﬁz

1B 87115 < (0= C)IIB - B°3
<Vﬁ(ﬁ*) + VHA(B") + Az", 8"~ B)

<Z| (VL(B*) + VHA(B") + Az*). | - |(B* — B)i- (A27)
Now, we decompose (A.27) into three parts: ¢ € vec(S)¢, i € Sy and ¢ € Sy, where we define
Sy =A{i[[(8")il = v}and Sy = {i|[(B"): <v}.
Case 1: For i € vec(S)¢, based on regularity condition (c) in Assumption 4.3, we have

(VHA(B")), = PA(B)) = Wy (0) = 0.

Recall that we have [ (VL(8%)),| < CMy/logd/n = /2 according to Lemma B.4. Hence,

(VL8 + VHAE )| < 5.

Since z* € 0||3*||1, we have |z| < 1 and thus Az} € [—\, A]. Therefore, for any i € vec(S)¢, by
definition of subgradient of z* we can always find a 2] such that

(VL(B") + VHA(B") + Az¥);| = 0.

This leads to

> (VLB + VHABY) +Az") | - |(B* — B)i| = 0. (A.28)

i€vec(S)e

Case 2: For i € S7, we have || > v. By condition (a) in Assumption 4.3 on G(3) = HA(8) +
A||B|l1, we have

(VHA(B") +Az7), = g\ (B]) = 0,

which implies
Y UVLPB) + VHAB) +A2) |- 18" = Blil = D VLB - (8" = B)il.

€St i€S1

Hence by Cauchy’s inequality we have

ST UVLB) + VHABY) + 22", | - (8" = B)il < [[(VLB))g, [, (8" = B)s, -

1€SL

Since VL(B) = QB — b and note that Q*3* = b*, we have
||[V£ S1H2 - H Qﬁ Q ﬁ +b* — }51”2 < ||[Q - Q*]S1S1||2 : H[/B*]S1||2 + H[b* - B]Sl”g

1
< VErM | 285 L a3
n

holds with probability at least 1 —2/s; — 1/s1 = 1 — 3/s1, where the first term in the last inequality
is due to (B.3) and ||3*||2 < ||3*|l1 < M by Assumption 4.2, and the second term is from Lemma
C.4. Thus, we obtain

ST (VLB + VHAB) +Az"),| - (8" — B)i] s4\/§wM\/§ 18" =Bl (A29)

1€ST
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Case 3: For i € S, we have |3}| < v. By condition (d) in Assumption 4.3, we have

%), < B < NBH| < A
max | (VHA(87),| < max |y (8))] < max W3 (87)] < A

Since z* € 9||3*||1, we have |z]| < 1. Therefore, for i € Sy, the following results hold
[(VL(B") + VHAB") + Az"),| < [(VL(B),| + [(VHAB)),] + Al(z")i]
<|(VL(BY)),l +2X.
Again, by Lemma B.4 ||[VL(8%)|lcoc < A/2 holds with probability at least 1 — 3/d, we obtain

STHVLPBY) + VHABY) +227),| - (8 = B)il < (VLB oo +24) 3 1(8° — B

1E€Sy 1€Sy
5 . 5
< §>\ Z (B — B)il-
1€Ss

Hence we have

~ 5 ~ 5 ~
> (VLB + VHAB) +Az") |- 1(87 = B)il < SAV51 (8" = B) g, [l < 5AVE18" = Bll2-
1€Ss

(A.30)

Adding up (A.28) (A.29) and (A.30), and substituting the right term in (A.27), we obtain

~ 1 M 10 )\ 1 M 1 M logd
16 Bl < SO [ JOVEA AGVETM f5,  WORMC frlogd -y 5,
KR1K2 n KR1R2 KR1K2 R1K2

holds with probability at least 1 — 3/d — 3/s; > 1 —6/s1.

B Lemmas in the Proof of Main Theorems

Lemma B.1. Under Assumptions 4.1, the loss function £(3) = 1/2ﬁTQﬁ — ﬁTE is strongly
convex with constant x1 kg /2.

Proof of Lemma B.1. Note that VL(3) = QB — b, we have

(VL(B)-vLB),8-8)=(8-8) QB-8).

Then we get

ﬁﬁ’evec(s)(ﬁ ﬁ) Q(ﬁ_ﬁ) ,3ﬁ' (ﬁ ﬁ) (Q_Q*+Q*)(ﬁ_ﬂ)

zxmm@ )Ilﬂ—ﬁllz g (8- 8 (Q-Q)(B-8)

> Amin(QY) 18— 8113 ~ IIQ - Q Hz 18— 8lI3.

By Assumption 4.1, we have Apin(Q*) = Amin (X% ) Amin (X3-) = K1K2. For the second term, we
have

Q- Q= [Ex© 5y ~ 24 @Sy + 5 @Sy + B% @ Ti |2
<Ex =Xz 1By =I5 (2 + [EX 2 1By = Z5 (2 + [EV 2 - [Ex — EX |2
3 * - * 1 - * 1 - *
<[Ex =Xz 1By — I3[z + Pl [Zy — Z§ 2 + P [Zx — EX|2,

where the second inequality is due to Assumption 4.1. By Lemma C.1, we have

~ ; logd S . logd
1% = T llooe <31/ =25, [|By = B floee < 31y

n
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with probability at least 1 — d—5/2. Therefore, we have

A logd (1 1 9r2slog d
1Q - Q%)s]» < 3W\/W< N ) | 9*slogd
n K1 K9 n

with high probability. When n is sufficient large, we have

R1k2

. NTA y o
- -G > — .
Juin (8-6) Q(B-8) > =718~ 83
This immediately implies £(3) is restrictively strongly convex with constant x1 k2 /2. O

Lemma (B.1) shows that, with high probability, £(3) is a strongly convex function with modulus
p = K1k2/2 > 0. In (A.5) we defined £ (B3) = L(B) + HA(B), where L(B) = 1/287QB — BTb,

HA(B) = Z?;ll hx(B:) = GA(B) — Al|B|l1. We now show that, with high probability, £, (3) is
strongly convex.

Lemma B.2 (Restricted Strongly Convex). Let S = supp(8*). Givenn > C}slog d and appropriate
parameter in nonconvex penalty Gy (3), £, (83') is strongly convex.

EAB) 2 Er(B") + (VENB).8' — B) + 218 - 713,

holds with probability at least 1 — C” exp(—Cn).

Proof. Recall that 7, () is the concave part of £ (3), which implies —H(3) is convex. Mean-

while, recall that H(3) = Zf.l:l ha(B:), where hy(83;) + (_ /2% is convex by Assumption 4.3.
Hence we have

¢

() + 5B 2 ha(57) + 5552 + (A (50) + €61 (8 — B1),

and
Ha(B) + IR = HAB) + 1813 + (VHAB") +C 678~ 6.
This immediately implies
HA(B) = Ha(B) + (VHA(B). 8 — 8%~ 518~ '3 ®.1)

Recall that by Lemma B.1, provided suitable condition, £(3’) is (w.h.p.) strongly convex. with
modulus p = k1k2/2, we have

L(B) = L(B") + (VLB B B+ 518 - 3. (B2)
By the definition of £ (8) = £(8) + H(8). adding (B.1) and (B.2) together, we obtain
EAB) 2 ExB7) + (VEn(B"). 8 — 87) + L5518 — 3,
holds with probability at least 1 — C’ exp(—Cn). Here, p = k1k2/2 and (_ is depended on the

nonconvex penalty. For example, in MCP penalty (_ = 1/b. When p = k1k2/2 > 1/b, the above

equation leads to strongly convexity of £)(3), w.h.p. in the cone, provided suitable condition on
n. O

Lemma B.3. Under Assumption 4.1, the oracle estimator BO in (A.6) satisfies

/1 1
oo < 6wl x 0y OSS + 2v 1071'09%(9%/0')(0'3/]\4 OTgLS,

with probability at least 1 — 3/s.

1Bo — B*
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Proof. By definition in (A.6),we have

~ 1 -~ ~
Bo= argmin -8TQB-b'B.
supp(B) Cvec(S)
By definition we have Q = EA)X ® EA)Y € R¥ >4’ For any j,k,p,q=1,...,d, weuse Q(j,k,p,q) to
denote the entry in Q that is obtained from the product of the (4, k)-th entry in S v and the (p, q)-th
entry in Xy. Specifically, we have

- _sikspg _ o (Tox) o (Toy
Q(jk,pg) = Lx 2y = sin (QTjk> sin (27pq

1 Ti~X _~Y 1 Ti~X | ~Y
=3 cos (5(7']-,C - qu)) 5 cos (g(Tjk + qu)>.
= _ =X _ 2y = _ X |2y :
Fur'thermore, we define fijk;pq = T}, — Tpq and piy. . = 75 + 7. All the notations above can be
easily extended to Q*. Then we have

~ N 1 ™ _ T
Qjkpra) — Q(j,k‘,p,q) = 5(‘305 (§:ujk;pq) — COS (Eujk;pq)>
0

1 7T,\, I%
s (5] o ()

We only need to bound the first term, and the second term is very similar. Note that
T T T (T R N
cos <§l‘jk;pq> — Cos (gﬂjk;pq) =S (gﬂjk;po (Fjripg — F‘jk;pq)v
where [i;pq lies between ijy.pq and p17y .. To bound Ljk.pg — [y.ppe» DOtE that Tjy, T are sub-
Gaussian random variables and |77, |, [7),| < 1. Thus |fijx.pe| < 2 and fijp.pq is also sub-Gaussian.
epr ~ ~X ~Y . s . .

In add'ltl.on, we have I.E(ujk;.pq) = E(7;},) — E(7,,) = #4}1,,- Then by Hoeffding’s inequality for
U-statistics and applying union bound, we get

~ . 2
IP)( ‘Sup ‘,U/jk;pq - /“ij;pq| > t) S 2d4€ A

Jk.p.a
Take t = 1/201log d/n, we have that
(7‘(,\ ) (7r " )‘<7r i N ‘<7r 20logd
sup |cos | =/jk; —cos | = 5. < = SUp |Ujkipg — Mk < =
Jik.p.q 2’uj i QNJk’pq 2 jkpyg Hikipa = Hykipa 2 n
holds with probability at least 1 — 2/d. It follows that
N ~ . log d
Q- QHoo,oo = _SkuP Qi kpia) — Q(j,k7p7q)| < Vo n (B.3)
J.k.p.q

holds with probability at least 1 — 2/d. We have the closed form solution of ﬁo as 30 = Qgég
Then we have

1Bo =8|l = Qssb - Q'b[| = [Qssb — Qusb™ + Qgb™ — Qb7
< 1Qsslly - lITb = B7lsl, +11Qss — Q5| oo - I1PS -

(i) (ii)

B4
For term (ii), we have
155 = Q85| o = 1Q5" (Qss — Qi) Qs
< Q55 ], - [1Qss — Qs oo - Q58]
By Assumption we have ||Q““’1||1 = HE}_lﬂl . ||E§(_1||1 < Ox0y. When n is sufficient large, we

have HQ_l H1 < QHQ*_1 H1 by concentration. By (B.3) we have with probability at least 1 — 2/s
that

~_ s " log s
Q54 = Q55| oo - D711 < 2V1070% 600y My | 222, (B.5)
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where we used the fact that || X% — 33|11 < oxoy M by Assumption 4.2. For term (i), we have
with probability at least 1 — s~
log s

where the second inequality is due to Lemma C.1. Therefore, submitting (B.5) and (B.6) into (B.4),
we obtain

~ 1 1
B0 - 5*Hoo < GWQXQY\/? + 2V10m60% 03 o x oy M OSS,

which holds with probability at least 1 — 2/s — 1/s%% > 1 — 3/s.

Lemma B.4. We have with probability at least 1 — 3/d that

1205l < Oy

where C is an absolute constants.

Proof of Lemma B.4. Since VL(B) = Qﬁ — b and note that Q*B* = b*, we have
VL@l =188 - Q"8 +b* —b||

<[Q-Q .- 1871 + " =Dl
<\/57rM\/loid+67r\/loid

holds with probability at least 1 — 2/d — 1/d?% > 1 — 3/d, where the first term in the last inequality
is due to (B.3) and ||3*||1 < M by Assumption 4.2, and the second term is due to Lemma C.1. [

C Auxiliary Lemmas

Lemma C.1. [20] Given X;,X5,...,X, are i.i.d. random vectors following

TE4(X*,&; f1, fa,..., fa) and letting 3 be the Kendall tau correlation matrix, we have
that

. log d
I — S |oc.co < 3my/ 22

holds with probability at least 1 — d—5/2.

To prove the spectral norm error of 3%, we first introduce the following bound for ’f‘, where TA“J k= Tjk-

Lemma C.2. Suppose § € (0, 1) satisfy log(1/5) + dlog(9) < n. Then with probability 1 — 4§ it
holds that

ap T (F - T §4\@\/10g(1/5):d10g(9)7

lIx[l2<1

where C is an absolute constant.

Proof of Lemma C.2. Let 6 = 4/C'\/[log(1/5) + slog(12)]/n. For any fixed x with ||x||» < 1 and
any 0 < t, by Markov’s inequality

]P’(XT ('f — T*)x > 9) < E{exp (t x ' ('f‘ — T*)x — t@)}. (C.1)

By Lemma D.1, we have

E[exp (t-x (T — T*)x)] < exp (8?2)
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Submitting the above inequality into (C.1) and setting ¢t = nd/(16C), we obtain

~ nb?
IP’( (T — T* 9)< <—7) c2
X ( )X > < exp 16C (C.2)
Thus the error bound for T in spectral norm satisfies

p(||T—T*||2>a):p( sup XT(T_T*)De)

lIx[l2=1

< P((l —2¢)7 ! sup x" (’f‘ — T*)X > 9)
xENe

< (1+2/e)?P(x" (T - T")x > (1 - 26)8),

where the first inequality is due to Lemma D.3 and the second one due to Lemma D.2. Take ¢ = 1/4
we obtain

IP’(H’T‘ — T2 >6) < QdP(XT (’i‘ - T")x > g) < 9%exp ( —log(1/0) — dlog9) =4.

where in the second inequality we used (C.2) and the definition of §. This completes the proof. [

Next, we relate 3 to T.We have the following bound on the error of covariance estimator >

Lemma C.3. Assume that Xq,...,X, are i.id. random vectors following
TE4(X*,&; f1, fa,- .-, fa) and letting 3 be the Kendall tau correlation matrix, we have

dlogd logd + d1
o8l | sy [ et thoxl)

IS -2, < 27
n

holds with probability at least 1 — 1/d — 2/d?.

Proof of Lemma C.3. By definition in Section 3.2, we have & = cos (7/2T), where the cos(-)
function is elementwise. By Taylor’s theorem,

2 ~ A~ A~
=3+ Zeos (3T7) o (T = T7) = Tosin (FT) o (T - T7) o (T - T),
where T has entries 7jx which lies between 7, and 77, for all j,k = 1, -, d. Here o is the Hadamard
(elementwise) product for matrices. For any x € R? and ||x||» < 1,

~

|xT (E — Z)x| < g‘XT {COS (gT*) o ('i‘ - T*)}x’ + %Q‘XT {sin (g'f) o ('i‘ - T*) o ('f‘ - T*)}x‘ .

(i) (ii)
(C.3)

We first bound the term (ii). Note that

‘XT [sin (%T) ) ('f‘ — T*) o (’i‘ — T*)}x‘ < |Ix|? - '

sin (3T) o (T=T") o (T - T)
2

00,00’

’oo,oo

<d |t

where the second inequality holds because |sin(m/27;;)| < 1, forall j,k =1,--- ,d, and ||x||; <

Vd||x||2 < V/d. Next, we bound term (i) in (C.3). By Lemma D.4, we can express cos(m/2T*) as a
convex combination,

T oo
cos [ =T*) = a;w;v,
2 7 7

i=1
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where u;, v; € R% satisfy ||u;||oo, || Vil|oo < 1foralli > 1, and the non-negative sequence a1, az, - - -
. %)
satisfy > ", a; = 4. Then

WK

’XT [cos (gT*) o (’f — T*)]x‘ <

a;|x" [uiv;r o (’f — T*)]x‘

1

.
Il

o

[¢73

(xov) (T -T") (xou)

=1

<4 sup ’vOT (’i‘ — T*)uo

Uo,vVo

9

where ug = x o u, vy = x ov. Note that ||uglls < [|x]|2 - [[ullec < 1, similarly ||v|]s < 1. Let
u = (ug + vp)/2 and v = (ug — vg)/2. Observe that we have ||ullz < (||ugllz + ||voll2)/2 < 1,
similarly ||v||2 < 1. Therefore,

1

sup |vg(’/I\‘—T*)u0| =—  sup |ﬁT(’i‘—T*)ﬁ—\7T(’f—T*)V|
laoll2;llvoll2<1 2 @fla, 9] <1
< sup |ﬁT(’f‘ — T*)ﬁ|.
lall2<1
Recall the bound in (C.3), we now obtain
A~ 2 ~ ~
sup |x (2 —2%)x| < T T - T|% oo + 27 sup |x' (T —T*)x|. (C.4)
Ixll2<1 8 ’ Ixllo<1

Since 7jy, is a U-statistic, and its kernel is a bounded function between —1 and 1 and E7;;, = 7;y.
Then by Hoeffding’s inequality for U-statistics, we obtain

nt?
]P’(sup [Tik — Tkl > t) < 2d%e~ ", (C.5)
J.k

Choose t = 4+/log d/n, we have | T — T||s.co < 44/log d/n with probability at least 1 — 2/d>.
Plugging the bound in Lemma C.2 and (C.5) into (C.4), we obtain that

||§3 s < 27T2d1(7)lgd + 87V logd—l—;llog(9)

holds with probability at least 1 — 1/d — 2/d?, where we set § = 1/d in Lemma C.2 and C'is an
absolute constant. O

Lemma C.4. For vectors b, b* € RY’ with entries Bj = sin(7;), and a index set .S with |S| = s, we
have

~ N S
[lb-b ]s”2 < 4\/577\/;

holds with probability at least 1 — 1/s.

Proof of Lemma C.4. By definition b= vec(f]x — f]y),
Ib = b2 < [[vec(Bx) — vee(Ty )|z + [[vec(By) — vee(Ey) 2.

Denote X = vec(Zy ), x* = vec(X%) and y = vee(Sy ), y* = vec(33). We only need to bound
[x — x*||2. By definition in Section 3.2, we have 3 = cos (7/2T) and X = cos (/27 ), where the

~

cos(-) function is elementwise. Here we use 7 = vec('T) to denote the vectorized Tau statistic. By
Taylor’s theorem,

§=X*+gCOS (gf‘) o(T—1%) - 7T§51n (g?) o(T—1%)o(T—7%),
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where 7 has entries 7; which lies between 7; and 7 forall j = 1,--- ,d” and o is the Hadamard
(elementwise) product. For any u € R® and |lufj2 < 1,

hf@—@gsgbﬂmqgﬁ)M?—ﬁﬂJ+§@ﬂm¢§ﬂoﬁ_qu?_ﬁﬂ

® (i)

S"

(C.6)
We first bound the term (i). Note that

‘uT [sin (g?) o(T—71%)o(T- T*)}S’ < |l - H {sin (g?) o(T—71%)o(T- T*)}
. o2
< Vs IT = Ts ] o
where the second inequality holds because | sin(7/27;)| < 1, forall j € S, and |lu||; < /s|luf|2 <

/5. By (C.5), we have ||[T — T*]gloe < 41/10g s/n.

Next, we bound term (ii) in (C.6). Note that

SHOO

‘UT{COS (gf‘) o (?—T*)}S’ = Huocos (ngﬂT(?—T*)S‘ = |u1r(7A'—7-*)S|7

where u; € R® is a constant vector with ||u;||2 < 1. Since 7; is a U-statistic, and its kernel is a
bounded function between —1 and 1 and E7; = T;-k. Thus 7; — T;‘ are centered sub-Gaussian random

variables and ||7; — 77||, < 2. Then by Hoeffding’s inequality, we obtain

+2

]P’(|u1r(7’:—7'*)s\ >t)<e q. (C.7
By Lemma D.2 and Lemma D.3

IF’( sup \u]—("r\fr*)s| >t) S]P’( sup \uir("r\f'r*)s| > (1*6)71t)
ur €RS, flug[[2<1 u; €5e

< (1+2/°P(Ju] (F - )4l > (01— 7"1)

< 5%exp ( — n—ﬁ),

- 16
where we set ¢ = 1/2 for the e-net of s-sphere. Choose t = 4,/3s/n and then we have ||[T —
7*]s]l2 < 44/3s/n with probability at least 1 — 1/s. Therefore, we obtain

- ~ 1
IIx — x*]s|l2 = Inax1|u—r(x7x)s| §27T2\/§0g8+2\/§7r\/?,
n n

llull2=

and it follows that

~ s
MbNBM§4%ﬁ¢
n
holds with probability at least 1 — 1/s. O
D Additional Lemmas
Lemma D.1. Assume that X,,...,X, are ii.d. random vectors following
TE«(X*,&; f1, fa, .-+, fa). T* is the Kendall’s tau matrix defined in Section 3.2, and T is

the Kendall’s tau estimator in (3.1). For fixed x with |ju||2 < 1, for any ¢t < nC/2, we have

E[exp (- u (T - T*)u)] < exp (8?;2).

Proof. Denote S,, the group of permutations of [n]. For a fixed u € R? and a permutation o € S,,,
define
Zgyi = uT(Sign ((XU(Z) - XUz‘Jrn/Q)(XU(i) - X

s

)1 =T)u, i=1,....n

Oitn/2
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Observe that

u' (T - T*)u —nlz > Zoa, (D.1)

o€Sn  i€[n/2]

and that for any fixed o € S,,, the Z,, ;’s are i.i.d. distributed for i = 1,...,n/2. We denote the
identical distribution as

Z= u' (sign ((Xi — Xipn/2)(Xi — Xigns2)') — THu
= (u' sign(X; — Xi+n/2))2 —E(u' sign(X; — Xi+n/2))2.

Note that |u' sign(X; Xisn/2, )] < Juflz < 1forany k = 1,...,d. Sou sign(sz -

Xitn/2,k) is sub-Gaussian and Z is a centered sub-exponential random variable with ||Z Iy < 2.
By Bernstein-type inequality [30], we have

Eexp(tZ) < it (D.2)

where C is an absolute constant. It immediately implies that

Elexp (t-u' (T — T*)u)] = {exp( > = 2t > ZM>]

o€Sn ze[n/Q
e E 5]
€Sy 1€[n/2)

where the inequality is due to Jensen’s inequality. Since for any fixed o € S, Z,;’s are i.i.d.
distributed and equal to Z in distribution. We have

oo ) = (2o (22)])
< ex <8Ct2)

where the second inequality is due to (D.2). O

The following lemma is about covering numbers of the sphere.
Lemma D.2. [30] The unit Euclidean sphere S™~! equipped with the Euclidean metric satisfies for

every € > 0 that
2 n
vl (1+2)

The following lemma is about how to compute the spectral norm on a e-net.

where A, is the e-net of S™~ 1.

Lemma D.3. [30] Let A be a symmetric n X n matrix. For some € € [0,1/2), let A/, be an e-net of
the unit sphere S”~! in R™. Then

|All2 = sup |[x"Ax|<(1-2¢)7! sup |x Ax|.
xcSn—1

xEN
Lemma D.4. [33, 2] There exist vectors X1, Xs, -+ and y1,y2, - with ||X;]|co, ||¥il|lcc < 1 for
all ¢ > 1 and a non-negative sequence as,as, - with Y.~ a; = 4, such that cos(w/2T) =

Z;‘il aiXiyz'T :
E Additional Experimental Results

In this section, we present the simulation results of Gaussian differential graph model, which is a
special case of the semiparametric differential graph models. Note that in the Gaussian case, the
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Table 3: Comparisons of estimation errors in Frobenius norm ||3 — A*||r for Gaussian differential
graph models. N/A means the algorithm did not output the solution in one day.

n = 100, d = 100

n = 200, d = 400

Methods Setting 1 Setting 2 Setting 1 Setting 2
SepGlasso 33.0574£0.4551 56.8891£ 0.1778  70.1670+0.4316  84.933640.0025
DPM 23.5676£0.7222  39.4366+0.3814 N/A N/A
LDGM-LI 14.0990+£0.6233  32.18724+0.4237  29.173740.4597 44.4980£0.5482
LDGM-MCP  12.4052+ 0.5758 28.7305£ 0.3477 27.8458+0.5843  38.7960+0.3976

Table 4: Comparisons of estimation errors in infinity norm ||A — A* |loo,00 for Gaussian differential
graph models. N/A means the algorithm did not output the solution in one day.

Methods

n = 100, d = 100

n = 200, d = 400

Setting 1

Setting 2

Setting 1

Setting 2

SepGlasso
DPM

3.893240.1362
3.1945+0.0291

5.13214+0.0102
4.4132+0.1060

4.1205+0.1081

N/A

3.8786+0.0369

N/A

LDGM-L1
LDGM-MCP

2.7127+0.0364
2.6549+ 0.1648

4.1265+0.3595
3.527740.0609

2.24234+0.1490 3.0224+£0.1088
2.390440.1831

2.0638+0.0388

inputs for all the methods are the sample covariance matrices 3 x and 3y instead of the Kendall’s tau
based correlation matrices. The ROC curves by averaging the results over 10 repetitions for Gaussian
differential graph models are shown in Figure 4, from which we can see our estimator (LDGM-MCP)
outperforms the others in all settings. In addition, LDGM-L1 as a special case of our estimator also
performs better than DPM and SepGlasso. SepGlasso’s performace is poor since it highly depends on
the sparsity of both individual graphs. When n > 100, the DPM method failed to output the solution
in one day. The average results over 10 replicates for estimation in terms of Frobenius norm and
infinity norm are summarized in Tables 3 and 4 respectively. Our estimator again achieves smaller
error than the other baselines in all settings. In addition, LDGM-L1 also performs better than DPM

and SepGlasso.
1 1 ! !
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
o o o o
= = = =
0.4 SepGlasso 0.4 SepGlasso 0.4 0.4
—-DPM —-DPM SepGlasso SepGlasso
0.2 -LDGM-L1 0.2 -LDGM-L1 0.2 -LDGM-L1 0.2 -LDGM-L1
—-LDGM-MCP -LDGM-MCP —-+LDGM-MCP| -~ LDGM-MCP
% 02 04 o6 08 1 % 02 04 o6 08 f % 02 04 06 08 1 % 02 04 06 08 1
1-TN 1-TN 1-TN 1-TN

(a) Setting 1: n=100,d=100 (b) Setting 2: n=100,d=100 (c) Setting 1: n=200,d=400 (d) Setting 2: n=200,d=400

Figure 4: ROC curves for Gaussian differential graph models of all the 4 methods. There are two
settings of graph structure. Note that DPM is not scalable to d = 400.
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