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We provide in Section 1 detailed proofs of Lemma 1, 2, 3 and 4 related to the gradient concentration
of the Interaction-Screening Objective (ISO). Detailed proofs of Lemma 5, 6, 7 and 8 related to the
restricted strong-convexity of the ISO can be found in Section 2.

1 Gradient Concentration

Lemma 1. For any Ising model with p spins and for all l 6= u ∈ V

E [Xul (θ
∗
u)] = 0. (1)

Proof. By direct computation, we find that

E [Xul (θ
∗
u)] = E

[
−σuσl exp

(
−
∑
i∈∂u

θ∗uiσuσi

)]

=
−1

Z

∑
σ

σuσl exp

 ∑
(i,j)∈E

θ∗ijσiσj −
∑
i∈∂u

θ∗uiσuσi

 = 0, (2)

where in the last line we use the fact that the exponential terms involving σu cancel, implying that the
sum over σu ∈ {−1,+1} is zero.

Lemma 2. For any Ising model with p spins and for all l 6= u ∈ V

E
[
Xul (θ

∗
u)

2
]

= 1. (3)
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Proof. As a result of direct evaluation one derives

E
[
Xul (θ

∗
u)

2
]

= E

[
exp

(
−2

∑
i∈∂u

θ∗uiσuσi

)]

=
1

Z

∑
σ

exp

 ∑
(i,j)∈E,i,j 6=u

θ∗ijσiσj −
∑
i∈∂u

θ∗uiσuσi


=

1

Z

∑
σ

exp

 ∑
(i,j)∈E,i,j 6=u

θ∗ijσiσj +
∑
i∈∂u

θ∗uiσuσi


= 1. (4)

Notice that in the second line the first sum over edges (under the exponential) does not depend on
σu. Furthermore, the first sum is invariant under the change of variables, σu → −σu, while the
second sum changes sign. This transformation results in appearance of the partition function in the
numerator.

Lemma 3. For any Ising model with p spins, with maximum degree d and maximum coupling
intensity β, it is guaranteed that for all l 6= u ∈ V

|Xul (θ
∗
u)| ≤ exp (βd) . (5)

Proof. Observe that components of θ∗u are smaller than β and at most d of them are non-zero. Recall
that spins are binary, {−1,+1}, which results in the following estimate

|Xul (θ
∗
u)| =

∣∣∣∣∣−σuσi exp

(
−
∑
i∈∂u

θ∗uiσuσi

)∣∣∣∣∣
≤ exp

(
−
∑
i∈∂u

θ∗uiσuσi

)
≤ exp (βd) . (6)

Lemma 4. For any Ising model with p spins, with maximum degree d and maximum coupling
intensity β. For any ε3 > 0, if the number of observation satisfies n ≥ exp (2βd) ln 2p

ε3
, then the

following bound holds with probability at least 1− ε3:

‖∇Sn (θ∗u)‖∞ ≤ 2

√
ln 2p

ε3

n
. (7)

Proof. Let us first show that every term is individually bounded by the RHS of (7) with high-
probability. We further use the union bound to prove that all components are uniformly bounded with
high-probability. Utilizing Lemma 1, Lemma 2 and Lemma 3 we apply the Bernstein’s Inequality

P
[∣∣∣∣ ∂

∂θul
Sn (θ∗u)

∣∣∣∣ > t

]
≤ 2 exp

(
−

1
2 t

2n

1 + 1
3 exp (βd) t

)
. (8)

Inverting the following relation

s =
1
2 t

2n

1 + 1
3 exp (βd) t

, (9)

and substituting the result in the Eq. (8) one derives

P

[∣∣∣∣ ∂

∂θul
Sn (θ∗u)

∣∣∣∣ > 1

3

(
u+

√
18

exp (βd)
u+ u2

)]
≤ 2 exp (−s) , (10)

where u = s
n exp (βd) .
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For n ≥ s exp (2βd), we can simplify Eq. (10) to have an expression independent of β and d

P
[∣∣∣∣ ∂

∂θul
Sn (θ∗u)

∣∣∣∣ > 2

√
s

n

]
≤ 2 exp (−s) . (11)

Using s = ln 2p
ε3

and the union bound on every component of the gradient leads to the desired
result.

2 Restricted Strong-Convexity

We recall that the remainder of the first-order Taylor-expansion of the ISO, is the following quantity

δSn (∆u, θ
∗) =

1

n

n∑
k=1

exp

(
−
∑
i∈∂u

θ∗uiσ
(k)
u σ

(k)
i

)
f

 ∑
i∈V \u

∆uiσ
(k)
u σ

(k)
i

 , (12)

where the function f (z) appearing in Eq. (12) reads

f (z) := e−z − 1 + z. (13)

Lemma 5. For all ∆u ∈ Rp−1, the remainder of the first-order Taylor expansion admits the following
lower-bound

δSn (∆u, θ
∗) ≥ e−βd

2 + ‖∆u‖1
∆>uH

n∆u (14)

where the matrix Hn is an empirical covariance matrix with elements i, j ∈ V \ u

Hn
ij =

1

n

n∑
k=1

σ
(k)
i σ

(k)
j . (15)

Proof. We start to prove a lower-bound on the function f (z) valid for all z ∈ R,

f (z) ≥ z2

2 + |z|
. (16)

To see this, define an auxiliary function g (z) as follows

g (z) : = (2 + |z|) f (z)− z2

= (2 + |z|)
(
e−z − 1 + z

)
− z2. (17)

We show that g (z) achieves its minimum at g (0) = 0. Observe that the first derivative of g (z)
vanishes at zero from both the negative and positive side

lim
z→0+

d

dz
g (z) = lim

z→0−

d

dz
g (z) = 0. (18)

Moreover for all z > 0 the second derivative of g (z) is non-negative

d2

dz2
g (z) = ze−z > 0. (19)

A similar result holds for z < 0

d2

dz2
g (z) = 4

(
e−z − 1

)
− ze−z > 0, (20)

proving that for all z, g (z) ≥ g (0) = 0.

Combining Eq. (16) with the straightforward inequalities∣∣∣∣∣∣
∑
i∈V \u

∆uiσ
(k)
u σ

(k)
i

∣∣∣∣∣∣ ≤ ‖∆u‖1 , (21)
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and

exp

(
−
∑
i∈∂u

θ∗uiσ
(k)
u σ

(k)
i

)
≥ exp (−βd) , (22)

leads us to the following lower-bound on the remainder of the first-order Taylor expansion of the ISO

δSn (∆u, θ
∗) ≥ e−βd

2 + ‖∆u‖1
1

n

n∑
k=1

 ∑
i∈V \u

∆uiσ
(k)
u σ

(k)
i

2

=
e−βd

2 + ‖∆u‖1
∆>uH

n∆u, (23)

where in the last line we used the trivial identity σ(k)
u · σ(k)

u = 1.

Lemma 6. Consider an Ising model with p spins, with maximum degree d and maximum coupling
intensity β. Let δ > 0, ε4 > 0 and n ≥ 2

δ2 ln p2

ε4
. Then with probability greater than 1− ε4, we have

for all i, j ∈ V \ u ∣∣Hn
ij −Hij

∣∣ ≤ δ, (24)
where the matrix H is the covariance matrix with elements i, j ∈ V \ u

Hij = E [σiσj ] . (25)

Proof. We recall that the matrix elements of the empirical covariance matrix read

Hn
ij =

1

n

n∑
k=1

σ
(k)
i σ

(k)
j . (26)

Since
∣∣∣σ(k)
i σ

(k)
j

∣∣∣ ≤ 1 using Hoeffding’s inequality, we have

P
[∣∣Hn

ij −Hij

∣∣ ≥ δ] ≤ 2 exp

(
−nδ

2

2

)
. (27)

As Hn
ij is symmetric we use the union bound over the elements i < j ∈ V \ u to get

P
[∣∣Hn

ij −Hij

∣∣ ≥ δ ∀i, j ∈ V \ u
]
≤ 1− p2 exp

(
−nδ

2

2

)
. (28)

Lemma 7. Consider an Ising model with p spins, with maximum degree d and maximum coupling
intensity β. For all ∆u ∈ Rp−1 the following bound holds

∆>uH∆u ≥
e−2βd

d+ 1
‖∆u‖22 . (29)

Proof. Our proof strategy here follows [1, Cor. 3.1]. Notice that the probability measure of the Ising
model is symmetric with respect to the sign flip, i.e. µ (σ1, . . . , σp) = µ (−σ1, . . . ,−σp). Thus any
spin has zero mean, which implies that for every ∆u ∈ Rp−1

E

 ∑
i∈V \u

∆uiσi

 = 0. (30)

This allows to reinterpret the left-hand side of Eq. (29) as a variance, using that σ2
u = 1,

∆>uH∆u =
∑

i,j∈V \u

∆uiE [σiσj ] ∆uj

= E


 ∑
i∈V \u

∆uiσi

2


= Var

 ∑
i∈V \u

∆uiσi

 . (31)
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Construct a subset A ⊂ V recursively as follows: (i) let i0 = argmaxj∈V \u ∆2
uj and define

A0 = {i0}, (ii) given At = {i0, . . . , it}, let Bt = {j ∈ V \At | ∂j ∩At = ∅} and it+1 =
argmaxj∈Bt\u ∆2

uj and set At+1 = At ∪ {it+1}, (iii) terminate when Bt \ u = ∅ and declare
A = At.

The set A possesses the following two main properties. First, every node i ∈ A does not have any
neighbors in A and, second,

(d+ 1)
∑
i∈A

∆2
ui ≥

∑
i∈V \u

∆2
ui. (32)

We apply the law of total variance to (31) by conditioning on the set of spins σAc with indexes
belonging to the complementary set Ac,

Var

 ∑
i∈V \u

∆uiσi

 ≥ E

Var

 ∑
i∈V \u

∆uiσi

∣∣∣∣∣∣σAc


=
∑
i∈A

∆2
uiE [Var [σi | σAc ]] , (33)

where in the last line one uses that the spins in A are conditionally independent given their neighbors
σAc . One concludes the proof by using relation (32) and the fact that the conditional variance of a
spin given its neighbors is bounded from below:

Var [σi | σAc ] = 1− tanh2

∑
j∈∂i

θ∗ijσj


≥ exp (−2βd) . (34)

Lemma 8. Consider an Ising model with p spins, with maximum degree d and maximum coupling
intensity β. For all ε4 > 0 and R > 0, when n ≥ 211d2 (d+ 1)

2
e4βd ln p2

ε4
the ISO satisfies, with

probability at least 1− ε4, the restricted strong convexity condition

δSn (∆u, θ
∗
u) ≥ e−3βd

4 (d+ 1)
(

1 + 2
√
dR
) ‖∆u‖22 , (35)

for all ∆u ∈ Rp−1 such that ‖∆u‖1 ≤ 4
√
d ‖∆u‖2 and ‖∆u‖2 ≤ R.

Proof. First we apply Lemma 5 to get the quadratic bound

δSn (∆u, θ
∗) ≥ e−βd

2 + ‖∆u‖1
∆>uH

n∆u

≥ e−βd

2
(

1 + 2
√
dR
)∆>uH

n∆u. (36)

Second we use Lemma 7 to bound the quadratic form

∆>uH
n∆u = ∆>uH∆u + ∆>u (Hn −H) ∆u

≥ e−2βd

d+ 1
‖∆u‖22 + ∆>u (Hn −H) ∆u. (37)

Third we conclude with Lemma 6, controlling randomness independently of ∆u. Choosing δ =
e−2βd

32d(d+1) , we get with probability at least 1− ε4 that

∆>u (Hn −H) ∆u ≥ −
e−2βd

32d (d+ 1)
‖∆u‖21

≥ − e−2βd

2 (d+ 1)
‖∆u‖22 , (38)

whenever n ≥ 2
δ2 ln p2

ε4
= 211d2 (d+ 1)

2
e4βd ln p2

ε4
.
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