
A Proof of claim in Example 1

Proof. We will show for a convex function f : C ! R with a compact and convex domain C ⇢ R

!
f

(✏) = sup

(

inf

x2X⇤
f

|x� y| : y 2 C, |f 0
(y)| < ✏

)

. (27)

To ease notation, we denote the quantity on the right hand side by �
f

(").

As a first step we show !
f

(")  �
f

("). It suffices to show that for any g 2 F satisfying (f, g) 
", we have d(f, g)  �

f

("). Recalling the definition of (f, g)  ", we have for any x 2 C,
|f 0

(x) � g0(x)|  ". Take x 2 X ⇤
g

to be a minimizer of g, and we have |f 0
(x)|  ". Therefore,

X ⇤
g

✓ {x : |f 0
(x)|  "}. Let’s now consider two cases. If X ⇤

g

\ {x : |f 0
(x)| < "} 6= ;, then

d(f, g) = inf

x2X⇤
f

, y2X⇤
g

|x� y| (28)

 inf

y2X⇤
g

\{z:|f 0
(z)|<"}

inf

x2X⇤
f

|x� y| (29)

 sup

y2{z:|f 0
(z)|<"}

inf

x2X⇤
f

|x� y| (30)

= �
f

("). (31)

Now assume that X ⇤
g

\ {x : |f 0
(x)| < "} = ; and this means that X ⇤

g

✓ {x : |f 0
(x)| = "}. Without

lost of generality, we further assume that X ⇤
g

✓ {x : f 0
(x) = "}. Since (f, g)  ", we must have

inf X ⇤
g

= inf{x : f 0
(x) = "} = sup {x : f 0

(x) < "} and therefore

d(f, g) = inf

y2X⇤
g

inf

x2X⇤
f

|x� y|  sup

y2{z:|f 0
(z)|<"}

inf

x2X⇤
f

|x� y| = �
f

("). (32)

This concludes the first part of the proof as we have shown !
f

(")  �
f

(").

Next, we are going to prove !
f

(") � �
f

("). Without loss of generality, we assume the larger half of
the “flat set” is to the right of the minimum point, that is

�
f

(") = sup

(

inf

x2X⇤
f

|x� y| : y 2 C, 0  f 0
(y) < ✏

)

. (33)

Then there exists a sequence of differentiable points of f , {y
i

}1
i=1

, which satisfies
lim

i!1 inf

x2X⇤
f

|x� y
i

| = �
f

(") and 0  f 0
(y

i

) < ". Define a sequence of functions {g
i

}1
i=1

such

that g0
i

(x) = f 0
(x)� f

0
(y

i

)+"

2

at the differentiable point of f . It is easy to check that g
i

satisfies that
(f, g

i

)  ". Also, g0(y
i

) =

f

0
(y

i

)�"

2

< 0, so inf

x2X⇤
f

,y2X⇤
g

i

|x� y| � inf

x2X⇤
f

|x� y
i

|. We have

!
f

(") � sup

i=1,...,1
d(f, g

i

) � lim

i!1
inf

x2X⇤
f

,y2X⇤
g

i

|x� y| � lim

i!1
inf

x2X⇤
f

|x� y
i

| = �
f

("). (34)

Thus, we have shown !
f

(") � �
f

(") � !
f

(") and hence !
f

(") = �
f

(").

B Proof of Theorem 1

B.1 Lower bound

For a function f 2 F , let P
f

denote the distribution of stochastic gradients observable by an
estimation scheme bx, and let PT

f

denote the distribution of T sequentially queried stochastic gradients
for f . We define the pairwise minimax risk for optimization of a pair of function f and g by

R
T

(f, g) := inf

A2A
T

max {E
f

err(bx
A

, f),E
g

err(bx
A

, g)} , (35)

and the local minimax lower bound can be written as

R
T

(f ;F) := sup

g2F
R

T

(f, g). (36)

Let us show how the modulus of continuity gives a lower bound. We first state a lemma.
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Lemma 1. Let f, g be arbitrary convex functions and d satisfy the exclusion inequality (5). Then

R
T

(f, g) � d(f, g)

4

⇣

1�
�

�PT

f

� PT

g

�

�

TV

⌘

. (37)

Proof. Temporarily hiding the number of iterations T for simplicity, we have by Markov’s inequality
that

max {E
f

err(bx
A

, f),E
g

err(bx
A

, g)} (38)

� 1

2

d(f, g)max

⇢

P
f

(err(bx
A

, f) � 1

2

d(f, g)), P
g

(err(bx
A

, g) � 1

2

d(f, g))

�

. (39)

Now, we apply an essentially standard reduction of estimation to testing, because we have

2max

⇢

P
f

(err(bx
A

, f) � 1

2

d(f, g)), P
g

(err(bx
A

, g) � 1

2

d(f, g))

�

(40)

� P
f

(err(bx
A

, f) � 1

2

d(f, g)) + P
g

(err(bx
A

, g) � 1

2

d(f, g)) (41)

= 1� P
f

(err(bx
A

, f) <
1

2

d(f, g)) + P
g

(err(bx
A

, g) � 1

2

d(f, g)) (42)

� 1� P
f

(err(bx
A

, g) � 1

2

d(f, g)) + P
g

(err(bx
A

, g) � 1

2

d(f, g)), (43)

where in the last line we have used the exclusion inequality to see that err(bx
A

, f) < 1

2

d(f, g) implies
err(bx

A

, g) � 1

2

d(f, g) so that

P
f

(err(bx
A

, f) <
1

2

d(f, g))  P
f

(err(bx
A

, g) � 1

2

d(f, g)). (44)

Thus, we find that

4

d(f, g)
max {E

f

err(bx
A

, f),E
g

err(bx
A

, g)} � inf

S

�

1� PT

f

(S) + PT

g

(S)
 

= 1�
�

�PT

f

� PT

g

�

�

TV

,

(45)
which yields the lemma.

Now we can prove a minimax lower bound. Let Y
i

be the ith observed gradient, where P
f

(Y
i

| Y
1:i�1

)

denotes the conditional distribution of Y
i

under the oracle for function f . We have by the chain rule
that

D
kl

�

PT

f

||PT

g

�

=

T

X

i=1

E
f

[D
kl

(P
f

(Y
i

| Y
1:i�1

)||P
g

(Y
i

| Y
1:i�1

))] . (46)

It is no loss of generality to assume that the ith gradient query point x
i

is measureable with respect to
Y
1:i�1

(this follows because if a randomized algorithm does well in expectation, there is at least one
realization of its randomness that has small risk, so we can just take that realization and assume the
procedure is deterministic). Using that we have a Gaussian oracle, we have

D
kl

(P
f

(Y
i

| Y
1:i�1

)||P
g

(Y
i

| Y
1:i�1

)) = D
kl

�

N(f 0
(x

i

),�2I
d⇥d

)||N(g0(x
i

),�2I
d⇥d

)

�

(47)

=

1

2�2

kf 0
(x

i

)� g0(x
i

)k2  1

2�2

(f, g)2. (48)

Noting the not completely standard upper bound

�

�PT

f

� PT

g

�

�

TV

 1� exp

✓

�1

2

D
kl

�

PT

f

||PT

g

�

◆

(49)

on the variation distance (see Tsybakov [17, Lemma 2.6]), we also have by Lemma 1 that

R
T

(f, g) � d(f, g)

4

exp

✓

� T

4�2

(f, g)2
◆

. (50)
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Consider the collection of functions

F
T

:=

⇢

g 2 F : (f, g)2  �2

T

�

. (51)

Certainly this collection is non-empty (it includes f ). For any ✏ > 0, there must exist some g 2 F
T

such that d(f, g) � (1� ✏)!
f

(1/
p
T ). Let g

T

denote such a g. Then we have

R
T

(f) � R
T

(f, g
T

) � d(f, g
T

)

4

e�
1
4 � 1� ✏

4

e�
1
4!

f

✓

�p
T

◆

. (52)

We have
R

T

(f) � 1

4e1/4
!
f

✓

�p
T

◆

� 3

16

!
f

✓

�p
T

◆

. (53)

B.2 Upper bound

Suppose that we have two functions f�1

, f
1

2 F . Let

x†
= argmax

x2C

�

kf 0
�1

(x)� f 0
1

(x)k
 

(54)

be the point at which the two functions differ the most in terms of the subgradients. Let ✓ 2 {�1, 1}
be the parameter. Consider an algorithm that queries the oracle with x† for T times. Let Z

t

be the
response from the oracle at time t. Let

W =

1p
T

T

X

t=1

Z
t

�
p
T

2

(f 0
1

(x†
) + f 0

�1

(x†
)) (55)

With the normality assumption on the noise, we have
W ⇠ N(✓�

T

,�2I) (56)
where

�
T

=

p
T

2

�

f 0
1

(x†
)� f 0

�1

(x†
)

�

. (57)

Then we construct
W = k�

T

k�1�T
T

W ⇠ N(✓k�
T

k,�2

), (58)
which is a sufficient statistic for the problem of estimating ✓. Based on W we can obtain an estimate
b✓ of ✓, and let the output of our algorithm be

bx
T

=

x⇤
1

+ x⇤
�1

2

+

b✓
x⇤
1

� x⇤
�1

2

(59)

where x⇤
1

2 X ⇤
f1

and x⇤
�1

2 X ⇤
f�1

satisfy kx
1

�x�1

k = inf

x2X⇤
f1
inf

y2X⇤
f�1

kx�yk. It then follows

inf

A2A
T

max

✓=±1

E
✓

kbx
A

� x⇤
✓

k  max

✓=±1

E
✓

kbx
T

� x⇤
✓

k (60)

 1

2

kx⇤
1

� x⇤
�1

k inf
b
✓

sup

✓=±1

E
✓

|b✓ � ✓| (61)

=

1

2

kx⇤
1

� x⇤
�1

kk�
T

k�1�(k�
T

k,�) (62)

where �(⌧,�) = infbµ sup
µ=±⌧

E
µ

|bµ � µ| is the minimax (`
1

) risk of estimating the mean of
Z ⇠ N(⌧,�2

) for the class µ 2 {�⌧, ⌧}.

Now take f�1

= f and f
1

= g. Note that k�
T

k =

p
T

2

(f, g). From (62) we have

R
T

(f ;F) = sup

g2F
inf

A2A
T

max

�

E
f

kbx
T

� x⇤
f

k,E
g

kbx
T

� x⇤
g

k
 

(63)

 1

2

sup

k�
T

k
sup

g2F :(f,g)=

2k�
T

kp
T

kx⇤
f

� x⇤
g

kk�
T

k�1�(k�
T

k,�) (64)

 1

2

sup

⌧

!
f

✓

2⌧p
T

◆

⌧�1�(⌧,�). (65)
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We have the following bound derived from [4]

�(⌧,�)  ⌧ exp

✓

� ⌧2

4�2

◆

, (66)

which yields

R
T

(f ;F)  1

2

sup

⌧

!

✓

2⌧p
T

◆

exp

✓

� ⌧2

4�2

◆

. (67)

To upper bound the last quantity, we write

sup

⌧

!

✓

2⌧p
T

◆

exp

✓

� ⌧2

4�2

◆

 max

(

sup

⌧r

 (⌧), sup

r<⌧ 1
2 ✏0

p
T

 (⌧), sup

⌧>

1
2 ✏0

p
T

 (⌧)

)

(68)

for some r > 0, where  (⌧) = !
⇣

2⌧p
T

⌘

exp

⇣

� ⌧

2

4�

2

⌘

. We bound the three terms separately by

sup

⌧r

!

✓

2⌧p
T

◆

exp

✓

� ⌧2

4�2

◆

 !

✓

2rp
T

◆

, (69)

and

sup

r<⌧ 1
2 ✏0

p
T

!

✓

2⌧p
T

◆

exp

✓

� ⌧2

4�2

◆

(70)

= sup

s�1&

2srp
T

✏0

!

✓

2srp
T

◆

exp

✓

�s2r2

4�2

◆

(71)

 sup

s�1

s↵!

✓

2rp
T

◆

exp

✓

�s2r2

4�2

◆

(72)


 p

2↵�

r

!

↵

!

✓

2rp
T

◆

(73)

since !
f

satisfies !
f

(c✏)  c↵!
f

(✏) for c > 1, c✏  ✏
0

and some ↵ > 0, and

sup

⌧>

1
2 ✏0

p
T

!

✓

2⌧p
T

◆

exp

✓

� ⌧2

4�2

◆

 diam(C) exp
✓

� ✏2
0

T

16�2

◆

(74)

Setting r = �/2 and noting that !
f

(✏) � ✏↵ !

f

(✏0)

✏

↵

0
, we have that there exists T

0

> 0 such that for all
T � T

0

R
T

(f ;F)  C!
f

✓

�p
T

◆

(75)

where C =

1

2

max{1, (8↵)
↵

2 }.

C Proofs for superefficiency results

We begin by recalling the following results about properties of the subdifferential of a convex function
f and its Fenchel conjugate

f⇤
(y) := sup

x

�

yTx� f(x)
 

, (76)

including duality between the subdifferential sets @f and @f⇤, increasing gradients, and continuous
differentiability.
Lemma 2 (Hiriart-Urruty and Lemaréchal [7]). Let f be a closed convex function. Then

x 2 @f⇤
(y) if and only if y 2 @f(x). (77)

Additionally, subgradient sets are increasing in the sense that

s
1

2 @f(x
1

) and s
2

2 @f(x
2

) implies hs
1

� s
2

, x
1

� x
2

i � 0. (78)

Lastly, if f : R ! R is strictly convex on an interval [x
l

, x
r

], then f⇤ is continuously differentiable
on the interval [inf{s : s 2 @f(x

l

)}, sup{s : s 2 @f(x
r

)}].

13



C.1 Moduli of continuity

Lemma 3. Let f : R ! R be a subdifferentiable convex function. Define f
✏

(x) = f(x) + ✏x. Then

arg min
x

f
✏

(x) = @f⇤
(�✏) (79)

Moreover,

dist(@f⇤
(0), @f⇤

(✏)) _ dist(@f⇤
(0), @f⇤

(�✏))  !
f

(✏) (80)
!
f

(✏)  sup

x

{dist(x, @f⇤
(0)) : x 2 @f⇤

(✏)} _ sup

x

{dist(x, @f⇤
(0)) : x 2 @f⇤

(�✏)} (81)

In particular, if x
0

= arg min
x

f(x) is unique and f is strictly convex in a neighborhood of x
0

, then
there exists an ✏

0

> 0 such that ✏  ✏
0

implies that

!
f

(✏) = max

�

|f⇤0
(✏)� x

0

|, |f⇤0
(�✏)� x

0

|
 

. (82)

Proof. Let x
0

2 arg min
x

f(x). Using Lemma 2, it is clear that arg min
x

f(x) = @f⇤
(0), and more

generally, that

@f⇤
(y) = argmax

x

�

yTx� f(x)
 

= arg min
x

�

f(x)� yTx
 

. (83)

We begin by providing the lower bound on !
f

. For ✏ > 0, define the function f
✏

(x) = f(x) + ✏x.
Then certainly (f, f

✏

)  ✏. Moreover, we have

f⇤
✏

(y) = sup

x

{yx� f(x)� ✏x} = sup

x

{(y � ✏)x� f(x)} = f⇤
(y � ✏), (84)

so that arg min
x

f
✏

(x) = @f⇤
(�✏). Noting that x

0

2 @f⇤
(0) and that subgradients are increasing by

Lemma 2, we have that

arg min
x

f
✏

(x) = @f⇤
(�✏)  @f⇤

(0) = arg min
x

f(x). (85)

That is, we have sup{x
✏

2 arg min
x

f
✏

(x)}  inf{x
0

2 arg min
x

f(x)} and

!
f

(✏) � inf {|s
✏

� s
0

| : s
✏

2 @f⇤
(�✏), s

0

2 @f⇤
(0)} . (86)

An identical argument with f�✏

gives the lower bound.

For the upper bound on the modulus of continuity, we note that if g is a convex function with
(f, g)  ✏, and x

g

2 arg min
x

g(x), then there must be some s 2 @f(x
g

) with ✏ � s � �✏,
because 0 2 @g(x

g

), where we have used the definition of the Hausdorff distance. Now, for this
particular s, by Lemma 2 we have that

x
g

2 @f⇤
(s). (87)

Again using the increasing behavior of subgradients, we obtain that

inf @f⇤
(�✏)  x

g

 sup @f⇤
(✏), (88)

which gives the claimed upper bound in the lemma once we recognize that x
0

2 @f⇤
(0), and the

definition of distance for !
f

is d(f, g) = inf{|x
0

� x?

g

| : x
0

2 arg min
x

f(x), x?

g

2 arg min
x

g(x)}.

The final result, with the uniqueness, is an immediate consequence of the differentiability properties
in Lemma 2.

Now we calculate bounds for a few example moduli of contiuity using Lemma 3. Roughly, we focus
on non-pathological convex functions to allow us to give explicit calculations. Let f : R ! R be a
convex function satisfying @f⇤

(0) = arg min
x

f(x) = [x
l

, x
r

]. In addition, assume that for � > 0,
we have for some powers k

l

, k
r

� 1 and constants �
l

> 0 and �
r

> 0 that

f(x
l

� �) = f(x
l

) + �
l

�kl

+ o(�kl

) and f(x
r

+ �) = f(x
r

) + �
r

�kr

+ o(�kr

). (89)

That is, in a neighborhood of the optimal region, the function f grows like a polynomial. The
condition (89) is not too restrictive, but does rule out functions such as f(x) = e�

1
x

2 .
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Lemma 4. Let f satisfy the condition (89). For any c > 1, there exists some ✏
0

> 0 such that for
✏ 2 (0, ✏

0

)

x
r

+

✓

✏

C�
r

k
r

◆

1
k

r

�1

 inf @f⇤
(✏)  sup @f⇤

(✏)  x
r

+

✓

C✏

�
r

◆

1
k

r

�1

(90a)

and

x
l

�
✓

✏

C�
l

k
l

◆

1
k

l

�1

� sup @f⇤
(�✏) � inf @f⇤

(�✏) � x
l

�
✓

C✏

�
l

◆

1
k

l

�1

. (90b)

Moreover, setting k = max{k
r

, k
l

} and letting

� =

8

<

:

�
l

if k
l

> k
r

,
�
r

if k
r

> k
l

,
max{�

r

,�
l

} otherwise,
(91)

we have for all ✏ 2 (0, ✏
0

) that

⇣ ✏

C�k

⌘

1
k�1  !

f

(✏) 
✓

C✏

�

◆

1
k�1

. (92)

Proof. We focus on the right side bound (90a), as the proof of the left bound (90b) is similar. We
also let the constant be c = 2 for simplicity.

For notational simplicity, let � = �
r

and k = k
r

. By the fact that subgradients are increasing, we
have for any � > 0 that

inf @f(x
r

+ �) � f(x
r

+ �)� f(x
r

)

�
=

��k + o(�k)

�
= �(1� o

�

(1))�k�1 (93)

as � # 0. Similarly, � > 0 we have

sup @f(x
r

+ �)  f(x
r

+ 2�)� f(x
r

+ �)

�
=

�(2�)k � ��k + o(�k)

�

=

�k�k�1� + o(�k)

�
= (1 + o

�

(1))�k�k�1. (94)

Combining inequalities (93) and (94), we thus see that there exists some �
0

> 0 such that for
� 2 (0, �

0

) we have

�

2

�k�1  inf @f(x
r

+ �)  sup @f(x
r

+ �)  2�k�k�1. (95)

Noting that x
r

+ � 2 @f⇤
(✏) if and only if ✏ 2 @f(x

r

+ �) by standard subgradient calculus (recall
Lemma 2), we solve for ✏ = �

2

�k�1 and ✏ = 2�k�k�1 to attain inequality (90a). The bound (90b) is
similar.

Lemma 4 shows that, as ✏! 0, we have !
f

(✏) ⇣ ✏
1

k�1 , where k = max{k
r

, k
l

}. Finally, we show a
type of continuity property with the modulus of continuity.
Lemma 5. Assume that f has expansion (89), and that either (i) k
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l
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.
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for all ✏ suitably close to 0.

Proof. We know by the increasing properties of the subgradient set and Lemma 3 that for any c < 1

!
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where we have used that g⇤(y) = sup

x

{(y+ ✏)x� f(x)} = f⇤
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which gives the first inequality.

For the second inequality, we use that !
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as desired.

C.2 Superefficiency

For distributions P
0

and P
1

define the �-divergence by
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The following lemma, which is a stronger version of a result due to Brown and Low [1], gives a result
on superefficiency.
Lemma 6. Let bx be any function of a sample ⇠, and let X

0

and X
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be compact convex sets
(associated with distributions P
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Proof. We have
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where inequality (i) uses the triangle inequality and inequality (ii) uses Cauchy-Schwarz.

We now present two lemmas on �-divergence that will be useful. The first is a standard algebraic
calculation.
Lemma 7. Let P

0

and P
1

be normal distributions with means µ
0

and µ
1

, respectively, and variances
�2. Then
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For the second lemma, we assume that bx is constructed based on noisy subgradient information from
a subgradient oracle, which upon being queried at a point x, returns

f 0
(x) + ", where " iid⇠ N(0,�2

) and f 0
(x) = arg min

s2@f(x)

{|s|}. (105)

The latter condition simply specifies the subgradient the oracle chooses; any specified choice of
subgradient is sufficient. Because @f(x) is a closed convex set for any x, we see that if f and g
are convex functions with (f, g)  ✏, then |f 0

(x) � g0(x)|  ✏ with the construction (105) of
subgradient oracle.
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Lemma 8. Let the subgradient oracle be given by (105), and let PT

f

and PT

g

be the distributions
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s
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where x
i

is a measurable function of an independent noise variable ⇠
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and the preceding sequence of
stochastic gradients {s
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}. Let (f, g)  ✏. Then
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Proof. Let s
i

be the ith observed stochastic subgradient in the sequence, and let the �-field of the
observed sequence through time i be F
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= �(⇠
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By the measurability assumption on x
i

, that is, x
i

2 F
i�1

, the inner expectation is simply one plus
the �2 distance between two distributions N(f 0
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Taking the product over all T terms yields the lemma.

Lemma 9. Let f be a closed convex function. Define the function
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Proposition 3. Define H to be the function (112) and assume additionally that � <
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. If bx is any
estimator such that
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Proof. Without loss of generality, we assume that 0 2 arg min
x

f(x) = @f⇤
(0), and set x

0

= 0

for simplicity in the derivation. For any ✏ 2 R, we may construct the function f
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In particular, with H(✏) = dist(@f⇤
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Take ✏2 =
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Notably, by Lemma 3, our w.l.o.g. assumption and the fact that subgradients are increasing, we have
that for any constant (log 1
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In particular, we have the lower bound
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This is the desired result.

Proposition 3 is a basic result on superefficiency that we may specialize to obtain more concrete
results. We would like give a result that holds when f⇤ is differentiable in a neighborhood of 0, which
is equivalent to f being strictly convex in a neighborhood of x

0

= arg min
x

f(x), by Lemma 2. This
would mean that the function H defined in Proposition 3 satisfies
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for all small enough ✏ > 0. In this setting, we obtain
Corollary 2. Let the conditions of Proposition 3 hold, and let f be strictly convex in a neighborhood
of x
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where � <
q

1

8e

. Define f±1

(x) = f(x)±
q

�

2
log

1
8�2

T

x. Then for large enough T ,

max

g2{f1,f�1}
E
P

T

g

|bx� x?

g

| � 4�
p
2

4

!
f

0

@

s

�2

log

1

8�

2

T

1

A . (128)

18



This corollary has a striking weakness, however—the right hand side depends on !
f

, rather than !
g

,
which is what we would prefer. We can, however, state a simpler result that is achievable.
Corollary 3. Let f be any convex function satisfying the asymptotic expansion (89) around its
optimum. Suppose that bx is any estimator such that
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Proof. Without loss of generality, we assume that k
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� k
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, and if k
l

= k
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then �
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. By
inspection of the proof of Proposition 3, we have that
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Moreover, we know that for suitably large n, we have by Lemma 4
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This gives the desired result.

As an immediate consequence of Corollary 3, we see that if there exists any sequence �
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then there exists a sequence of convex functions g
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D Algorithm

D.1 Proof of Proposition 2

First, by the monotonicity of the derivative f 0, note that the interval I
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Therefore,
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It then follows that
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by the choice of C
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D.2 Proof of Corollary 1

By the polynomial growth condition, we have for T > �2/✏
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By the expression we obtained in Example 1,

sup{ inf

x2X⇤
f

|x� y| : y 2 I
�

} (147)

= !
f

✓

C
�p
T
0

◆


 

s

2r

✓

log(r log T ) + log

1

�

◆

log T

!

↵

!
f

✓

�p
T

◆

(148)

for T large enough. Therefore, we obtain that there exist T 0 > 0 such that for T > T 0,
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