
A Proof of Main Result

In this section we prove our main result, Theorem 2. As stated in Section 4, the technically challenging
part is to show that the Bernstein condition implies the ESI-Bernstein condition. This is done
implicitly in Section A.1, Lemma 9, which in fact proves a more general statement about the
normalized cumulant generating function. Lemma 9 is then used in the proof of Theorem 11 to give
a regret bound that holds in the ESI-sense and that, unlike the original Squint and MetaGrad bounds,
does not refer to the quantity V f

∗

T which depends on the predictions of the algorithms themselves.
This is a generalization of the bound (7) in Section 4.

We then use Theorem 11 to prove the main theorem, Theorem 2.

A.1 Normalized Cumulant Generating Function

Consider the family (3) of excess loss variables xft . We assume that xft ∈ [−1,1] is bounded in a
range of width 2 and has positive mean E[xft ∣Gt−1] ≥ 0 by definition of f∗. Consider the normalized
cumulant generating function for η ≥ 0:

εft (η) ∶=
1

η
lnE [e−ηx

f
t ∣Gt−1]

By construction
−xft ⊴η ε

f
t (η). (8)

Boundedness of xft ∈ [−1,1] immediately results in εft (η) ∈ [−1,1]. Moreover, Hoeffding’s in-
equality (see e.g. Cesa-Bianchi and Lugosi [2006, Lemma 2.2]) tells us that εft (η) ≤ η/2 while
Jensen’s inequality gives εft (η) ≥ −E [xft ∣Gt−1]. The dual representation εft (η) = supQ −EQ [x] −
1
η

KL(Q(x)∥P(xft ∣Gt−1)) reveals that εft (η) is increasing in η. The value at η = 0 is obtained by

continuity from εft (0) ∶= limη→0 ε
f
t (η) = −E[xft ∣Gt−1] ≤ 0.

To get a uniform control over the class F , we will make use of the maximum

εt(η) ∶= sup
f∈F

εft (η) and ε(η) ∶= sup
t
εt(η). (9)

The functions εt and ε inherit most properties of each εft , but in addition since f∗ ∈ F and εf
∗

t (η) = 0,
we see that εt(η) ≥ 0 and also that εt(0) = 0. Moreover, since εt(η) ≤ η/2 we have limη→0 εt(η) = 0.

Lemma 9. [Main Lemma] For any random variables xf1 , x
f
2 , . . . as above, we have:

(cη ⋅ (xft )
2
− xft ) ∣ Gt−1 ⊴η ε(2η) + cηε(2η)2 a.s. for all η ≥ 0, f ∈ F and rounds t ∈ N, (10)

where c = 1

1+
√

1+4η2
.

Section A.4 is dedicated to the proof. Note that, for small η, the right-hand side is O(ε(2η)).
Comparing to (8), we see that the lemma then implies the perhaps surprising fact that we can add a
quadratic to the left-hand side of (8) and yet the same inequality holds up to constant factors.

To give explicit meaning to Lemma 9 we need to get good bounds on ε(2η). The following proposition,
a special case of [Van Erven et al., 2015, Theorem 5.4, Part 1], implies such bounds under a Bernstein
condition.
Proposition 10. Suppose that for all f , t, xft ∈ [−1,1] a.s., and that a (B,κ)-Bernstein condition
holds for some κ ∈ [0,1]. For 0 ≤ η ≤ 1.79328, we have:

ε(η) ≤
1 − κ

κ
(Bηκ)

1
1−κ ≤ (Bη)

1
1−κ . (11)

We note that the bound resulting from combining Proposition 10 with Lemma 9, for the special case
κ = 1, would also follow (up to constant factors) from [Gaillard et al., 2014, Theorem 12]. Yet, their
result cannot be straightforwardly adapted to the case κ < 1.
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Proof. It is sufficient to show that any random variable x on [−1,1] with E[x2] ≤ B(E[x])κ for
some 0 < κ ≤ 1 must satisfy

1

η
lnE [e−ηx] ≤

1 − κ

κ
(Bηκ)

1
1−κ .

By the Bernstein Sandwich ([Koolen et al., 2014, Lemma C.2], or, for a perhaps easier proof,
[Van Erven et al., 2015, Lemma 5.6]), simplifying eη − η − 1 ≤ η2, which holds for small enough
η ≤ 1.79328, we have:

1

η
lnE [e−ηx] ≤ ηE[(x)2

] −E[x] ≤ ηBE[x]κ −E[x] ≤ sup
x≥0

{ηBxκ − x} =
1 − κ

κ
(Bηκ)

1
1−κ ,

where the maximizer is found at x = (Bηκ)
1

1−κ (which is ≤ 1 when Bκη ≤ 1, so for small enough η
this is a reasonable point). The last inequality of the claim follows from the fact that κ↦ 1−κ

κ
κ

1
1−κ is

decreasing with value 1 at κ = 0.

In the next subsection, in Theorem 11, we directly use Lemma 9 to prove regret bounds for Squint
and MetaGrad in terms of the underlying normalized cumulant generating function ε(η). In Sec-
tion A.3 we then prove our main result, Theorem 2, by plugging in the bound on ε(η) provided
by Proposition 10. This is a strictly more general approach than suggested in the proof outline of
Section 4. There, we (a) claimed that the Bernstein condition implies an ESI-Bernstein condition,
and then, (b), in Eq. (7), we presented an analogue of Theorem 11 below that only works under this
ESI-Bernstein condition. To see how claim (a) also follows from Lemma 9, plug in η ≍ ε1−κ and
apply Proposition 10.

A.2 Regret Bound in terms of Normalized Cumulant

We now state and prove Theorem 11, which transforms the Squint and MetaGrad bounds — that
involve the algorithm itself on the right-hand side — into stochastic bounds that depend instead on
the normalized cumulant generating function; it generalizes Eq. (7) in Section 4. The proof relies on
Lemma 9.

Theorem 11. Consider either Squint in the Hedge setting or MetaGrad for OCO. Let {xft ∣f ∈ F}

be the associated excess loss family from (3), and let ε(η) be, as in (9), the corresponding maximal
normalized cumulant generating function. For the Hedge setting let KT ∶=K

f∗

T as in (1), for OCO
let KT be as in (2). Then for each γ ≥ 0 with c = 1

1+
√

1+4γ2
,

Rf
∗

T ⊴γ
KT

cγ
+ Tε(2γ)(1 + cγ2

) + 2KT .

Proof. For the Hedge setting, let us write xt ∶= Ek∼wt[xkt ] for the excess loss of the learner in round
t. Then xt ∈ [−1,1] and −xt ∣ Gt−1 ⊴η ε(η) a.s. by Lemma 6 part 2. Now by definition of xkt in (3)
and RkT and V kT (see Section 2.1)

T

∑
t=1

xt =
T

∑
t=1

(⟨wt, `t⟩ − `
k∗

t ) = Rk
∗

T and
T

∑
t=1

(xt)
2
=

T

∑
t=1

(⟨wt, `t⟩ − `
k∗

t )
2

= V k
∗

T .

For OCO, let us write xt ∶= xwtt for the excess loss of the learner in round t. Again xt ∈ [−1,1] and
we have (−xt ∣ Gt−1) ⊴η ε(η) by construction of ε(η). Moreover, from the definition of R̃uT and V uT
from Section 2.2,

T

∑
t=1

xt =
T

∑
t=1

⟨wt − u
∗,∇`t(wt)⟩ = R̃u

∗

T and
T

∑
t=1

(xt)
2
=

T

∑
t=1

⟨wt − u
∗,∇`t(wt)⟩

2
= V u

∗

T .

With this notation the second-order regret bounds (1) and (2) both state

T

∑
t=1

xt ≤

¿
Á
ÁÀ(

T

∑
t=1

x2
t)KT +KT . (12)
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Now fix γ ≥ 0. For any t, as −xt ⊴η ε(η), Lemma 9 and Hoeffding’s Inequality ε(2γ) ≤ γ give

cγx2
t − xt ⊴γ ε(2γ)(1 + cγ2

).

By telescoping over rounds (using the chain rule Lemma 6 part 3), we obtain

cγ
T

∑
t=1

x2
t −

T

∑
t=1

xt ⊴γ Tε(2γ)(1 + cγ2
). (13)

The individual sequence regret bound (12) gives us (since 2
√
ab = infη ηa + b/η) for every η ≥ 0

T

∑
t=1

xt ≤
η

2

T

∑
t=1

x2
t +

KT

2η
+KT .

Plugging in η = cγ (this implies η ∈ [0,1/2] and γ = 2η
1−4η2

) and combination with (13) results in

T

∑
t=1

xt ⊴γ
KT

cγ
+ Tε(2γ)(1 + cγ2

) + 2KT .

For the Hedge setting this proves the theorem. For OCO we finish with Ru
∗

T ≤ R̃u
∗

T .

A.3 Proof of Theorem 2

We are now ready to prove Theorem 2 based on Theorem 11 and Proposition 10.

Proof. By Proposition 10, the (B,κ)-Bernstein condition implies that the normalized cumulant
generating function ε(η) satisfies ε(η) ≤ (ηB)

1
1−κ . By Theorem 11, using 1/c ≤ 2(1+ γ2) and c ≤ 1

2
,

we find that for all γ ≥ 0

Rf
∗

T ⊴γ (1 + γ2
)

2KT

γ
+ (1 +

1

2
γ2

)ε(2γ)T + 2KT . (14)

By Lemma 6 part 1 this implies for all γ ≥ 0

E[Rf
∗

T ] ≤ (1 + γ2
)

2KT

γ
+ (1 +

1

2
γ2

)ε(2γ)T + 2KT .

It remains to tune γ to exploit the stochastic condition expressed by ε. Reducing the above right-
hand-side expression to its main terms and setting the derivative to zero suggests picking

γ̂ = (
2KT (1 − κ)(2B)−

1
1−κ

T
)

1−κ
2−κ

= O ((KT /T )
1−κ
2−κ ) .

For T large enough such that 2γ̂ ≤ 1.79, we find

E[Rf
∗

T ] ≤ (2 − κ) (4KTB)
1

2−κ (T /(1 − κ))
1−κ
2−κ + (5 − κ)KT

Finally, using that (2 − κ) (4B)
1

2−κ (1/(1 − κ))
1−κ
2−κ is maximized in κ at κ = 1 − 1

4B
where it takes

value 1 + 4B, we may simplify this to

E[Rf
∗

T ] ≤ (1 + 4B) (KT /4)
1

2−κT
1−κ
2−κ + (5 − κ)KT = O (K

1
2−κ

T T
1−κ
2−κ ) ,

which gives the first claim of the Theorem. Lemma 6 applied to (14) also implies that for all δ ≥ 0
with probability at least 1 − δ

Rf
∗

T ≤ (1 + γ2
)

2KT

γ
+ (1 +

1

2
γ2

)ε(2γ)T + 2KT +
− ln δ

γ
.

Tuning γ as before with KT replaced by KT +
− ln δ

2
yields the second claim.
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A.4 Proof of Lemma 9

In this proof we consider any random variable x ∈ [−1,1] and denote its normalized cumulant
generating function by ε(η) = 1

η
lnE [e−ηx]. (In particular, see Definition 5, −x ⊴η ε(η) for all

η ≥ 0.) Thus, there is neither a time t nor a function f in the definition of x or ε.

We will show that for any η ≥ 0

1

η
lnE [ecη

2x2
−ηx

] ≤ ε(2η) + cηε(2η)2 where c =
1

1 +
√

1 + 4η2
. (15)

Noting that the right-hand side is an increasing function in ε(2η) (the quadratic in ε(2η) has positive

derivative for all ε(2η) ≥ − 1+
√

4η2+1

2η
< −1) we can apply this equation sequentially to the random

variables xft ∣ Gt−1 giving (with ε(η) now defined as supt εt(η) as in (9), the desired result (10).

Below we will prove Theorem 14, which is actually stronger than (15). Applying Theorem 14 with
γ = 2η and the largest admissible c for (16) gives us (15).

We would like to remark that our solution to this problem was inspired by the general moments
problem studied by Mehta and Williamson [2014, Section 3], especially because this connection
became invisible during the simplification of our proofs.

We will be thinking about two learning rates, 0 ≤ η ≤ γ. The larger one, γ, will be where we evaluate
ε(γ). So γ controls the strength of the assumption. The smaller one, η, will be the learning rate at
which we obtain the conclusion. The point is to get a large amount of quadratic x2 in the conclusion,
as governed by the constant c. Obviously, the more greedy we are in η and γ, the smaller the c for
which we can get any traction. This trade-off is captured by the following relationship between γ, η
and c that we will make use of throughout this section.

0 ≤ c ≤

√
2∣2η − γ∣ + γ2 + 1 − ∣2η − γ∣ − 1

4η2
(16)

Positivity of c is not that important, as the desired inequality is trivial for c ≤ 0. The following
inequality is useful later.

Lemma 12. Let 0 ≤ η ≤ γ and c satisfy (16). Then

1 ≥ 2cη

Proof. We need to show
2η ≥

√
2∣2η − γ∣ + γ2 + 1 − ∣2η − γ∣ − 1

that is
(2η + ∣2η − γ∣ + 1)

2
≥ 2∣2η − γ∣ + γ2

+ 1

Expanding the left-hand side square results in

4η2
+ 4η∣2η − γ∣ + 4η + ∣2η − γ∣

2
+ 2∣2η − γ∣ + 1 = 4η(2η − γ) + 4η∣2η − γ∣ + 4η + γ2

+ 2∣2η − γ∣ + 1

which definitely exceeds the right-hand side above.

We now put our assumption to use. In the following Lemma we show that it implies a not-in-
expectation-but-with-a-correction-term version of the result we are after.

Lemma 13. Fix 0 ≤ η ≤ γ and let c satisfy (16). Then for each x ∈ [−1,1] and ε ∈ [−1,1] we have

ecη
2x2

−ηx
−
e−γ(x+ε) − 1

γ
η(1 + 2cηε)ecη

2ε2+ηε
≤ ecη

2ε2+ηε.

Proof. We will show that the left-hand side is maximized over x ∈ [−1,1] at x = −ε. First, its
derivative equals

e−γxη(h(−ε) − h(x)) where h(x) = (1 − 2cηx)ecη
2x2

+(γ−η)x.

13



This indeed equals zero at x = −ε. To show that x = −ε is indeed a maximum and that there are no
other maxima it suffices to show that h(x) is increasing on x ∈ [−1,1]. We have

h′(x) = (−4c2η3x2
+ 2cηx(2η − γ) − 2cη + γ − η) ecη

2x2
+(γ−η)x

As the term in parentheses is concave in x, it suffices to show that h′(x) ≥ 0 for x ∈ {−1,1}, i.e.

−4c2η3
− 2cη∣2η − γ∣ − 2cη + γ − η ≥ 0

Solving the quadratic in c, we see that this holds if (16), as required.

Finally, we are ready for the general version of the claim.
Theorem 14. Pick 0 ≤ η ≤ γ and c satisfying (16). Let ε ∈ [−1,1]. Then for any x ∈ [−1,1] with
E e−γx ≤ eγε we have

E ecη
2x2

−ηx
≤ ecη

2ε2+ηε.

Proof. Taking expectation over Lemma 13, we find

E ecη
2x2

−ηx
≤ ecη

2ε2+ηε
+
E e−γ(x+ε) − 1

γ
η(1 + 2cηε)ecη

2ε2+ηε,

and the claim follows by bounding the right-most term by 0. (Note that the factor 1 + 2cηε is positive
by Lemma 12.)

B Four Equivalent Versions of the Bernstein Condition

In earlier work [Van Erven et al., 2015], we provided the central condition, which, for bounded loss
functions, is essentially equivalent to the Bernstein condition. The central condition provides the
link between Bernstein and several other fast-rate conditions in the literature such as the condition
needed for fast rates in density estimation under misspecification; the Juditsky-Rigollet-Tsybakov
condition, and several others — see [Van Erven et al., 2015] for details. In Section 4 we provided two
other equivalent reformulations of the Bernstein condition. In this appendix we contrast these four
conditions and explain how the central condition implicitly does play a role in our results.

It is instructive survey the conditions starting from a slight generalization of the Bernstein condition
as in [Van Erven et al., 2015], in which the relation between second and first moment of xtt can be any
nondecreasing function ν ∶ R+

0 → R+
0 which satisfies that ν(y)/y is non-increasing in y. Although

the special case with ν(y) = yκ for κ ∈ [0,1] gives the original Bernstein condition, and remains the
most important, all the results in this paper readily generalize to the generalized form. For simplicity,
in the definitions below we allow the constant factors (that do not affect the rates) to be arbitrary. As
can be seen from Condition 1, the generalized Bernstein condition then reads as:
Condition 15. Fix a function ν as above. The family (3) satisfies the ν-Bernstein condition if there
is c > 0 such that

c ⋅E [(xft )
2
∣Gt−1] − ν ( E [xft ∣Gt−1] ) ≤ 0 a.s. for all f ∈ F and rounds t ∈ N.

The second condition we encountered was the linearized Bernstein condition, which in our generalized
form becomes:
Condition 16. The family (3) satisfies the linearized ν-Bernstein condition if there are constants
c1, c2 > 0 such that, for the (non-decreasing) function ηε ∶= ε

ν(ε)
, we have:

c1 ⋅ ηε ⋅E [(xft )
2
∣Gt−1] −E [xft ∣Gt−1] ≤ c2 ⋅ ε a.s. for all ε ≥ 0, f ∈ F and t ∈ N,

where we employ the convention η0 = infε>0 ε/ν(ε).

Then we encountered the ν-ESI-Bernstein condition:
Condition 17. Let ν be a function as above and ηε be defined as above. The family (3) satisfies the
ν-ESI-Bernstein condition if there are c1, c2 > 0 such that:

(c1 ⋅ ηε ⋅ (x
f
t )

2
− xft ) ∣ Gt−1 ⊴ηε c2 ⋅ ε a.s. for all ε ≥ 0, f ∈ F and t ∈ N. (17)
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Finally, suppose that we do not start with a function ν but with a nondecreasing function τ ∶ R+
0 → R+

0
such that τ(ε)/ε is nonincreasing in ε. We can now formulate the central condition:
Condition 18. Let τ(ε) be a function as above. The family (3) satisfies the τ -central condition if
there exists a constant c > 0 such that

−xft ∣ Gt−1 ⊴τ(ε) c ⋅ ε almost surely for all f ∈ F , ε ≥ 0 and t ∈ N. (18)

As promised, all four conditions are (essentially) equivalent four bounded losses, although for
the proof of our main result, Theorem 2, we only needed that Bernstein with ν(⋅) = (⋅)κ implies
ESI-Bernstein. Let us briefly indicate how all the equivalences work.

1. The proof that ν-Bernstein is equivalent to linearized ν-Bernstein is easy, and a sketch is
provided below.

2. The proof that ν-ESI-Bernstein implies linearized ν-Bernstein is easy: use Lemma 6 Part 1,
which is just Jensen’s inequality.

3. [Van Erven et al., 2015] proved that if the functions ν and τ are related by:

τ(x) ⋅ ν(x) = x

then the ν-Bernstein condition holds iff the τ -central condition holds.

To complete all equivalences, it is thus sufficient to show that for any given τ , τ -central implies ν-
ESI-Bernstein, with ν related to τ as above. We clearly see that the challenge here is that superficially,
ν-ESI-Bernstein looks strictly stronger since the left-hand side in (17) is larger than in (18) whereas
the right-hand side is the same up to a constant factor. But it turns out one can show that, with
the right constant factors, the implication does hold. Our main technical lemma, Lemma 9, can be
interpreted as providing just this proof, for the case that τ is a strictly increasing function. For then
the function τ(ε) has an inverse, say ε̄(η), and the central condition can be restated as: there exists
constant c > 0 such that

−xft ∣ Gt−1 ⊴η c ⋅ ε̄(η) almost surely for all f ∈ F , η > 0 and t ∈ N, (19)

or equivalently,

1

η
lnE [−xft ∣ Gt−1] ≤ c ⋅ ε̄(η) almost surely for all f ∈ F , η > 0 and t ∈ N.

But this implies that the function ε̄(η) is an upper bound on the normalized cumulant generating
function ε(η) as defined in Section A.1. Lemma 9 then implies that

(c1 ⋅ η ⋅ (x
f
t )

2
− xft ) ∣ Gt−1 ⊴η c2 ⋅ ε̄(η) a.s. for all η > 0, f ∈ F and t ∈ N,

which can be seen to be equivalent to the ν-ESI condition with ν(y) = y/τ(y), by replacing ε̄(η) by
ε and ηε by τ(ε), which can be done because τ is the inverse of ε̄.

Proof of Equivalence ν-Bernstein⇔ Linearized ν-Bernstein

Proof. (sketch) For the case that ν(⋅) = (⋅)κ as in the original condition, the proof is straightforward
and indicated above Condition 7. For the general case, consider any function ν as in the definition of
the ν-Bernstein condition. We will show that, for arbitrary c0,E > 0, F > 0 we have:

c0F ≤ ν(E) ⇒ for all ε > 0: ηεc0F −E ≤ ε. (20)

Conversely, for arbitrary c1,E,F > 0 we have:

for all ε > 0 ∶ ηεc1F −E ≤ ε⇒ c1F ≤ 2ν(E). (21)

The result readily follows from these two implications by substituting, for each t and f ∈ F ,
F = E [(xft )

2∣Gt−1], E = E [xft ∣Gt−1] (and the case for ε = 0 follows trivially by considering it
separately).

To show the first implication, note that if the premise of (20) holds, then for ε ≥ E, we have
c0F ≤ ν(E) ≤ ν(ε) = (ν(ε)/ε) ⋅ ε = ε/(ηε) and the conclusion holds. For ε < E, we have
c0F ≤ ν(E) = (ν(E)/E) ≤ (ν(ε)/ε)E = E/(ηε) and the conclusion holds as well.
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For the second implication, first note the following equivalences:

ηεc1F −E ≤ ε⇔ c1F ≤
ε +E

ηε
⇔ c1F ≤

ν(ε)

ε
(ε +E) ⇔ c1F ≤ (

ν(ε)

ε
⋅E + ν(ε))

Now (21) follows by noting that if its premise holds, then in particular it holds for ε = E, and then
the equivalence above gives that c1F ≤ (ν(E) + ν(E)), which was to be shown.

C Proof of Lemma 4

Proof. Since, by assumption, u and x have length at most 1, the hinge loss simplifies to `(u) =

1 − y⟨u,x⟩ with gradient ∇`(u) = −yx. This implies that

u∗ ∶= arg minuE [`(u)] =
µ

∥µ∥
, (22)

and, for any w from the unit ball,

(w − u∗)⊺E [∇`(w)∇`(w)
⊺] (w − u∗) = (w − u∗)⊺E [xx⊺] (w − u∗)

≤ λmax(w − u∗)⊺(w − u∗) ≤ 2λmax(1 − ⟨w,u∗⟩)

=
2λmax

∥µ∥
(w − u∗)⊺(−µ) =

2λmax

∥µ∥
(w − u∗)⊺E [∇`(w)] ,

which proves the first part of the lemma.

For the second part, we first observe that λmax = 1/d. Then, to compute ∥µ∥, assume without loss of
generality that ∥ū∥ = 1, in which case ū = u∗. Now symmetry of the distribution of x conditional on
⟨x,u∗⟩ gives

E [yx ∣ ⟨x,u∗⟩] = sign(⟨x,u∗⟩)E [x ∣ ⟨x,u∗⟩] = sign(⟨x,u∗⟩)⟨x,u∗⟩u∗ = ∣⟨x,u∗⟩∣u∗.

By rotational symmetry, we may further assume without loss of generality that u∗ = e1 is the first
unit vector in the standard basis, and therefore

∥µ∥ = ∥E [∣⟨x,u∗⟩∣]u∗∥ = E [∣x1∣] ,

where x1 is the first component of x. If z = (z1, . . . , zd) is multivariate Gaussian N(0, I). Then
x = z/∥z∥ is uniformly distributed on the sphere, so

E[∣x1∣] = E [
∣z1∣

∥z∥
] ≥

1

4
√
d
P (∣z1∣ ≥

1
2
∧ ∥z∥ ≤ 2

√
d) .

Since P (∣z1∣ <
1
2
) ≤ 0.4 and P (∥z∥ ≥ 2

√
d) ≤ 1

4d
E [∥z∥2] = 1

4
, we have

P (∣z1∣ ≥
1
2
∧ ∥z∥ ≤ 2

√
d) ≥ 1 − 0.4 −

1

4
= 0.35,

from which the conclusion of the second part follows with c = 8/0.35.

D Continuous Models

We now consider Squint with models of predictors F that have uncountably many elements so that in
general πf

∗

= 0, and each f ∈ F is a function from X to A, with `ft ∶= `(yt, f(xt)) for some fixed
loss function ` ∶ Y ×A → [0,1]. This setting includes standard parametric models in classification
and regression but also countable unions thereof as well as nonparametric models. We first present an
extension of Theorem 2 to this case; we then give an illustration of this result with sup-norm metric
entropy numbers.

Squint can be straightforwardly applied to uncountable models, but now the weight vector wt output
by Squint at time t takes the form of a distribution on the set F . For general distributions u on F , the
loss that u incurs at time t is now defined as `ut ∶= Ef∼u[`ft ], so that the loss of Squint at time t is
given by `wtt , which generalizes the expression ⟨wt, `t⟩ for the countable case. The regret of Squint
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relative to an arbitrary u is thus given by RuT = Ef∼u∑Tt=1(`
wt
t − `ft ), and the variance term in (1)

generalizes to V uT = Ef∼u∑Tt=1 v
f
t with vft = (`wtt − `ft )

2.

For such models we will use that, as shown by Koolen [2015], Squint satisfies the following quantile
or ‘KL’ bound:

RuT ≤ 2
√
V uT K

u
T +K

u
T (23)

which holds for every distribution u on F and prior π, where now Ku
T = O(KL(u∥π) + ln lnT ) and

KL(u∥π) is the KL divergence between prior π and the distribution u.

Note that (23) generalizes the countable bound (1), which is retrieved if u is taken to be a point mass
on k.
Theorem 19 (Extension of Theorem 2). In any stochastic setting satisfying the (B,κ)-Bernstein
Condition 1, the guarantee (23) for Squint implies fast rates for Squint in expectation (if there is
sufficient prior mass on predictors f that behave similarly to f∗ in expectation) and with high
probability (if there is sufficient prior mass on f that are guaranteed to behave similarly to f∗ on all
x). That is, for all T , for any sequence u1, u2, . . . of distributions on F and sequence of numbers
C1,C2, . . . that satisfy

E [
T

∑
t=1

`uTt ] ≤ E [
T

∑
t=1

`f
∗

t ] +CT , (24)

we have

E[Rf
∗

T ] = O ((KT +CT )
1

2−κT
1−κ
2−κ ) ,

and if (24) holds for every sequence (xT , yT ), then we also have for any δ > 0, with probability at
least 1 − δ,

Rf
∗

T = O ((KT +CT − ln δ)
1

2−κT
1−κ
2−κ )

where KT ∶=K
uT
T from (23).

While this theorem does allow us to use priors u with uncountable support, it is easiest to illustrate
with priors with support on a discretized version (countable subset) ofF which may assign probability
0 to f∗:
Example 1. Consider the classification setting where J is either finite or N, and F = ⋃j∈J Fj is a
finite or countable union of sub-models such that for δ > 0, F̈j,δ ⊂ Fj is a minimal δ-cover ofFj in the
`∞-norm (i.e. supf∈Fj minḟ∈F̈j,δ supx∈X ,y∈Y ∥`(y, f(x)−`(y, ḟ(x)∥ ≤ δ). Define Γ ∶= {20,2−1, . . .}.

Assume that for all j, N(Fj , δ) ∶= ∣F̈j,δ ∣ < ∞ and note that logN(Fj , δ) is the metric entropy of Fj
in the sup norm at scale δ. Let πJ be a probability mass function on J and let πN be a probability
distribution on N with − logπJ (j)πN(k) = O(log(jk)) and let π be the prior on ⋃j∈J ,δ∈Γ F̈j,δ with
mass function π given by, for f ∈ F̈j,2−k , π(f) = πJ (j)πN(k)/N(Fj ,2

−k)). Then Theorem 19
gives the following bound in expectation (and mutatis mutandis in probability):

Rf
∗

T = O ((min
j,k

T2−k + log(jk) + logN(Fj ,2
−k

))

1
2−κ

T
1−κ
2−κ ) .

Bounds in terms of models with bounded `∞-entropy numbers were considered before by, e.g.
Gaillard and Gerchinovitz [2015] with bounded squared error loss. We note that, if F has logarithmic
entropy numbers (e.g. F = F1 and logN(F1, ε) = O(− log ε), then, by plugging in k = ⌈log2 T ⌉, we
find that this cumulative regret bound is of the form O((logT ) ⋅ T

1−κ
2−κ ), the standard rate referred to

in the discussion underneath Theorem 2. In the case of larger (polynomial) entropy numbers, our
bounds are presumably suboptimal compared to the bounds that can be obtained by ERM, since
Squint is essentially a form of an exponentially weighted forecaster that cannot exploit the chaining
technique, viz. the discussion by Gaillard and Gerchinovitz [2015], Audibert [2009] and Rakhlin and
Sridharan [2014]. Nevertheless, unlike ERM, Squint is robust and will continue to achieve nontrivial
regret under nonstochastic, adversarially generated data, even with polynomial entropy numbers.

In practice, one may often work with Fi which have small (e.g. logarithmic) entropy numbers relative
to the pseudo-distance d(f1, f2) = P(f1(X) ≠ f2(X)) considered by e.g. Tsybakov [2004], Audibert
[2004], which may be much smaller than the `∞-numbers. In such cases, Theorem 19 can still be
used to give good bounds in expectation.
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Proof of Theorem 19 Consider a (for now) arbitrary sequence u1, u2, . . ., define KT ∶=K
uT
T and

K ′
T =KT /4, and

C ′
T = −(RuTT −Rf

∗

T ) or equivalently
T

∑
t=1

`uTt =
T

∑
t=1

`f
∗

t +C ′
T .

One easily shows that for general a, b, c ∈ R, one has (a − b)2/2 ≤ (a − c)2 + (b − c)2. Applying the
statement with a = `wtt , b = `ft and c = `f

∗

t gives vft ≤ 2(vf
∗

t + (xft )
2). Summing over t = 1..T and

taking expectation over f ∼ uT now gives V uTT ≤ 2V f
∗

T + 2ET where ET = Ef∼uT [∑
T
t=1(x

f
t )

2].

Applying this to the bound (23) above at uT , we get

Rf
∗

T ≤ C ′
T + 2

√

(V f
∗

T +ET )2K ′
T +K

′
T = inf

η
{C ′

T + η(V
f∗

T +ET ) +
2K ′

T

η
+K ′

T} . (25)

We first prove an analogue to Theorem 11 for the uncountable setting, based on (25). As in that
theorem, let, for given F , {xft ∣f ∈ F} be the associated the excess loss family from (3), and let
ε(η) be, as in (9), the corresponding maximal normalized cumulant generating function. Let K ′

T
be as above. Fix γ ≥ 0 and let c be as in Lemma 9. Now as in the proof of Theorem 11 we have
for all f ∈ F , xft ∈ [−1,1] and −xft ⊴η ε(η) by construction of ε(η). Hence −xft ⊴γ ε(γ) for all
f ∈ F , which implies −Ef∼wt x

f
t ⊴γ ε(γ) and also −Ef∼uT x

f
t ⊴γ ε(γ) , and hence by Lemma 9

(see remark below the lemma),

cγ E
f∼wt

[xft ]
2
− E
f∼wt

[xft ] ⊴γ ε(2γ)(1 + cγ
2
) and (26)

cγ E
f∼uT

[xft ]
2
− E
f∼uT

[xft ] ⊴γ ε(2γ)(1 + cγ
2
). (27)

Using rf
∗

t = Ef∼wt [x
f
t ], again analogously to the proof of Theorem 11, we may telescope (26) over

rounds to
cγV f

∗

T −Rf
∗

T ⊴γ Tε(2γ)(1 + cγ
2
) (28)

Now we use (25) with η =
cγ
2

, which implies 2Rf
∗

T ≤ 2C ′
T + cγ(V

f∗

T + ET ) + 4K ′
T /(cγ) + 2K ′

T .
Combining this with (28), we find:

U ⊴ 0 with U = γRf
∗

T − (2γC ′
T + cγ

2ET +
4K ′

T

c
+ γ2K ′

T + γTε(2γ)(1 + cγ
2
)) . (29)

Similarly to deriving (28), using the definition of ET , we may telescope (27) over rounds to get

U ′
⊴ 0 with U ′

= cγ2ET − γC
′
T − γTε(2γ)(1 + cγ

2
). (30)

We may now combine (29) and (30) using Lemma 6 with w a distribution that puts mass 1/2 on
random variable U and 1/2 on U ′, to get (U +U ′)/2 ⊴ 0, which can be rewritten to:

γ

2
(Rf

∗

T − (2C ′
T + cγ

E
T +

4K ′
T

cγ
+ 2K ′

T + Tε(2γ)(1 + cγ
2
)) + cγET − γC

′
T − γε(2γ)(1 + cγ

2
))

⊴ 0,

and further to
1

2
Rf

∗

T ⊴γ
3

2
C ′
T +

KT

cγ
+ Tε(2γ)(1 + cγ2

) + 2K ′
T , (31)

which is the required analogue of the statement of Theorem 11. Note that this statement holds for
every sequence u1, . . . , uT , and C ′

T is a random variable that depends on data (xT , yT ).

The remainder of the proof of Theorem 19 now follows in a fashion entirely analogous to the proof
of Theorem 2, as in Appendix A.3, where we use that we can bound C ′

T by CT , either in expectation
or on all sequences; we omit further details.

18


