
7 Appendix

7.1 Properties of self-concordant barriers

This section highlights some properties of self-concordant barriers that will be useful in this work.

The ellipsoid induced by a self-concordant barrier at each point in the interior of the feasible set,
{y 2 Rd

: kyk
x

 1}, is called the Dikin ellipsoid. The first result tells us that we can sample around
the Dikin ellipsoid without worrying about leaving the feasible region.

Theorem 3 (Theorem 2.1.1 [Nesterov and Nemirovskii, 1994]). Let K be a closed convex set
in Rd, and let R be a ⌫-self-concordant barrier for K. Then for any x 2 int(K), we have that
{y 2 Rd

: ky � xk
x

< 1} ⇢ int(K).

The next result, presented in [Dekel et al., 2015], is a variant of John’s ellipsoid theorem for ellipsoids
induced by self-concordant barriers. It shows that the Euclidean norm and the norm induced by the
barrier are equivalent up to the diameter of the convex set.

Lemma 10 (Lemma 6 [Dekel et al., 2015]). Let K be a closed convex set in Rd, and let R be a
⌫-self-concordant barrier for K. Then for any x 2 K and y 2 Rd, the following inequality holds:
D�1kzk

x,⇤  kzk2  Dkzk
x

.

The second result shows that the Hessian of a self-concordant barrier changes slowly within the Dikin
ellipsoid of a point.

Theorem 4 (Theorem 2.1.1 [Nesterov and Nemirovskii, 1994]). Let K be a closed convex set in Rd,
and let R be a ⌫-self-concordant barrier for K. Then for any x 2 int(K) and z 2 Rd with kyk

x

 1,
we have that

(1� kyk
x

)

2 r2R(x) 4 r2R(x+ y) 4 (1� kyk
x

)

�2 r2R(x).

The next result tells us that outside of an ✏ annulus at the boundary of K, a self-concordant barrier
grows at most logarithmically.

Proposition 1 (Proposition 2.3.2 [Nesterov and Nemirovskii, 1994]). Let K be a closed convex set in
Rd, and let R be a ⌫-self-concordant barrier for K. For any ✏ 2 (0, 1], let K

y,✏

= {y + (1� ✏)(x�
y) : x 2 K}. Then for all x 2 K

y,✏

, the following inequality holds: R(x)  ⌫ log(1/✏).

7.2 Proofs for C0,1 analysis

Lemma 5 (C0,1 Structural bound on true losses in terms of smoothed losses). Let (f
t

)

T

t=1 be a
sequence of loss functions, and assume that f

t

: K ! R+ is C-bounded and L-Lipschitz, where
K ⇢ Rd. Denote

bf
t

(x) = E
u⇠U(@B1(0))

[f
t

(x+ �A
t

u)], bg
t

=

d

�
f
t

(y
t

)A�1
t

u
t

, y
t

= x
t

+ �A
t

u
t

for arbitrary A
t

, �, and u
t

. Let x⇤
= argmin

x2K

P
T

t=1 ft(x), and let x⇤
✏

2
argmin

y2K,dist(y,@K)>✏

ky � x⇤k. Assume that we play y
t

at every round. Then the following
structural estimate holds:

Reg

T

(A) = E[
TX

t=1

f
t

(y
t

)� f
t

(x⇤
)]  ✏LT + 2L�DT +

TX

t=1

E[ bf
t

(x
t

)� bf
t

(x⇤
✏

)].
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Proof. Then using that the losses are Lipschitz, that bf
t

(x) � f
t

(x), and that we sample around
ellipsoids scaled by �,

Reg

T

(A) = E[
TX

t=1

f
t

(y
t

)� f
t

(x⇤
)]

= E[
TX

t=1

f
t

(y
t

)� bf
t

(y
t

) +

bf
t

(y
t

)� bf
t

(x
t

) +

bf
t

(x
t

)� bf
t

(x⇤
✏

) +

bf
t

(x⇤
✏

)� f
t

(x⇤
✏

)

+ f
t

(x⇤
✏

)� f
t

(x⇤
)]

 E[
TX

t=1

bf
t

(y
t

)� bf
t

(x
t

) +

bf
t

(x⇤
✏

)� f
t

(x⇤
✏

)] +

TX

t=1

E[ bf
t

(x
t

)� bf
t

(x⇤
✏

)] + ✏LT

 2L�DT + ✏LT +

TX

t=1

E[ bf
t

(x
t

)� bf
t

(x⇤
✏

)].

Lemma 6 (C0,1 Structural bound on smoothed losses in terms of averaged losses). Let (f
t

)

T

t=1 be
a sequence of loss functions, and assume that f

t

: K ! R+ is C-bounded and L-Lipschitz, where
K ⇢ Rd. Denote

bf
t

(x) = E
u⇠U(@B1(0))

[f
t

(x+ �A
t

u)], bg
t

=

d

�
f
t

(y
t

)A�1
t

u
t

, y
t

= x
t

+ �A
t

u
t

for arbitrary A
t

, �, and u
t

. Let x⇤
= argmin

x2K

P
T

t=1 ft(x), and let x⇤
✏

2
argmin

y2K,dist(y,@K)>✏

ky � x⇤k. Furthermore, denote

¯f
t

(x) =
1

k + 1

kX

i=0

bf
t�i

(x), ḡ
t

=

1

k + 1

kX

i=0

bg
t�i

.

Assume that we play y
t

at every round. Then we have the structural estimate:

TX

t=1

E

bf
t

(x
t

)� bf
t

(x⇤
✏

)]  Ck

2

+ LT sup

t2[1,T ],i2[0,k^t]
E[kx

t�i

� x
t

k2] +
TX

t=1

E
⇥
ḡ>
t

(x
t

� x⇤
✏

)

⇤
.

Proof. The following decomposition holds:

TX

t=1

E

bf
t

(x
t

)� bf
t

(x⇤
✏

)] =

TX

t=1

E


1

k + 1

kX

i=0

⇣
bf
t

(x
t

)� bf
t�i

(x
t�i

)

⌘

+

1

k + 1

kX

i=0

⇣
bf
t�i

(x
t�i

)� ¯f
t

(x⇤
✏

)

⌘
+

1

k + 1

 
kX

i=0

¯f
t

(x
✏

)� bf
t

(x⇤
✏

)

!�

=

TX

t=1

E[(i) + (ii) + (iii)].
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For the first term (i), we have the estimate

TX

t=1

1

k + 1

kX

i=0

⇣
bf
t

(x
t

)� bf
t�i

(x
t�i

)

⌘
=

TX

t=T�k+1

1

k + 1

kX

i=0

bf
t

(x
t

)� bf
t�i

(x
t�i

)

=

TX

t=T�k+1

1

k + 1

(k � [k � (t� (T � k))]) bf
t

(x
t

)

=

TX

t=T�k+1

1

k + 1

(t� T + k) bf
t

(x
t

)

(if f  C, then ˆf  C)


TX

t=T�k+1

1

k + 1

(t� T + k)C

=

k�1X

t=1

1

k + 1

(t+ T � k � T + k)C

=

k�1X

t=1

1

k + 1

tC =

(k � 1)k

2(k + 1)

C  k

2

C.

For the third term (iii), we can say that

1

k + 1

 
kX

i=0

¯f
t

(x⇤
✏

)� bf
t

(x⇤
✏

)

!
=

TX

t=1

1

k + 1

kX

i=0

bf
t�i

(x⇤
✏

)� bf
t

(x⇤
✏

)

=

TX

t=k+1

1

k + 1

kX

i=0

bf
t�i

(x⇤
✏

)� bf
t

(x⇤
✏

)

+

kX

t=1

1

k + 1

kX

i=0

bf
t�i

(x⇤
✏

)� bf
t

(x⇤
✏

),

where the first term is equal to 0 and the second term is  0 because f � 0. Finally, for the second
term (ii), we have that

E
"

TX

t=1

1

k + 1

kX

i=0

bf
t�i

(x
t�i

)� ¯f
t

(x⇤
✏

)

#
= E

"
TX

t=1

1

k + 1

kX

i=0

bf
t�i

(x
t�i

)� bf
t�i

(x⇤
✏

)

#

 E
"

TX

t=1

1

k + 1

kX

i=0

bg>
t�i

(x
t�i

� x⇤
✏

)

#

= E
"

TX

t=1

1

k + 1

kX

i=0

bg>
t�i

(x
t

� x⇤
✏

) + bg>
t�i

(x
t�i

� x
t

)

#

= E
"

TX

t=1

ḡ>
t

(x
t

� x⇤
✏

) +

1

k + 1

kX

i=0

bg>
t�i

(x
t�i

� x
t

)

#
.
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Next, by the linearity of expectation, we can write

E
"

TX

t=1

1

k + 1

kX

i=0

bf
t�i

(x
t�i

)� ¯f
t

(x⇤
✏

)

#

=

TX

t=1

E
⇥
ḡ>
t

(x
t

� x⇤
✏

)

⇤
+

TX

t=1

1

k + 1

kX

i=0

E
⇥
bg>
t�i

(x
t�i

� x
t

)

⇤

=

TX

t=1

E
⇥
ḡ>
t

(x
t

� x⇤
✏

)

⇤
+

TX

t=1

1

k + 1

kX

i=0

E
h
r ˆf

t�i

(x
t�i

)

>
(x

t�i

� x
t

)

i


TX

t=1

E
⇥
ḡ>
t

(x
t

� x⇤
✏

)

⇤
+

TX

t=1

1

k + 1

kX

i=0

E
h
kr ˆf

t�i

(x
t�i

)k2kxt�i

� x
t

k2
i


TX

t=1

E
⇥
ḡ>
t

(x
t

� x⇤
✏

)

⇤
+ LT sup

t2[1,T ],i2[0,k^t]
E[kx

t�i

� x
t

k2].

Lemma 7 (C0,1 Algorithmic bound on the averaged losses). Let (f
t

)

T

t=1 be a sequence of loss
functions, and assume that f

t

: K ! R+ is C-bounded and L-Lipschitz, where K ⇢ Rd. Let
x⇤

= argmin

x2K

P
T

t=1 ft(x), and let x⇤
✏

2 argmin

y2K,dist(y,@K)>✏

ky � x⇤k. Assume that we play
according to the algorithm with ⌘k  �

12Cd

. Then we maintain the following guarantee:

TX

t=1

E
⇥
ḡ>
t

(x
t

� x⇤
✏

)

⇤
 2Cd2⌘T

�2(k + 1)

2
+

1

⌘
R(x⇤

✏

).

Proof. The first part of the proof is very similar to the analysis given in [Rakhlin and Sridharan,
2013]. For completeness and ease of presentation, we present the full argument here.

Our algorithm is based on the update rule:

x
t+1 = argmin

x

⌘(ḡ1:t + egt+1)
>x+ R(x),

where

eg
t+1 =

1

k + 1

k�1X

i=0

bg
t�i

=

1

k + 1

kX

i=0

bg
t+1�i

� 1

k + 1

bg
t+1.

Let z
t

= argmin

x

⌘(ḡ1:t)
>x+ R(x). Then

TX

t=1

E[ḡ>
t

(x
t

� x)] =

TX

t=1

ḡ>
t

(x
t

� z
t

) + ḡ>
t

(z
t

� x)

=

TX

t=1

(ḡ
t

� eg
t

)

>
(x

t

� z
t

) + eg>
t

(x
t

� z
t

) + ḡ>
t

(z
t

� x)

Now we want to show that 8x,

TX

t=1

eg>
t

(x
t

� z
t

) + ḡ>
t

z
t

 1

⌘
R(x) +

TX

t=1

ḡ>
t

x.

For T = 1, 8x, we need to show that

eg>1 (x1 � y1) + ḡ>1 y1  1

⌘
R(x) + ḡ>1 x.

But eg1 = 0, and so the result follows from the definition of y1.
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Now assume that the result is true for T � 1:
TX

t=1

eg>
t

(x
t

� z
t

) + ḡ>
t

z
t

=

T�1X

t=1

eg>
t

(x
t

� z
t

) + ḡ>
t

z
t

+ eg>
T

(x
t

� z
t

) + ḡ>
T

y
T

 1

⌘
R(x

T

) +

T�1X

t=1

ḡ>
t

x
T

+ eg>
T

(x
T

� y
T

) + ḡ
T

· y
T

(by the induction hypothesis)

=

1

⌘
R(x

T

) +

 
T�1X

t=1

ḡ
t

+ eg
T

!>

x
T

� eg>
T

y
T

+ ḡ>
T

y
T

 1

⌘
R(y

T

) +

 
T�1X

t=1

ḡ
t

+ eg
T

!>

y
T

� eg>
T

y
T

+ ḡ>
T

y
T

(by definition of x
T

)

=

1

⌘
R(y

T

) +

 
TX

t=1

ḡ
t

!>

y
T

 1

⌘
R(x) +

 
TX

t=1

ḡ
t

!>

x 8x

(by definition of y
T

).

Thus, we have that
TX

t=1

(ḡ
t

� eg
t

)

>
(x

t

� z
t

) + eg>
t

(x
t

� z
t

) + ḡ>
t

(z
t

� x) 
TX

t=1

(ḡ
t

� eg
t

)

>
(x

t

� z
t

) +

1

⌘
R(x).

Now, we can use duality to apply the bound:
TX

t=1

(ḡ
t

� eg
t

)

>
(x

t

� z
t

) +

1

⌘
R(x) 

TX

t=1

kḡ
t

� eg
t

k
xt,⇤kxt

� z
t

k
xt +

1

⌘
R(x)

and we want to show that

x
t+1 = argmin

x

(ḡ1:t + egt+1)
>x+

1

⌘
R(x)

y
t+1 = argmin

x

ḡ>1:t+1x+

1

⌘
R(x)

imply that
kx

t

� z
t

k
xt  2⌘kḡ

t

� eg
t

k
xt,⇤.

Toward this end, we recall the following result from [Nesterov, 2004]:

Theorem 5 (Theorem 2.2 [Nesterov, 2004]). Let �(x, F ) = krF (x)kr2
F (x)�1

= krF (x)k
x,⇤ be

the Newton decrement of F at x. Suppose that �(x, F )  1
2 and F is a self-concordant barrier. Then

kx� argminFk
x

 2�(x, F ).

Using this result, consider F
t+1(x) = ḡ>1:t+1x+

1
⌘

R(x). Then the theorem implies that if �(x
t

, F
t

) 
1
2 (which is true if ⌘k  �

12Cd

), then

kx
t

� z
t

k
xt = kx

t

� argminF
t

k
xt  2�(x

t

, F
t

) = 2⌘kḡ
t

� eg
t

k
xt,⇤.

Thus, we have shown that
TX

t=1

E[ḡ>
t

(x
t

� x)]  1

⌘
R(x) +

TX

t=1

2⌘ E[kḡ
t

� eg
t

k2
xt,⇤]
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We can also estimate that

E[kḡ
t

� eg
t

k2
xt,⇤] = E[k 1

k + 1

kX

i=0

bg
t�i

�
kX

i=1

bg
t�i

k2
xt,⇤ = E[kbg

t

k2
xt,⇤

1

(k + 1)

2
 Cd2

�2(k + 1)

2

Lemma 8 (C0,1 Algorithmic bound on the stability of actions). Let (f
t

)

T

t=1 be a sequence of loss
functions, and assume that f

t

: K ! R+ is C-bounded and L-Lipschitz, where K ⇢ Rd. Assume
that we play according to the algorithm with ⌘k  �

12Cd

. Then we have the following estimate:

E[kx
t�i

� x
t

k2]  2⌘kD

 p
3L1/2

k
+

p
2DL+

p
48Cdp
k�

!

Proof. As a first step, we can write that

E[kx
t�i

� x
t

k2] 
t�1X

s=t�i

E[kx
s

� x
s+1k2].

Now, Lemma 10 informs us that we can switch between the local norms and the Euclidean norm
while only paying a price of D. This allows us to say that kx

s

� x
s+1k2  Dkx

s

� x
s+1kxs .

Let G
t+1(x) = ⌘(ḡ1:t + egt+1)

>x+R(x). If ⌘ > 0 is such that �(x
t

, G
t+1)  1

4 , then Theorem 2.2
of Nesterov implies that

kx
s

� x
s+1kxs = kx

s

� argminG
t+1kxs  2�(x

s

, G
s+1).

Since
rG

t+1(xt

) = rG
t

(x
t

) + ⌘(ḡ
t

+ eg
t+1 � egt) = ⌘(ḡ

t

+ eg
t+1 � egt),

we can write the Newton decrement as �(x
s

, G
s+1) = ⌘kḡ

s

+ eg
s+1 � egskxs,⇤.

By Jensen’s inequality, we can write

E[kḡ
t

+ eg
t+1 � egtkxt,⇤] 

q
E[kḡ

t

+ eg
t+1 � egtk2

xt,⇤].

Expanding out these terms, we can see that

ḡ
t

+ eg
t+1 � egt =

1

k + 1

kX

i=0

bg
t�i

+

1

k + 1

k�1X

i=0

bg
t�i

� 1

k + 1

kX

i=1

bg
t�i

=

1

k + 1

kX

i=0

bg
t�i

+

1

k + 1

(bg
t

� bg
t�k

)

which implies that

kḡ
t

+ eg
t+1 � egtkxt,⇤  1

k + 1

k
k�1X

i=0

bg
t�i

k
xt,⇤ +

1

k + 1

kbg
t

k
xt,⇤.

Let E
t

denote the conditional expectation at time t, where we condition on all the randomization for
the player up to time t. Then by using the fact that (↵+ � + �)2  3(↵2

+ �2
+ �2

), we have

E[kḡ
t

+ eg
t+1 � egtk2

xt,⇤] 
3

k2
k
k�1X

i=0

E
t�i

[bg
t�i

]k2
xt,⇤ +

3

k2
E[k

k�1X

i=0

bg
t�i

� E
t�i

[bg
t�i

]k2
xt,⇤] +

3

k2
L

 3

k2
L+ 2D2L2

+

3

k2
E[k

k�1X

i=0

bg
t�i

� E
t�i

[bg
t�i

]k2
xt,⇤].
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Denote h
t�i

= bg
t�i

� E
t�i

[bg
t�i

]. Then we can write this last term as

3

k2
E[k

k�1X

i=0

bg
t�i

� E
t�i

[bg
t�i

]k2
xt,⇤] =

3

k2
E[k

k�1X

i=0

h
t�i

k2
xt,⇤].

We now want to relate the norm k · k
xt,⇤ to the earliest norm k · k

xt�k,⇤ in the batch.

To do this, we will show the following two facts:

1. kḡ
t

+ eg
t+1 � egtkxt,⇤  2d

�

2. 80  i  k such that t� i � 1, we have

1

2

kzk
xt�i,⇤  kzk

xt,⇤  2kzk
xt�i,⇤.

Writing out the expressions, we have that

ḡ
t

=

1

k + 1

kX

i=0

bg
t�i

, eg
t+1 =

1

k + 1

k�1X

i=0

bg
t�i

, eg
t

=

1

k + 1

kX

i=1

bg
t�i

.

For t = 1, we have

ḡ1 + eg2 � eg1 =

1

k + 1

bg1 +
1

k + 1

bg1 =

2

k + 1

bg1

and kbg
s

k
xs,⇤  Cd

�

8s, which together imply that

kḡ1 + eg2 � eg1kx1,⇤ =

2

k + 1

kbg1kx1,⇤  2

k + 1

Cd

�
 2Cd

�

Let t > 1. Then

kḡ
t

+ eg
t+1 � egtkxt,⇤  1

k + 1

 
k�1X

i=0

kbg
t�i

k
xt,⇤ + kbg

t

k
xt,⇤

!
.

By the induction hypothesis,

kḡ
s

+ eg
s+1 � egskxs,⇤  2Cd

�
8s < t.

This implies that

⌘kḡ
s

+ eg
s+1 � egskxs,⇤  ⌘

2Cd

�
8s < t.

If we take 12k⌘Cd  �, then

⌘kḡ
s

+ eg
s+1 � egskxs,⇤ = �(x

s

, G
s+1) 

1

4

,

such that

kx
s+1 � x

s

k
xs  2⌘kḡ

s

+ eg
s+1 � egskxs,⇤  4⌘

Cd

�
 1

3

. (since 12k⌘Cd  �)

Thus, we have shown that

kx
s+1 � x

s

k
xs  1

3

< 1.

By Theorem 4, this means that
✓
1� 4⌘

d

�

◆2

r2R(x
s

)

�1 4 r2R(x
s+1)

�1 4
✓
1� 4⌘

d

�

◆�2

r2R(x
s

)

�1,
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which implies the following relation on the induced norms: 8z,
✓
1� 4⌘

d

�

◆
kzk

xs,⇤  kzk
xs+1,⇤ 

✓
1� 4⌘

d

�

◆�1

kzk
xs,⇤,

and recursively, 8s 2 [t� k, t], 8z,
✓
1� 4⌘

d

�

◆
k

kzk
xs,⇤  kzk

xt,⇤ 
✓
1� 4⌘

d

�

◆�k

kzk
xs,⇤.

Now, we want to show that
�
1� 4⌘ d

�

�
k � 1

2 .

Since 12k⌘C�  �, we have

4⌘
Cd

�
 1

3

<
1

2

.

Using the fact that 1� � � e�2� for � 2 [0, 1
2 ] implies that


1� (4⌘

Cd

�
)

�
k

� e�8k⌘Cd
� � e�2/3 � 1

2

.

Thus, we have that
1

2

kzk
xs,⇤  kzk

xt,⇤  2kzk
xs,⇤,

which is (2).

This also further implies that

kḡ
t

+ eg
t+1 � egtkxt,⇤  1

k + 1

k�1X

i=0

kbg
t�i

k
xt,⇤ +

1

k + 1

kbg
t

k
xt,⇤

 2

k + 1

k�1X

i=0

kbg
t�i

k
xt�i,⇤ +

1

k + 1

kbg
t

k
xt,⇤

 2

k + 1

k
Cd

�
+

1

k + 1

Cd

�

=

1

k + 1

Cd

�
(2k + 1)

 2Cd

�
.

Going back to the original quantity, we can now say that

3

k2
E[k

k�1X

i=0

h
t�i

k2
xt,⇤] 

3

k2
4E[k

k�1X

i=0

h
t�i

k2
xt�k,⇤]

=

3

k2
4

k�1X

i=0

E[kh
t�i

k2
xt�k,⇤] (because h

t�i

is a martingale difference)

 3

k2
16

k�1X

i=0

E[kh
t�i

k2
xt�i,⇤]

 3

k2
16

k�1X

i=0

E[kbg
t�i

k2
xt�i,⇤]

 3

k2
16

k�1X

i=0

C2d2

�2

=

3

k
16

C2d2

�2
.
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7.3 Proofs for C1,1 analysis

Lemma 9 (C1,1 Structural bound on true losses in terms of smoothed losses). Let (f
t

)

T

t=1 be a
sequence of loss functions, and assume that f

t

: K ! R+ is C-bounded, L-Lipschitz, and H-smooth,
where K ⇢ Rd. Denote

bf
t

(x) = E
u⇠U(@B1(0))

[f
t

(x+ �A
t

u)], bg
t

=

d

�
f
t

(y
t

)A�1
t

u
t

, y
t

= x
t

+ �A
t

u
t

for arbitrary A
t

, �, and u
t

. Let x⇤
= argmin

x2K

P
T

t=1 ft(x), and let x⇤
✏

2
argmin

y2K,dist(y,@K)>✏

ky � x⇤k. Assume that we play y
t

at every round. Then we have the
structural estimate:

Reg

T

(A) = E[
TX

t=1

f
t

(y
t

)� f
t

(x⇤
)]  ✏LT + 2H�2D2T +

TX

t=1

E[ bf
t

(x
t

)� bf
t

(x⇤
✏

)].

Proof. Then using the fact that the losses are Lipschitz and that we sample around ellipsoids scaled
by �, we have that

Reg

T

(A) = E[
TX

t=1

f
t

(y
t

)� f
t

(x⇤
)]

= E[
TX

t=1

f
t

(y
t

)� bf
t

(y
t

) +

bf
t

(y
t

)� bf
t

(x
t

) +

bf
t

(x
t

)� bf
t

(x⇤
✏

) +

bf
t

(x⇤
✏

)� f
t

(x⇤
✏

)

+ f
t

(x⇤
✏

)� f
t

(x⇤
)]

 E[
TX

t=1

bf
t

(y
t

)� bf
t

(x
t

) +

bf
t

(x⇤
✏

)� f
t

(x⇤
✏

)] +

TX

t=1

E[ bf
t

(x
t

)� bf
t

(x⇤
✏

)] + ✏LT

 2H�2D2T + ✏LT +

TX

t=1

E[ bf
t

(x
t

)� bf
t

(x⇤
✏

)].

Theorem 2 (C1,1 Bound). Let K ⇢ Rd be a convex set with diameter D and (f
t

)

T

t=1 a sequence of
loss functions with each f

t

: K ! R+ C-bounded, L-Lipschitz and H-smooth. Let R be a ⌫-self-
concordant barrier for K. Then, for ⌘k  �

12Cd

, the regret of OPTIMISTICBCO can be bounded as
follows:

Reg

T

(OPTIMISTICBCO)  ✏LT +H�2D2T

+ (TL+DHT )2⌘kD

"p
3L1/2

k
+

p
2DL+

p
48Cdp
k�

#
+

1

⌘
log(1/✏) + Ck + ⌘

d2T

�2(k + 1)

2
.

In particular, for ⌘ = T�8/13d�5/6, � = T�5/26d1/3, k = T 1/13d5/3, the following guarantee holds
for the regret of the algorithm:

Reg

T

(OPTIMISTICBCO) =

eO
⇣
T 8/13d5/3

⌘
.

Proof. Putting the pieces together from Lemmas 6, 7, 8, and 9, shows that

Reg

T

(A)  ✏LT +H�2D2T +

Ck

2

+

2Cd2⌘T

�2(k + 1)

2
+

1

⌘
R(x

✏

)

+ LT2⌘D

"
p
3L1/2

+

p
2DLk +

p
48Cd

p
k

�

#

Since x
✏

is at least ✏ away from the boundary, it follows from [Abernethy and Rakhlin, 2009] that
R(x

✏

)  ⌫ log(1/✏).
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Now, leaving only the T , k, ⌘, �, and ✏ terms yields an expression of the form:

f(k, ⌘, �, ✏) = ✏T +

1

⌘
log(1/✏) + �2T + k +

⌘Td2

�2k2
+ T⌘


1 + k +

k1/2d

�

�

Now, if we assume a priori that k = ⌦(1) as T ! 1 and take ✏ = T�1000 as in the statement, then
we only care about the terms

1

⌘
log(1/✏) + �2T + k +

⌘Td2

�2k2
+ T⌘k + T⌘

k1/2d

�
.

Plugging in the stated terms for ⌘, k, and � yields the result.
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