7 Appendix

7.1 Properties of self-concordant barriers

This section highlights some properties of self-concordant barriers that will be useful in this work.

The ellipsoid induced by a self-concordant barrier at each point in the interior of the feasible set,
{y € R%: ||y||. < 1}, is called the Dikin ellipsoid. The first result tells us that we can sample around

the Dikin ellipsoid without worrying about leaving the feasible region.

Theorem 3 (Theorem 2.1.1 [Nesterov and Nemirovskii, 1994]). Let K be a closed convex set
in R, and let R be a v-self-concordant barrier for X. Then for any x € int(X), we have that
{y e R ||y — 2|, < 1} C int(X).

The next result, presented in [Dekel et al., 2015], is a variant of John’s ellipsoid theorem for ellipsoids
induced by self-concordant barriers. It shows that the Euclidean norm and the norm induced by the
barrier are equivalent up to the diameter of the convex set.

Lemma 10 (Lemma 6 [Dekel et al., 2015]). Let K be a closed convex set in R?, and let R be a
v-self-concordant barrier for X. Then for any v € X and y € R?, the following inequality holds:
D7Y|z]lex < ll2ll2 < D] 2la-

The second result shows that the Hessian of a self-concordant barrier changes slowly within the Dikin
ellipsoid of a point.

Theorem 4 (Theorem 2.1.1 [Nesterov and Nemirovskii, 1994]). Let X be a closed convex set in R,
and let R be a v-self-concordant barrier for X. Then for any x € int(X) and z € R? with ||y, < 1,
we have that

(1= llyll)” V*R(z) < V*R(z +y) < (1= [lyll) "> V*R(a).

The next result tells us that outside of an e annulus at the boundary of X, a self-concordant barrier
grows at most logarithmically.

Proposition 1 (Proposition 2.3.2 [Nesterov and Nemirovskii, 1994]). Let X be a closed convex set in
RY, and let R be a v-self-concordant barrier for X. For any € € (0,1], let K, = {y + (1 — €)(z —
y): « € X}. Then for all x € X, ., the following inequality holds: R(x) < vlog(1/e).

7.2 Proofs for C%! analysis

Lemma 5 (C%! Structural bound on true losses in terms of smoothed losses). Let (f;)1_, be a
sequence of loss functions, and assume that f;: X — Ry is C-bounded and L-Lipschitz, where
K C RY. Denote

. d _
fi(x) = uNU((I?EBI(O))[ft(ZE +6Aw)], g = gft(yt)At 1Ut7 yr = Tt + 0 Apuy

for arbitrary Ay, 6, and w,.  Let x* = argmingcq Zthl fe(x), and let z¥ €
ArgMiny e i gigi(y,0%)>¢ ||y — T*||. Assume that we play y; at every round. Then the following
structural estimate holds:

T

T
Regr(A) = ]E[Z fe(ye) — fe(z™)] < eLT +2L5DT + ZE[E(%) — felz?)).

t=1
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Proof. Then using that the losses are Lipschitz, that ﬁ(m) > fi(z), and that we sample around
ellipsoids scaled by 9,

T
Regp(A) = E[Z fe(ye) = fe(@™)]

th y) = Fuly) + Filw) = Fulwe) + fulwe) — ful@?) + Fulal) = fila))
+ft< 5 = fula)]

T
th ye) = Jolwe) + Fol@?) = frl@eD)] + D Elfilwe) — fu(@?)] + LT

t=1

< 2L5DT+6LT+ZE[ﬁ(xt) ~ Jila?)] -
t=1

Lemma 6 (C%! Structural bound on smoothed losses in terms of averaged losses). Let (f;)]_; be
a sequence of loss functions, and assume that f;: X — R is C-bounded and L-Lipschitz, where
K C R Denote

. d _
fi(z) = uNU((')Bl [ff( +6Aw)], g = gft(yt)At Ywe, oy =2+ 6 Ay

Jor arbitrary Ay, 6, and uy;.  Let ¥ = argming.g Zle fe(x), and let z¥ €
ArgMin, e o giv(y,0%)>e |y — *||. Furthermore, denote

1 1 <
ﬁth—i(ﬂ?)a gt:m;gt—i~

=0

Assume that we play y; at every round. Then we have the structural estimate:

S| - Fa) < FALT s Bl - il + B (-]

=1 te[1,77,i€[0,kAt]

Proof. The following decomposition holds:
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For the first term (i), we have the estimate

Tk R T k
Z P Z (ft Tt) ft—i(%ﬁ—i)) = Z Z ft i(xi—;)
t=1 i=0 A =
= Y =l = (TR Rl
t=T—k+1
= Z kil(t—T-i-/f)ft(l"t)
t=T—k+1

if f < C,then f < C)
T

1
< — =T
_7§j =T+ R

k+1
Z [(t+T — k=T +k)C
t=1
k—1

1 (k-Dk ., _k
= = < —
;kﬂtc 20+ =2

For the third term (iii), we can say that

1 ko . o1 K N
Tl (th(xz) - ft($:)> = ZmZﬁ_i(w:) — fu(al)

t=k+1 7
koo ko
+;m; r—i(zl) — fi(z?),

where the first term is equal to 0 and the second term is < 0 because f > 0. Finally, for the second

term (ii), we have that

T k B [T 1 k ~ ~
Z Z i(@e—i) — fe(2?)| =E Z k1l Z t—i(Te—i) — ft—z‘(l’:)]
t=1 i=0 Lt=1 i=0
T k
<E Zm _ (@i — )
Lt=1 =0
(T k
=E Zm _ gj—v(zt )+ Geilw 1$t)]
Lt=1 1=0
r T 1 k
=E g, (z¢ — — P —
t:zlgt (z¢ — o) + ] ;gt (T mt)]




Next, by the linearity of expectation, we can write

T k B
B | g sl - fla?)
t=1 i=0

—_

/ E [g, (2 — 24)]

I
M“]

E [g;(xt — x:)] +

™=
7
4+ | =
—

o~
Il
-
o~
Il
s
-
Il
<

[
M=

E (g (z: — )] +

M=
7
+ | =
—_
M»

E Vi) (@ — )]

~~
Il
—
o~
Il
A
-
<

= |l

E[g/ (ze —20)] +

IA
M=
M=
7
+ | =
—_

E [V fes(@-dllallee—s - o]

o~
Il
-
o~
Il

1

s
I
o

E (g (z; — )] + LT sup Elllzi—i — @2
1 te[1,T),i€[0,kAt] O]

[M]=

~
Il

Lemma 7 (€%! Algorithmic bound on the averaged losses). Let (f;)-_, be a sequence of loss
functions, and assume that f;: X — R, is C-bounded and L-Lipschitz, where X C R%. Let
¥ = argmin o4 ZtT 1 fe(z), and let :c* € argming e o gig(y,09)>e |y — * || Assume that we play

according to the algorithm with nk < Then we maintain the following guarantee:

120d

T
. . 2080 T 1. .
> R (@ —a})] < 20+ 1) + ;R(%)

t=1

Proof. The first part of the proof is very similar to the analysis given in [Rakhlin and Sridharan,
2013]. For completeness and ease of presentation, we present the full argument here.

Our algorithm is based on the update rule:
Tpp1 = argming(gue + Gr1) ' @ + R(@),

where
k—1 k

- 1 =R 1 R 1
gt+1 = m;gt—z = k+1;gt+1—z— k+19t+1-

Let z; = argmin, 17(g1.¢) '  + R(x). Then

T

> Elg (2~ )] =

t=1

9 (ze—2) + g4 (= — )

[M]=

H_
Il
_

(G —90) (w0 — 20) + G (@0 — 20) + 3/ (20 — 2)

Il
M=

t=1
Now we want to show that Vx,
T T
th 33t—2't)+gt 2z < fR Z
t=1 t=1

For T = 1, Vx, we need to show that
~ _ 1 _
g (z1— 1)+ 3 < 591(32) +31 x.

But g; = 0, and so the result follows from the definition of ;.
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Now assume that the result is true for 7" — 1:

T T-1
DG @ =) +3 2 =)0 (v —2)+3 2+ 97 (@ — 2) + Gryr
t=1 t=1
1 T-1
< ER(xT) + Z 9 vr + g7 (xr —yr) + gr - yr
t=1

(by the induction hypothesis)
T-1 T
+ (Z §t+§T> xr — Gryr + 91 yr
t=1
T-1 T
+ <Z ?Jt+§T> yr — gryr + gryr
t=1

<
(by definition of x7)
1 T\
= —R(yr) + <Z §t> yr
N t=1
T T
< + (Z gt> x Vz
t=1
(by definition of yr).
Thus, we have that
T T
S —9) (@ —2)+3 (@ —z)+g (e —2) <Y (30— F0) (@ — ) + rR( ).
t=1 t=1

Now, we can use duality to apply the bound:
T

T
~ 1
> (@ =90 (@ — =) + R Z 19t = Gtllweslwe — 2ellz, + 53(@
t=1 t=1

and we want to show that
. - 1
x441 = argmin(gy.s + gtH)Tx + 53%(:13)
xT
. T 1
s = argmingl o+ R(z)
xT

imply that
th - zt”l’t < 277||£_7t - gtHl’t,*'
Toward this end, we recall the following result from [Nesterov, 2004]:
Theorem 5 (Theorem 2.2 [Nesterov, 2004]). Let \(x, ') = ||V F(z)||v2p )1 = [|[VF(2)][2,« be
the Newton decrement of F at x. Suppose that \(x, F') < % and F'is a self-concordant barrier. Then

|z — argmin F||,, < 2A\(z, F).

Using this result, consider Fyy1(z) = gy, 117+ %R(m) Then the theorem implies that if A(z, F}) <
1 (which is true if nk < ), then
e = zelle, = |2 — argmin Fy|lo, < 2X(4, Fy) = 20l|Ge — Gellz, +-

Thus, we have shown that

T
> Elg (x—x)] < 3? ZMEII% gell2, ]
t=1
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‘We can also estimate that

k k
1 1 Cd?
Ellge — il ) = Bl Gis = 3 Geil, .. = EllGill? <
[”gt gt”zt,*] [Hk—Fl yars gt i:1 gt ||xt,* [”gt”xt,* (k+1)2 = (52(k5+1)2

O

Lemma 8 (C%! Algorithmic bound on the stability of actions). Let (f;)}_, be a sequence of loss
functions, and assume that f;: KX — Ry is C- bounded and L-Lipschitz, where K C RY. Assume

that we play according to the algorithm with nk < 120 - Then we have the following estimate:

V3L/? VA48Cd
E[||z—; — z¢|2] < 2nkD +V2DL + ———
H| t tH2] n ( 2 \/E(S
Proof. As afirst step, we can write that
t—1
Elllze—; — 2ell2] < Y Efllws — 2ogall2]-
s=t—1i

Now, Lemma 10 informs us that we can switch between the local norms and the Euclidean norm
while only paying a price of D. This allows us to say that ||xs — zs11|]2 < D||lxs —

Let Gep1(x) = (g1 + Ge1) '@ + R(x). If n > 0 is such that Az, Gy41) < 1, then Theorem 2.2
of Nesterov implies that

o, = |lzs — argmin Gepa o, < 2A(ws, Got).

|25
Since
VGiy1(w) = VGi(x) +1(g + Ger1 — Ge) = 1(G¢ + Ger1 — G¢)s
we can write the Newton decrement as \(z5, Gs+1) = 1[|Gs + Js+1 — s |z. +-

By Jensen’s inequality, we can write

E{1g: + Gt = Gellec] < \JENG: + Gt = 33, ).

Expanding out these terms, we can see that

k—1

k
1 1 1 .
Gt + Git1 — Gt = k—|—lzgt i k—|—lzgt z—m;%f

1 1
k+129t it a1 @ 9w

which implies that

k—1
19 + Gt+1 — Gtllzy s < k+1”zgt illae,s + k+1||gt||$h

Let E; denote the conditional expectation at time ¢, where we condition on all the randomization for
the player up to time ¢. Then by using the fact that (o + 8 + 7)? < 3(a? + 5% + v?2), we have

_ L~ ~ 3
Eflge +Fern — ol ] < MZ E [Gi-i)I, . + IIng i~ Bloidlz ] + gt
3
< L+2D°L + o5 Hth i— Egill, .-

=0
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Denote h;—; = G¢—; — E¢—;[g:—i]- Then we can write this last term as

k—
Z E [Ge-dlllZ, ] ||th illz, ]
We now want to relate the norm || - ||,;, . to the earliest norm || - ||,_, « in the batch.

To do this, we will show the following two facts:

L|ge 4 Gevr = Gilla, o < 3
2. V0 < i < ksuchthatt — ¢ > 1, we have

1
Slellzniie < lzllor s < 202llzs .

Writing out the expressions, we have that

k—1

k
1 1 1 -
gt = k:Jrl E Gi—ir, Gi41 = k:Jrl E Gi—i, Gt = +1 ;:1 gt—

Fort = 1, we have

[P P e
Er1 Tt T

x < % Vs, which together imply that

G+g—g1=

and [[g;|[.

Ex)

2 Cd_20d
Skl - 0

||g1 +§2 _§1||I17 ||91le7

kE+1

Lett > 1. Then

k—1
o~ ~ 1 . .
19t + Gt+1 = Gellaw v < k1 (Z 1Gt—ille, « + |9t|xt,*> ‘
=0

By the induction hypothesis,

2cd

||gé +§s+1 - gsH:L'S,* S 5 VS < t.

This implies that

nlgs + gs+1 — sl

S’*

< 7)—2§dV3 <t.

If we take 12knC'd < 6, then

T, — )\(xsterl) <

»Jk\'—‘

nllgs + §S+1 - .as

such that

o < 20)|Gs + gor1 = Gsllaw < dn— < (since 12knCd < 9)

|| | vd
Ts+1 — Ts 5

Wl =

Thus, we have shown that

1
H.’IJS+1 — Xy Ty S g < 1.

By Theorem 4, this means that
d\* 2 -1 2 -1 d\ ™ 2 -1
1- 4773 VR(zs) T xS VR(z511) " =g (11— 4775 VeR(zs) ™",
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which implies the following relation on the induced norms: Vz,

d AN

and recursively, Vs € [t — k, ], Vz,

d k d —k
(1=405) Wl < ol < (1=405) el

T gk S H Tgy*

Now, we want to show that (1 — 4n%)k > 1.
Since 12knC'd < §, we have
Cd 1 1
dn— < = < =
6 73 2
Using the fact that 1 — 8 > e=2# for 8 € [0, ] implies that

l\D\H

{1 - (4770;)} > e T > o723 >

Thus, we have that
1
Sz

2o S [|2la, o < 2|2]

which is (2).
This also further implies that

1 2 1
Hgt +§t+1 - gt”zt,* < — k+1 - ”gt l”Tt « T E+1 ”gtan

=

IN

g k-l
il ; 1Ge—illze_s e + 77— k: 1 Gt ], =

2 Cd 1 Cd
< k=
“k+1 9 E+1 6

1 Cd
_ ok 1 1
Tri s Rt
2Cd
< —
=75

Going back to the original quantity, we can now say that

||th ill2, ] < kg ||th illz, e

3
=54 Z E[||he— 1||zt ..« (because h;_; is a martingale difference)

IA

;b
?16} jEmhtiiHi_i,*]
1=0

IA

3 k—1
ﬁlezm\|§t,i\\it_i,*]

162 C2d2

02d2
-

\ /\
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7.3 Proofs for C1'! analysis

Lemma 9 (C™! Structural bound on true losses in terms of smoothed losses). Let (f;)_, be a
sequence of loss functions, and assume that fi: KX — R is C-bounded, L-Lipschitz, and H-smooth,
where X C R%. Denote

. d _
fi(z) = u~U(8B [ft(x +0Aw)], G = gft(yt)At Yue,  ye = a + 6 Ay

for arbitrary A, 0, and uy. Let z* = argming.4 Zle fe(x), and let z¥ €
ArgMin, e i gisi(y,00)>¢ |y — | Assume that we play y at every round. Then we have the
structural estimate:

T
Reg; (A Z a*)] < eLT + 2H8* DT + ZIE Filzy) = fo(@D)].

t=1

Proof. Then using the fact that the losses are Lipschitz and that we sample around ellipsoids scaled
by &, we have that

T
Regp(A) = E[Z filye) = fu(7)]

th v) = Fuly) + Filw) = Fulwe) + fulwe) — fulw?) + Fulal) — fula))
+ft( o) — fi(z")]
th y) = filwd) + fu(@?) = Fi@D)] + D Elfi(wr) — fula?)] + eLT

t=1

T
< 2HS8?D’T + LT + Y E[fy(z,) — fula?)].

t=1

O

Theorem 2 (C1'! Bound). Let X C R? be a convex set with diameter D and (f,)L_, a sequence of
loss functions with each f;: X — R, C- bounded, L-Lipschitz and H-smooth. Let R be a v-self-

concordant barrier for X. Then, for nk < 120(1’ the regret of OPTIMISTICBCO can be bounded as

follows:
Reg; (OPTIMISTICBCO) < LT + H§*D*T
V3LY? V4a8Cd| 1 T
TL+ DHT)2nkD 2DL —log(1 Ck _—.
+ (TL + )21 ; +V2DL + N +n0g( /) + +”52(k+1)2

In particular, forn = T—8/13d=5/6 § = T=5/2641/3 |, = TV/3d5/3 the following guarantee holds
for the regret of the algorithm:

Reg (OPTIMISTICBCO) = O (T8/13d5/3) :

Proof. Putting the pieces together from Lemmas 6, 7, 8, and 9, shows that

Ck  20dnT 1
2 " 2(k+1)2 g

V3L'? 4+ 2D Lk + \/E(gd\ﬂ

Regr(A) < eLT + H*D?T + R(z.)

+ LT2nD

Since z. is at least e away from the boundary, it follows from [Abernethy and Rakhlin, 2009] that
R(ze) < wvlog(l/e).
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Now, leaving only the T, k, 1, 4, and € terms yields an expression of the form:

nTd?

62k?

Fkyn,6,€) = €T + = log(Lfe) + 8°T + k +
n

k124
+Tn {lJrkJr ]

—1000

Now, if we assume a priori that k = Q(1) as T — oo and take e = T' as in the statement, then

we only care about the terms

1 ) nTd? k'/2d
610g(1/6)+5 TH+k+ 5272 +Tnk + Ty 5
Plugging in the stated terms for 7, k, and ¢ yields the result. O
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