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Abstract

For statistical learning in high dimension, sparse regularizations have proven useful
to boost both computational and statistical efficiency. In some contexts, it is natural
to handle more refined structures than pure sparsity, such as for instance group
sparsity. Sparse-Group Lasso has recently been introduced in the context of linear
regression to enforce sparsity both at the feature and at the group level. We propose
the first (provably) safe screening rules for Sparse-Group Lasso, i.e., rules that allow
to discard early in the solver features/groups that are inactive at optimal solution.
Thanks to efficient dual gap computations relying on the geometric properties of
ε-norm, safe screening rules for Sparse-Group Lasso lead to significant gains in
term of computing time for our coordinate descent implementation.

1 Introduction

Sparsity is a critical property for the success of regression methods, especially in high dimension.
Often, group (or block) sparsity is helpful when a known group structure needs to be enforced. This
is for instance the case in multi-task learning [1] or multinomial logistic regression [7, Chapter 3]. In
the multi-task setting, the group structure appears natural since one aims at jointly recovering signals
whose supports are shared. In this context, sparsity and group sparsity are generally obtained by
adding a regularization term to the data-fitting: `1 norm for sparsity and `1,2 norm for group sparsity.

Along with recent works on hierarchical regularization [15, 20] have focused on a specific case:
the Sparse-Group Lasso. This method is the solution of a (convex) optimization program with a
regularization term that is a convex combination of the two aforementioned norms, enforcing sparsity
and group sparsity at the same time.

With such advanced regularizations, the computational burden can be particularly heavy in high
dimension. Yet, it can be significantly reduced if one can exploit the known sparsity of the solution in
the optimization. Following the seminal paper on “safe screening rules” [11], many contributions
have investigated such strategies [24, 23, 5]. These so called safe screening rules compute some
tests on dual feasible points to eliminate primal variables whose coefficients are guaranteed to be
zero in the exact solution. Still, the computation of a dual feasible point can be challenging when
the regularization is more complex than `1 or `1,2 norms. This is the case for the Sparse-Group
Lasso as it is not straightforward to characterize if a dual point is feasible or not [23]. Here, we
propose an efficient computation of the associated dual norm. It is all the more crucial since the naive
implementation computes the Sparse-Group Lasso dual norm with a quadratic complexity w.r.t the
groups dimensions.

We propose here efficient safe screening rules for the Sparse-Group Lasso that combine sequential
rules (i.e., rules that perform screening thanks to solutions obtained for a previously processed tuning
parameter) and dynamic rules (i.e., rules that perform screening as the algorithm proceeds) in a
unified way. We elaborate on GAP safe rules, a strategy relying on dual gap computations introduced
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for the Lasso [12] and to more general learning tasks in [18]. Note that alternative (unsafe) screening
rules, for instance the “strong rules” [22], have been applied to the Lasso and its simple variants.

Our contributions are two fold here. First, we introduce the first safe screening rules for this problem,
other alleged safe rules [23] for Sparse-Group Lasso were in fact not safe, as explained in detail in
[18], and could lead to non-convergent implementation. Second, we link the Sparse-Group Lasso
penalties to the ε-norm in [8]. This allows to provide a new algorithm to efficiently compute the
required dual norms, adapting an algorithm introduced in [9]. We incorporate our proposed GAP Safe
rules in a block coordinate descent algorithm and show its practical efficiency in climate prediction
tasks. Another strategy leveraging dual gap computations and active sets has recently been proposed
under the name Blitz [16]. It could naturally benefit from our fast dual norm evaluations in this
context.

Notation For any integer d P N, we denote by rds the set t1, . . . , du. The standard Euclidean norm
is written ‖¨‖, the `1 norm ‖¨‖1, the `8 norm ‖¨‖8, and the transpose of a matrix Q is denoted by
QJ. We also denote ptq` “ maxp0, tq. Our observation vector is y P Rn and the design matrix
X “ rX1, . . . , Xps P Rnˆp has p features, stored column-wise. We consider problems where the
vector of parameters β “ pβ1, . . . , βpq

J admits a natural group structure. A group of features is a
subset g Ă rps and ng is its cardinality. The set of groups is denoted by G and we focus only on
non-overlapping groups that form a partition of rps. We denote by βg the vector in Rng which is the
restriction of β to the indexes in g. We write rβgsj the j-th coordinate of βg . We also use the notation
Xg P Rnˆng for the sub-matrix of X assembled from the columns with indexes j P g; similarly
rXgsj is the j-th column of rXgs.

For any norm Ω, BΩ refers to the corresponding unit ball, and B (resp. B8) stands for the Euclidean
(resp. `8) unit ball. The soft-thresholding operator (at level τ ě 0), Sτ , is defined for any x P Rd
by rSτ pxqsj “ signpxjqp|xj | ´ τq`, while the group soft-thresholding (at level τ ) is Sgp

τ pxq “
p1´ τ{‖x‖q`x. Denoting ΠC the projection on a closed convex set C, this yields Sτ “ Id´ΠτB8 .
The sub-differential of a convex function f : Rd Ñ R at x is defined by Bfpxq “ tz P Rd : @y P
Rd, fpxq ´ fpyq ě zJpx´ yqu. We recall that the sub-differential B‖¨‖1 of the `1 norm is signp¨q,

defined element-wise by @j P rds, signpxqj “

"

tsignpxjqu , if xj ‰ 0,

r´1, 1s, if xj “ 0.

Note that the sub-differential B‖¨‖ of the Euclidean norm is B‖¨‖pxq “
"

tx{‖x‖u , if x ‰ 0,

B, if x “ 0.

For any norm Ω on Rd, ΩD is the dual norm of Ω, and is defined for any x P Rd by ΩDpxq “
maxvPBΩ v

Jx, e.g., ‖¨‖D1 “ ‖¨‖8 and ‖¨‖D “ ‖¨‖. We only focus on the Sparse-Group Lasso
norm, so we assume that Ω “ Ωτ,w, where Ωτ,wpβq :“ τ‖β‖1 ` p1 ´ τq

ř

gPG wg‖βg‖, for
τ P r0, 1s, w “ pwgqgPG with wg ě 0 for all g P G. The case where wg “ 0 for some g P G together
with τ “ 0 is excluded (Ωτ,w is not a norm in such a case).

2 Sparse-Group Lasso regression

For λ ą 0 and τ P r0, 1s, the Sparse-Group Lasso estimator denoted by β̂pλ,Ωq is defined as a
minimizer of the primal objective Pλ,Ω defined by:

β̂pλ,Ωq P arg min
βPRp

1

2
‖y ´Xβ‖2 ` λΩpβq :“ Pλ,Ωpβq. (1)

A dual formulation (see [6, Th. 3.3.5]) of (1) is given by

θ̂pλ,Ωq “ arg max
θP∆X,Ω

1

2
‖y‖2 ´ λ2

2

∥∥∥θ ´ y

λ

∥∥∥2

:“ Dλpθq, (2)

where ∆X,Ω “ tθ P Rn : ΩDpXJθq ď 1u. The parameter λ ą 0 controls the trade-off between
data-fitting and sparsity, and τ controls the trade-off between features sparsity and group sparsity. In
particular one recovers the Lasso [21] if τ “ 1, and the Group-Lasso [25] if τ “ 0.
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For the primal problem, Fermat’s rule (cf. Appendix for details) reads:

λθ̂pλ,Ωq “ y ´Xβ̂pλ,Ωq (link-equation) , (3)

XJθ̂pλ,Ωq P BΩpβ̂pλ,Ωqq (sub-differential inclusion). (4)

Remark 1 (Dual uniqueness). The dual solution θ̂pλ,Ωq is unique, while the primal solution β̂pλ,Ωq

might not be. Indeed, the dual formulation (2) is equivalent to θ̂pλ,Ωq “ arg minθP∆X,Ω
‖θ ´ y{λ‖,

so θ̂pλ,Ωq “ Π∆X,Ω
py{λq is the projection of y{λ over the dual feasible set ∆X,Ω.

Remark 2 (Critical parameter: λmax). There is a critical value λmax such that 0 is a primal solution
of (1) for all λ ě λmax. Indeed, the Fermat’s rule states 0 P arg minβPRp‖y´Xβ‖2{2`λΩpβqðñ

0 P tXJyu ` λBΩp0qðñΩDpXJyq ď λ. Hence, the critical parameter is given by: λmax :“
ΩDpXJyq. Note that evaluating λmax highly relies on the ability to (efficiently) compute the dual
norm ΩD.

3 GAP safe rule for the Sparse-Group Lasso

The safe rule we propose here is an extension to the Sparse-Group Lasso of the GAP safe rules
introduced for Lasso and Group-Lasso [12, 18]. For the Sparse-Group Lasso, the geometry of the
dual feasible set ∆X,Ω is more complex (an illustration is given in Fig. 1). Hence, computing a dual
feasible point is more intricate. As seen in Section 3.2, the computation of a dual feasible point
strongly relies on the ability to evaluate the dual norm ΩD. This crucial evaluation is discussed in
Section 4. We first detail how GAP safe screening rules can be obtained for the Sparse-Group Lasso.

3.1 Description of the screening rules

Safe screening rules exploit the known sparsity of the solutions of problems such as (1). They discard
inactive features/groups whose coefficients are guaranteed to be zero for optimal solutions. Then, a
significant reduction in computing time can be obtained ignoring “irrelevant” features/groups. The
Sparse-Group Lasso benefits from two levels of screening: the safe rules can detect both group-wise
zeros in the vector β̂pλ,Ωq and coordinate-wise zeros in the remaining groups.

To obtain useful screening rules one needs a safe region, i.e., a set containing the optimal dual
solution θ̂pλ,Ωq. Following [11], when we choose a ball Bpθc, rq with radius r and centered at θc as a
safe region, we call it a safe sphere. A safe sphere is all the more useful that r is small and θc close to
θ̂pλ,Ωq. The safe rules for the Sparse-Group Lasso work as follows: for any group g in G and any safe
sphere Bpθc, rq

Group level safe screening rule: max
θPBpθc,rq

∥∥Sτ pXJg θq∥∥ ă p1´ τqwg ñ β̂pλ,Ωqg “ 0, (5)

Feature level safe screening rule: @j P g, max
θPBpθc,rq

|XJj θ| ă τ ñ β̂
pλ,Ωq
j “ 0. (6)

This means that provided one the last two test is true, the corresponding group or feature can be
(safely) discarded. For screening variables, we rely on the following upper-bounds:
Proposition 1. For all group g P G and j P g,

max
θPBpθc,rq

|XJj θ| ď |X
J
j θc| ` r ‖Xj‖ . (7)

and

max
θPBpθc,rq

∥∥Sτ pXJg θq∥∥ ď Tg :“

#∥∥Sτ pXJg θcq∥∥` r ‖Xg‖ if
∥∥XJg θc∥∥8 ą τ,

p
∥∥XJg θc∥∥8 ` r ‖Xg‖´ τq` otherwise.

(8)

Assume now that one has found a safe sphere Bpθc, rq (their creation is deferred to Section 3.2), then
the safe screening rules given by (5) and (6) read:
Theorem 1 (Safe rules for the Sparse-Group Lasso). Using Tg defined in (8), we can state the
following safe screening rules:

Group level safe screening: @g P G, if Tg ă p1´ τqwg, then β̂pλ,Ωqg “ 0,

Feature level safe screening: @g P G,@j P g, if |XJj θc| ` r ‖Xj‖ ă τ, then β̂pλ,Ωqj “ 0.
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(a) Lasso dual ball BΩD for
ΩDpθq “ ‖θ‖8.

(b) Group-Lasso dual ball BΩD for
ΩDpθq “ maxp

a

θ2
1 ` θ

2
2, |θ3|q.

(c) Sparse-Group Lasso dual ball
BΩD “

 

θ : @g P G, ‖Sτ pθgq‖ ď
p1´ τqwg

(

.

Figure 1: Lasso, Group-Lasso and Sparse-Group Lasso dual unit balls BΩD “ tθ : ΩDpθq ď 1u, for
the case of G “ tt1, 2u, t3uu (i.e., g1 “ t1, 2u, g2 “ t3u), n “ p “ 3, wg1

“ wg2
“ 1 and τ “ 1{2.

The screening rules can detect which coordinates or group of coordinates can be safely set to zero.
This allows to remove the corresponding features from the design matrix X during the optimization
process. While standard algorithms solve (1) scanning all variables, only active ones, i.e., non
screened-out variables (using the terminology from Section 3.3) need to be considered with safe
screening strategies. This leads to significant computational speed-ups, especially with a coordinate
descent algorithm for which it is natural to ignore features (see Algorithm 2, in Appendix G).

3.2 GAP safe sphere

We now show how to compute the safe sphere radius and center using the duality gap.

3.2.1 Computation of the radius

With a dual feasible point θ P ∆X,Ω and a primal vector β P Rp at hand, let us construct a safe sphere
centered on θ, with radius obtained thanks to dual gap computations.

Theorem 2 (Safe radius). For any θ P ∆X,Ω and β P Rp, one has θ̂pλ,Ωq P B pθ, rλ,Ωpβ, θqq , for

rλ,Ωpβ, θq “

c

2pPλ,Ωpβq ´Dλpθqq

λ2
,

i.e., the aforementioned ball is a safe region for the Sparse-Group Lasso problem.

Proof. The result holds thanks to strong concavity of the dual objective, cf. Appendix C.

3.2.2 Computation of the center

In GAP safe screening rules, the screening test relies crucially on the ability to compute a vector
that belongs to the dual feasible set ∆X,Ω. The geometry of this set is illustrated in Figure 1.
Following [5], we leverage the primal/dual link-equation (3) to construct a dual point based on a
current approximation β of β̂pλ,Ωq. When β “ βλ

1

is obtained as an approximation for a previous
value of λ1 ‰ λ we call such a strategy sequential screening. When β “ βk is the primal value at
iteration k obtained by an iterative algorithm, we call this dynamical screening. Starting from a
residual ρ “ y ´Xβ, one can create a dual feasible point by choosing 1:

θ “
ρ

maxpλ,ΩDpXJρqq
. (9)

We refer to the sets Bpθ, rλ,Ωpβ, θqq as GAP safe spheres. Note that the generalization to any smooth
data fitting term would be straightforward see [18].s

Remark 3. Recall that λ ě λmax yields β̂pλ,Ωq “ 0, in which case ρ :“ y ´Xβ̂pλ,Ωq “ y is the
optimal residual and y{λmax is the dual solution. Thus, as for getting λmax “ ΩDpXJyq, the scaling
computation in (9) requires a dual norm evaluation.

1We have used a simpler scaling w.r.t. [4] choice’s (without noticing much difference in practice): θ “ sρ

where s “ min
”

max
´

ρJy
λ‖ρ‖2 ,

´1
ΩDpXJρq

¯

, 1
ΩDpXJρq

ı

.
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Algorithm 1 Computation of Λpx, α,Rq.

Input:
x “ px1, . . . , xdq

J
P Rd, α P r0, 1s, R ě 0

Output: Λpx, α,Rq

if α “ 0 and R “ 0 then
Λpx, α,Rq “ 8

else if α “ 0 and R ‰ 0 then
Λpx, α,Rq “ ‖x‖{R

else if R “ 0 then
Λpx, α,Rq “ ‖x‖8{α

else
Get I :“

!

i P rds : |xi| ą
α‖x‖8
α`R

)

nI :“ CardpIq
Sort xp1q ě xp2q ě ¨ ¨ ¨ ě xpnI q

S0 “ xp0q, S
p2q
0 “ x2

p0q, a0 “ 0

for k P rnI ´ 1s do
Sk “ Sk´1 ` xpkq; S

p2q
k “ S

p2q
k´1 ` x

2
pkq

ak`1 “
S
p2q
k

x2
pk`1q

´ 2 Sk
xpk`1q

` k ` 1

if R
2

α2 P rak, ak`1r then
j0 “ k ` 1
break

if α2j0 ´R
2
“ 0 then

Λpx, α,Rq “
S2
j0

2αSj0
else

Λpx, α,Rq “
αSj0´

c

α2S2
j0
´S

p2q
j0
pα2j0´R2q

α2j0´R2

3.3 Convergence of the active set

The next proposition states that the sequence of dual feasible points obtained from (9) converges to the
dual solution θ̂pλ,Ωq if pβkqkPN converges to an optimal primal solution β̂pλ,Ωq (proof in Appendix).
It guarantees that the GAP safe spheres Bpθk, rλ,Ωpβk, θkqq are converging safe regions in the sense
introduced by [12], since by strong duality limkÑ8 rλ,Ωpβk, θkq “ 0.

Proposition 2. If limkÑ8 βk “ β̂pλ,Ωq, then limkÑ8 θk “ θ̂pλ,Ωq.

For any safe region R, i.e., a set containing θ̂pλ,Ωq, we define two levels of active sets, one for the
group level and one for the feature level:

AgppRq :“ tg P G, max
θPR

∥∥Sτ pXJg θq∥∥ ě p1´ τqwgu, AftpRq :“
ď

gPAgppRq

tj P g : max
θPR

|XJj θ| ě τu.

If one considers sequence of converging regions, then the next proposition (whose proof in Appendix)
states that we can identify in finite time the optimal active sets defined as follows:

Egp :“
!

g P G :
∥∥∥Sτ pXJg θ̂pλ,Ωqq∥∥∥ “ p1´ τqwg) , Eft :“

ď

gPEgp

!

j P g : |XJj θ̂
pλ,Ωq| ě τ

)

.

Proposition 3. Let pRkqkPN be a sequence of safe regions whose diameters converge to 0. Then,
lim
kÑ8

AgppRkq “ Egp and lim
kÑ8

AftpRkq “ Eft.

4 Properties of the Sparse-Group Lasso

To apply our safe rule, we need to be able to evaluate the dual norm ΩD efficiently. We describe such
as step hereafter along with some useful properties of the norm Ω. Such evaluations are performed
multiple times during the algorithm, motivating the derivation of an efficient algorithm, as presented
in Algorithm 1.

4.1 Connections with ε-norms

Here, we establish a link between the Sparse-Group Lasso norm Ω and the ε-norm (denoted ‖¨‖ε)
introduced in [8]. For any ε P r0, 1s and x P Rd, ‖x‖ε is defined as the unique nonnegative solution
ν of the equation

řd
i“1p|xi| ´ p1´ εqνq

2
` “ pενq

2, (‖x‖0 :“ ‖x‖8). Using soft-thresholding, this
is equivalent to solve in ν the equation

řd
i“1 Sp1´εqνpxiq

2
“ ‖Sp1´εqνpxq‖2 “ pενq2. Moreover, the

dual norm of the ε-norm is given by2: ‖y‖Dε “ ε‖y‖D ` p1´ εq‖y‖D8 “ ε‖y‖` p1´ εq‖y‖1. Now
we can express the Sparse-Group Lasso norm Ω in term of the dual ε-norm and derive some basic
properties.

2see [9, Eq. (42)] or Appendix
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Proposition 4. For all groups g in G, let us introduce εg :“
p1´τqwg

τ`p1´τqwg
. Then, the Sparse-Group

Lasso norm satisfies the following properties: for any β and ξ in Rp

Ωpβq “
ÿ

gPG
pτ ` p1´ τqwgq ‖βg‖Dεg , and ΩDpξq “ max

gPG

‖ξg‖εg
τ ` p1´ τqwg

, (10)

BΩD “
 

ξ P Rp : @g P G, ‖Sτ pξgq‖ ď p1´ τqwg
(

. (11)

The sub-differential at β reads BΩpβq “ tz P Rp : @g P G, zg P τB‖¨‖1pβgq ` p1´ τqwgB‖¨‖pβgqu .

We obtain from the characterization of the unit dual ball (11) that for the Sparse-Group Lasso, any
dual feasible point θ P ∆X,Ω verifies: @g P G, XJg θ P p1´ τqwgB ` τB8.

From the dual norm formulation (10), a vector θ P Rn is feasible if and only if ΩDpXJθq ď 1,
i.e., @g P G, ‖XJg θ‖εg ď τ ` p1´ τqwg. Hence we deduce from (11) a new characterization of the
dual feasible set: ∆X,Ω “

 

θ P Rn : @g P G, ‖XJg θ‖εg ď τ ` p1´ τqwg
(

.

4.2 Efficient computation of the dual norm

The following proposition shows how to compute the dual norm of the Sparse-Group Lasso (and the
ε-norm). This is turned into an efficient procedure in Algorithm 1 (see the Appendix for details).

Proposition 5. For α P r0, 1s, R ě 0 and x P Rd, the equation
řd
i“1 Sναpxiq2 “ pνRq2 has

a unique solution ν :“ Λpx, α,Rq P R`, that can be computed in Opd log dq operations in the
worst case. With nI “ Card ti P rds : |xi| ą α‖x‖8{pα`Rqu, the complexity of Algorithm 1 is
nI ` nI logpnIq, which is comparable to the ambient dimension d.

Thanks to Remark 2, we can explicit the critical parameter λmax for the Sparse-Group Lasso that is

λmax “ max
gPG

ΛpXJg y, 1´ εg, εgq

τ ` p1´ τqwg
“ ΩDpXJyq, (12)

and get a dual feasible point (9), since ΩDpXJρq “ maxgPG ΛpXJg ρ, 1´ εg, εgq{pτ ` p1´ τqwgq.

5 Implementation

In this section we provide details on how to solve the Sparse-Group Lasso primal problem, and how
we apply the GAP safe screening rules. We focus on the block coordinate iterative soft-thresholding
algorithm (ISTA-BC); see [19]. This algorithm requires a block-wise Lipschitz gradient condition
on the data fitting term fpβq “ ‖y ´ Xβ‖2{2. For our problem (1), one can show that for all
group g in G, Lg “ ‖Xg‖22 (where ‖¨‖2 is the spectral norm of a matrix) is a suitable block-wise
Lipschitz constant. We define the block coordinate descent algorithm according to the Majorization-
Minimization principle: at each iteration l, we choose (e.g., cyclically) a group g and the next
iterate βl`1 is defined such that βl`1

g1 “ βlg1 if g1 ‰ g and otherwise βl`1
g “ arg minβgPRng ‖βg ´

`

βlg ´∇gfpβlq{Lg
˘

‖2{2`
`

τ‖βg‖1`p1´ τqwg‖βg‖
˘

λ{Lg , where we denote for all g in G, αg :“

λ{Lg. This can be simplified to βl`1
g “ Sgp

p1´τqωgαg

`

Sταg
`

βlg ´∇gfpβlq{Lg
˘˘

. The expensive
computation of the dual gap is not performed at each pass over the data, but only every f ce pass (in
practice f ce “ 10 in all our experiments). A pseudo code is given in Appendix G.

6 Experiments

In this section we present our experiments and illustrate the numerical benefit of screening rules for
the Sparse-Group Lasso.

6.1 Experimental settings and methods compared

We have run our ISTA-BC algorithm 3 to obtain the Sparse-Group Lasso estimator for a non-increasing
sequence of T regularization parameters pλtqtPrT´1s defined as follows: λt :“ λmax10´δpt´1q{pT´1q.

3The source code can be found in https://github.com/EugeneNdiaye/GAPSAFE_SGL.
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Figure 2: Experiments on a synthetic dataset (ρ “ 0.5, γ1 “ 10, γ2 “ 4, τ “ 0.2).
(a) Proportion of active variables, i.e., variables not safely eliminated, as a function of parameters pλtq
and the number of iterations K. More red, means more variables eliminated and better screening. (b)
Time to reach convergence w.r.t the accuracy on the duality gap, using various screening strategies.

By default, we choose δ “ 3 and T “ 100, following the standard practice when running cross-
validation using sparse models (see R glmnet package [13]). The weights are always chosen as
wg “

?
ng (as in [20]).

We also provide a natural extension of the previous safe rules [11, 24, 5] to the Sparse-Group
Lasso for comparisons (please refer to Appendix D for more details). The static safe region [11]
is given by B py{λ, ‖y{λmax ´ y{λ‖q. The corresponding dynamic safe region [5]) is given by
B py{λ, ‖θk ´ y{λ‖q, where pθkqkPN is a sequence of dual feasible points obtained by dual scaling;
cf. Equation (9). The DST3, is an improvement of the preceding safe region, see [24, 5], that we
adapted to the Sparse-Group Lasso. The GAP safe sequential rules corresponds to using only
GAP Safe spheres whose centers are the (last) dual point output by the solver for a former value
of λ in the path. The GAP safe rules corresponds to performing our strategy both sequentially and
dynamically. Presenting the sequential rule allows to measure the benefits due to sequential rules and
to the dynamic rules.

We now demonstrate the efficiency of our method in both synthetic (Fig. (2)) and real datasets
(Fig. 6.2). For comparison, we report computation times to reach convergence up to a certain
tolerance on the duality gap for all the safe rules considered.

Synthetic dataset: We use a common framework [22, 23] based on the model y “ Xβ ` 0.01ε
where ε „ N p0, Idnq, X P Rnˆp follows a multivariate normal distribution such that @pi, jq P
rps2, corrpXi, Xjq “ ρ|i´j|. We fix n “ 100 and break randomly p “ 10000 in 1000 groups of
size 10 and select γ1 groups to be active and the others are set to zero. In each selected groups, γ2

coordinates are drawn with rβgsj “ signpξq ˆ U for U is uniform in r0.5, 10sq, ξ uniform in r´1, 1s.

Real dataset: NCEP/NCAR Reanalysis 1 [17] The dataset contains monthly means of climate data
measurements spread across the globe in a grid of 2.5˝ ˆ 2.5˝ resolutions (longitude and latitude
144ˆ73) from 1948{1{1 to 2015{10{31 . Each grid point constitutes a group of 7 predictive variables
(Air Temperature, Precipitable water, Relative humidity, Pressure, Sea Level Pressure, Horizontal
Wind Speed and Vertical Wind Speed) whose concatenation across time constitutes our design matrix
X P R814ˆ73577. Such data have therefore a natural group structure.

In our experiments, we considered as target variable y P R814, the values of Air Temperature in a
neighborhood of Dakar. Seasonality and trend are first removed, as usually done in climate analysis
for bias reduction in the regression estimates. Similar data has been used in [10], showing that the
Sparse-Group Lasso estimator is well suited for prediction in climatology. Indeed, thanks to the
sparsity structure, the estimates delineate via their support some predictive regions at the group level,
as well as predictive features via coordinate-wise screening.

We choose τ in the set t0, 0.1, . . . , 0.9, 1u by splitting in 50% the observations and run a training-test
validation procedure. For each value of τ , we require a duality gap of 10´8 on the training part

7



a)

b)

Figure 3: Experiments on NCEP/NCAR Reanalysis
1 pn “ 814, p “ 73577q: (a) Prediction error for the
Sparse-Group Lasso path with 100 values of λ and
11 values of τ (best : τ‹ “ 0.4). (b) Time to reach
convergence controlled by duality gap (for whole path
pλtqtPrT s with δ “ 2.5 and τ‹ “ 0.4). (c) Active groups
to predict Air Temperature in a neighborhood of Dakar
(in blue). Cross validation was run over 100 values for
λ’s and 11 for τ ’s. At each location, the highest absolute
value among the seven coefficients is displayed.

and pick the best one in term of prediction accuracy on the test part. The result is displayed in
Figure 6.2.(a). We fixed δ “ 2.5 for the computational time benchmark in Figure 6.2.(b)

6.2 Performance of the screening rules

In all our experiments, we observe that our proposed GAP Safe rule outperforms the other rules
in term of computation time. On Figure 2.(c), we can see that we need 65s to reach convergence
whereas others rules need up to 212s at a precision of 10´8. A similar performance is observed on
the real dataset (Figure 6.2) where we obtain up to a 5x speed up over the other rules. The key reason
behind this performance gain is the convergence of the GAP Safe regions toward the dual optimal
point as well as the efficient strategy to compute the screening rule. As shown in the results presented
on Figure 2, our method still manages to screen out variables when λ is small. It corresponds to low
regularizations which lead to less sparse solutions but need to be explored during cross-validation.

In the climate experiments, the support map in Figure 6.2.(c) shows that the most important coeffi-
cients are distributed in the vicinity of the target region (in agreement with our intuition). Nevertheless,
some active variables with small coefficients remain and cannot be screened out.

Note that we do not compare our method to the TLFre [23], since this sequential rule requires the
exact knowledge of the dual optimal solution which is not available in practice. As a consequence,
one may discard active variables which can prevent the algorithm from converging as shown in [18].

7 Conclusion

The recent GAP safe rules introduced have shown great improvements, for a wide range of regularized
regression, in the reduction of computing time, especially in high dimension. To apply such GAP
safe rules to the Sparse-Group Lasso, we have proposed a new description of the dual feasible set
by establishing connections between the Sparse-Group Lasso norm and ε-norms. This geometrical
connection has helped providing an efficient algorithm to compute the dual norm and dual feasible
points, bottlenecks for applying the GAP Safe rules. Extending GAP safe rules on general hierarchical
regularizations, is a possible direction for future research.

Acknowledgments: this work was supported by the ANR THALAMEEG ANR-14-NEUC-0002-
01, the NIH R01 MH106174, by ERC Starting Grant SLAB ERC-YStG-676943 and by the Chair
Machine Learning for Big Data at Télécom ParisTech.
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A Convex optimization reminder

We first recall the necessary tools for building screening rules, namely the Fermat’s first order
optimality condition (also called Fermat’s rule) and the characterization of the sub-differential of a
norm by means of its dual norm.
Proposition 6 (Fermat’s rule). ([3, Prop. 26.1]) For any convex function f : Rd Ñ R,

x‹ P arg min
xPRd

fpxq ðñ 0 P Bfpx‹q. (13)

Proposition 7. ([2, Prop. 1.2]) The sub-differential of the norm Ω at x, denoted BΩpxq, is given by
"

tz P Rd : ΩDpzq ď 1u “ BΩD if x “ 0,

tz P Rd : ΩDpzq “ 1 and zJx “ Ωpxqu otherwise.
(14)

B Additional convexity and optimization tools

In what follows we will use the dot product notation for any x, x1 P Rd we write xx, x1y “ xJx1.

We denote by ιC the indicator function of a set C defined as

ιC : Rd Ñ R, ιCpxq “

"

0, if x P C,
`8, otherwise.

(15)

We denote by f˚ : Rd Ñ R the Fenchel conjugate of f defined for any z P Rd by f˚pzq “
supwPRd w

Jz ´ fpwq.
Proposition 8. ([2, Prop. 1.4]) The Fenchel conjugate of the norm Ω is given by

Ω˚pξq “ sup
wPRd

rξJw ´ Ωpwqs “ ιBΩD
pξq. (16)

C Proofs

We first remind the simple properties underlying the concept of safe screening rules [11] in our
Sparse-Group Lasso context.
Proposition 0. The two levels of screening rules for the Sparse-Group Lasso are:
Feature level screening:

@j P g, |XJj θ̂
pλ,Ωq| ă τ ùñ β̂

pλ,Ωq
j “ 0.

Group level screening:

@g P G,
∥∥∥Sτ pXJg θ̂pλ,Ωqq∥∥∥ ă p1´ τqwg ùñ β̂pλ,Ωqg “ 0.

Remark 4. The first rule is has a strict inequality, but can be relaxed to a non-strict one if τ ‰ 1.

Proof. Let us consider β̂pλ,Ωqg ‰ 0, g P G. Then combining the subdifferential inclusion (4), the
subdifferential of the `2-norm and the decomposition of any dual feasible point from Proposition 4,
we obtain :

XJg θ̂
pλ,Ωq “ τvg ` p1´ τqwg

β̂
pλ,Ωq
g∥∥∥β̂pλ,Ωq∥∥∥ where v P B ‖¨‖1 pβ̂

pλ,Ωqq,

XJg θ̂
pλ,Ωq “ ΠτB8pX

J
g θ̂
pλ,Ωqq ` Sτ pXJg θ̂pλ,Ωqq.

So we can deduce that Sτ pXJg θ̂pλ,Ωqq P p1 ´ τqwg

"

β̂pλ,Ωqg

‖β̂pλ,Ωqg ‖

*

. Since θ̂pλ,Ωq is feasible then

‖Sτ pXJg θ̂pλ,Ωqq‖ ă p1 ´ τqwg is equivalent to ‖Sτ pXJg θ̂pλ,Ωqq‖ ‰ p1 ´ τqwg which implies, by
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(a) Bpξc, r̃q X τB8 ‰ H; ξc P
τ B̊8

(b) Bpξc, r̃q Ă τB8 (c) Bpξc, r̃q X τB8 “ H; ξc R
τ B̊8

contrapositive, that β̂pλ,Ωqg “ 0. Hence we obtain the group level safe rule. Furthermore, from the
subdifferential of the `1-norm, we have:

@j P g, XJj θ̂
pλ,Ωq P

$

&

%

p1´ τqwg

"

β̂
pλ,Ωq
j

‖β̂pλ,Ωq‖

*

` τ
!

signpβ̂
pλ,Ωq
j q

)

, if β̂pλ,Ωqj ‰ 0,

r´τ, τ s, if β̂pλ,Ωqj “ 0.

Hence, if β̂pλ,Ωqj ‰ 0 thenXJj θ̂
pλ,Ωq “ signpβ̂

pλ,Ωq
j q

„

p1´ τqwg
|β̂
pλ,Ωq
j |

‖β̂pλ,Ωq‖
` τ



and so |XJj θ̂
pλ,Ωq| ě

τ . By contrapositive, we obtain the feature level safe rule.

Proposition 1. For all group g P G and j P g,

max
θPBpθc,rq

|XJj θ| ď |X
J
j θc| ` r ‖Xj‖ . (17)

maxθPBpθc,rq‖Sτ pXJg θq‖ is upper bounded by

Tg “

#∥∥Sτ pXJg θcq∥∥` r ‖Xg‖ if
∥∥XJg θc∥∥8 ą τ,

p
∥∥XJg θc∥∥8 ` r ‖Xg‖´ τq` otherwise.

(18)

Proof. |XJj θ| ď |rX
J
g pθ ´ θcqsj | ` |X

J
j θc| ď r‖Xj‖` |XJj θc| as soon as θ P Bpθc, rq.

Since θ P Bpθc, rq implies that XJg θ P BpXJg θc, r‖Xg‖q, we have maxθPBpθc,rq‖Sτ pXJg θq‖ ď
maxξPBpξc,r̃q‖Sτ pξq‖ where ξc “ XJg θc and r̃ “ r‖Xj‖. From now, we just have to show how to
compute maxξPBpξc,r̃q‖Sτ pξq‖.

• In the case where ξc P ˚τB8, if ‖ξc‖8` r̃ ď τ p i.e., Bpξc, r̃q Ă τB8q, we have ΠτB8pξq “
ξ and thus, maxξPBpξc,r̃q‖Sτ pξq‖ “ maxξPBpξc,r̃q‖ξ ´ΠτB8pξq‖ “ 0.

• Otherwise if ξc P ˚τB8 and ‖ξc‖8 ` r̃ ą τ , for any vector ξ P BBpξc, r̃q X pτB8qc and any
vector ξ̃ P BτB8 X rξ, ξcs, ‖ξ ´ΠτB8pξq‖ ď ‖ξ ´ ξ̃‖ “ r̃ ´ ‖ξ̃ ´ ξc‖. Hence

max
ξPBpξc,r̃q

‖ξ ´ΠτB8pξq‖ ď max
ξPBBpξc,r̃qXpτB8qc

ξ̃PBτB8Xrξ,ξcs

r̃ ´
∥∥∥ξ̃ ´ ξc∥∥∥

ď r̃ ´ min
ξPBτB8

‖ξ ´ ξc‖

“ r̃ ´ τ ` ‖ξc‖8 .

This upper bound is attained. Indeed, maxθPBpξc,r̃q‖ξ´ΠτB8pξq‖ “ r̃´‖ΠτB8pξ̂q´ξc‖ “
r̃ ´ τ ` ‖ξc‖8 where ξ̂ is a vector in BBpξc, r̃q such that ΠτB8pξ̂q “ ξc ` ej‹pτ ´ ‖ξc‖8q
and j‹ P arg maxjPrps |pξcqj |.
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• If ξc R ˚τB8, since the projection operator on a convex set is a contraction, we have

@ξ P BBpξc, r̃q, ‖ξ ´ΠτB8pξq‖ ď ‖ξ ´ΠτB8pξcq‖
ď ‖ξc ´ΠτB8pξcq‖` ‖ξ ´ ξc‖
“ ‖ξc ´ΠτB8pξcq‖` r̃.

Moreover, it is straightforward to see that the vector ξ̃ :“ γ̃ξc ` p1´ γ̃qΠτB8pξcq where
γ̃ “ 1 ` r̃

‖ξc‖`‖ΠτB8 pξcq‖
belongs to BBpξc, r̃q; it verifies ΠτB8pξcq “ ΠτB8pξ̃q and it

attains this bound.

Theorem 2 (Safe radius). For any θ P ∆X,Ω and any β P Rp, one has θ̂pλ,Ωq P B pθ, rλ,Ωpβ, θqq ,
for

rλ,Ωpβ, θq “

c

2pPλ,Ωpβq ´Dλpθqq

λ2
,

i.e., the aforementioned ball is a safe region for the Sparse-Group Lasso problem.

Proof. By weak duality, @β P Rp, Dλpθ̂
pλ,Ωqq ď Pλ,Ωpβq. Then, note that the dual objective

function (1) is λ2-strongly concave. This implies:

@pθ, θ1q P ∆X,Ω ˆ∆X,Ω, Dλpθq ď Dλpθ
1q `∇Dλpθ

1qJpθ ´ θ1q ´
λ2

2

∥∥θ ´ θ1∥∥2
.

Moreover, since θ̂pλ,Ωq maximizes the concave function Dλ, the following inequality holds true:

@ θ P ∆X,Ω, ∇Dλpθ̂
pλ,ΩqqJpθ ´ θ̂pλ,Ωqq ď 0.

Hence, we have for all θ P ∆X,Ω and β P Rp:

λ2

2

∥∥∥θ ´ θ̂pλ,Ωq∥∥∥2

ď Dλpθ̂
pλ,Ωqq ´Dλpθq

ď Pλ,Ωpβq ´Dλpθq.

Proposition 2. If limkÑ8 βk “ β̂pλ,Ωq, then limkÑ8 θk “ θ̂pλ,Ωq.

Proof. Let αk “ maxpλ,ΩDτ,wpX
Jρkqq and recall that ρk “ y ´Xβk. We have :∥∥∥θk ´ θ̂pλ,Ωq∥∥∥ “ ∥∥∥∥ 1

αk
py ´Xβkq ´

1

λ
py ´Xβ̂pλ,Ωqq

∥∥∥∥
“

∥∥∥∥∥
ˆ

1

αk
´

1

λ

˙

py ´Xβkq ´
pXβ̂pλ,Ωq ´Xβkq

λ

∥∥∥∥∥
ď

ˇ

ˇ

ˇ

ˇ

1

αk
´

1

λ

ˇ

ˇ

ˇ

ˇ

‖y ´Xβk‖`

∥∥∥∥∥Xβ̂pλ,Ωq ´Xβkλ

∥∥∥∥∥ .
If βk Ñ β̂pλ,Ωq, then αk Ñ maxpλ,ΩDτ,wpX

Jpy ´Xβ̂pλ,Ωqqq “ maxpλ, λΩDτ,wpX
Jθ̂pλ,Ωqqq “ λ

since y ´ Xβ̂pλ,Ωq “ λθ̂pλ,Ωq thanks to the link-equation (3) and since θ̂pλ,Ωq is feasible
i.e., ΩDτ,wpX

Jθ̂pλ,Ωqq ď 1. Hence, both terms in the previous inequality converge to zero.

Proposition 3. Let pRkqkPN be a sequence of safe regions whose diameters converge to 0. Then,
lim
kÑ8

AgppRkq “ Egp and lim
kÑ8

AftpRkq “ Eft.

Proof. We proceed by double inclusion. First let us prove that Dk0 s.t. @k ě k0,AgppRkq Ă Egp.
Indeed, since the diameter of Rk converges to zero, for any ε ą 0 there exist k0 P N,@k ě
k0,@θ P Rk, ‖θ ´ θ̂pλ,Ωq‖ ď ε. The triangle inequality implies that @g R Egp, ‖Sτ pXJg θq‖ ď
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‖Sτ pXJg θq´Sτ pXJg θ̂pλ,Ωqq‖`‖Sτ pXJg θ̂pλ,Ωqq‖. Since the soft-thresholding operator is 1-Lipschitz,
we have:∥∥Sτ pXJg θq∥∥ ď ∥∥∥Xgpθ ´ θ̂

pλ,Ωqq

∥∥∥` ∥∥∥Sτ pXJg θ̂pλ,Ωqq∥∥∥ ď ε ‖Xg‖`
∥∥∥Sτ pXJg θ̂pλ,Ωqq∥∥∥ ,

as soon as k ě k0. Moreover, @g R Egp,∥∥Sτ pXJg θq∥∥ ď max
gREgp

∥∥Sτ pXJg θq∥∥ ď εmax
gREgp

‖Xg‖`max
gREgp

∥∥∥Sτ pXJg θ̂pλ,Ωqq∥∥∥ .
It suffices to choose ε such that

εmax
gREgp
‖Xg‖`max

gREgp

∥∥∥Sτ pXJg θ̂pλ,Ωqq∥∥∥ ă p1´ τqwg,
that is to say ε ă

p1´τqwg´maxgREgp‖Sτ pX
J
g θ̂
pλ,Ωq

q‖
maxgREgp‖Xg‖

, to remove the group g. For any k ě k0, Ecgp “

tg P G : ‖Sτ pXJg θ̂pλqq‖ ă p1´ τqwgu Ă AgppRkqc, the set of variables removed by our screening
rule. This proves the first inclusion.

Now we show that @k P N,AgppRkq Ą Egp. Indeed, for all g‹ P Egp, ‖Sτ pXT
g‹ θ̂

pλ,Ωqq‖ “ p1´τqwg‹ .
Since for all k in N, θ̂pλ,Ωq P Rk then max

θPRk

‖Sτ pXJg θq‖ ě ‖Sτ pXT
g‹ θ̂

pλ,Ωqq‖ “ p1 ´ τqwg‹ hence

the second inclusion holds.

We have shown that @k ě k0,AgppRkq “ Egp and soAftpRkq Ă
Ť

gPEgp
tj P g : maxθPRk

|XJj θ| ě

τu. Moreover, the same reasoning yields @g P G, tj P g : maxθPRk
|XJj θ| ě τu Ă tj P g :

|XJj θ̂
pλ,Ωq| ě τu. Hence @k ě k0,AftpRkq Ă Aft. The reciprocal inclusion is straightforward.

Proposition 4. . For all group g in G, let εg :“
p1´τqwg

τ`p1´τqwg
then the Sparse-Group Lasso norm

satisfies the following properties: for any vectors β and ξ in Rp

Ωτ,wpβq “
ÿ

gPG
pτ ` p1´ τqwgq ‖βg‖Dεg , (19)

ΩDτ,wpξq “ max
gPG

‖ξg‖εg
τ ` p1´ τqwg

, (20)

BΩDτ,w
“
 

ξ P Rp : @g P G, ‖Sτ pξgq‖ ď p1´ τqwg
(

. (21)

The subdifferential BΩτ,wpβq of the norm Ωτ,w at β is given by

"

x P Rp : @g P G, xg P τB ‖¨‖1 pβgq ` p1´ τqwgB ‖¨‖ pβgq
*

.

Proof.

@β P Rp, Ωpβq “ τ ‖β‖1 ` p1´ τq
ÿ

gPG
wg ‖βg‖ “

ÿ

gPG

`

τ ‖βg‖1 ` p1´ τqwg ‖βg‖
˘

“
ÿ

gPG
pτ ` p1´ τqwgq

„

τ

τ ` p1´ τqwg
‖βg‖1 `

p1´ τqwg
τ ` p1´ τqwg

‖βg‖


“
ÿ

gPG
pτ ` p1´ τqwgq

“

p1´ εgq ‖βg‖1 ` εg ‖βg‖
‰

“
ÿ

gPG
pτ ` p1´ τqwgq ‖βg‖Dεg .
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The definition of the dual norm reads ΩDpξq “ max
β:Ωpβqď1

βJξ, and solving this problem yields:

ΩDpξq “ sup
β:Ωpβqď1

xβ, ξy “ sup
β

inf
µą0
xβ,

ÿ

gPG
ξgy ´ µ

˜

ÿ

gPG
Ωgpβgq ´ 1

¸

“ inf
µą0

#

ÿ

gPG
sup
βg

rxβg, ξgy ´ µΩgpβgqs ` µ

+

“ inf
µą0

#

ÿ

gPG
µΩ˚g

ˆ

ξg
µ

˙

` µ

+

“ inf
µą0

#

ÿ

gPG
ιBΩDg

ˆ

ξg
µ

˙

` µ

+

“ inf
µą0

"

max
gPG

ιBΩDg

ˆ

ξg
µ

˙

` µ

*

“ max
gPG

inf
µą0

"

Ω˚g

ˆ

ξg
µ

˙

` µ

*

“ max
gPG

inf
µą0

sup
βg

xβg,
ξg
µ
y ´ Ωgpβgq ` µ

“ max
gPG

inf
µą0

sup
ug

xug, ξgy ´ µpΩgpugq ´ 1q p with µug “ βgq

“ max
gPG

sup
ug:Ωgpugqď1

xug, ξgy “ max
gPG

sup
ug

xug, ξgy s.t. pτ ` p1´ τqwgq ‖ug‖Dεg ď 1

“ max
gPG

sup
ug:Ωgpugqď1

xug, ξgy “ max
gPG

sup
u1g :‖u1g‖Dεgď1

u1
J

g ξg

τ ` p1´ τqwg
“ max

gPG

‖ξg‖εg
τ ` p1´ τqwg

.

We recall here the proof of [23] for the sake of completeness. First let us write Ωpβq “ Ω1pβq`Ω2pβq,
where Ω1pβq “ τ‖β‖1 and Ω2pβq “ p1 ´ τq

ř

gPG wg‖βg‖2. Since Ω1 and Ω2 are continuous
everywhere, we have (see [14, Theorem 1]): Ω˚pξq “ pΩ1 ` Ω2q

˚pξq “ mina`b“ξrΩ
˚
1 paq `

Ω˚2 pbqs “ minarΩ
˚
1 paq`Ω˚2 pξ´ aqs, which is also the inf-convolution (see [3, Chapter 12]) of these

two norms. Using the Fenchel conjugate of the `1 norm (Ω˚1 “ ιτB8 ) and of the `2 norm (Ω˚2 “ ιB),
we have

Ω˚pξq “
ÿ

gPG
min
ag

ιτB8pagq ` ιB

ˆ

ξg ´ ag
p1´ τqwg

˙

“
ÿ

gPG
ιB

ˆ

ξg ´ΠτB8pξgq

p1´ τqwg

˙

.

Hence the indicator of the unit dual ball is ιBΩD
pξq “

ř

gPG ιp1´τqwgB pξg ´ΠτB8pξgqq and using
Sτ pξgq “ ξg ´ΠτB8 , we have:

BΩD “
 

ξ P Rp : ΩDpξq ď 1
(

“
 

ξ P Rp : @g P G, ‖Sτ pξgq‖ ď p1´ τqwg
(

.

Proposition 5. . For α P r0, 1s, R ě 0 and x P Rd, the equation
řd
j“1 Sναpxjq2 “ pνRq2 has a

unique solution ν P R`, denoted by Λpx, α,Rq and that can be computed in Opd log dq operations
in worst case. With nI “ Card ti P rds : |xi| ą α‖x‖8{pα`Rqu, the complexity of Algorithm 1 is
nI ` nI logpnIq, which is comparable to the ambient dimension d.

Proof. Dividing by ν2, which is positive as soon as x ‰ 0, we get that
řd
j“1 Sναpxjq2 “ pνRq2 is

equivalent to
řd
j“1 Sαpxj{νq2 “ R2. Note that

řd
j“1 Sαpxj{νq2 “

řd
j“1 Sαp|xj |{νq2 so without

loss of generality we assume x P Rd`.

The case α “ 0 and R “ 0 corresponds to the situation where all xj are equal to zero or we impose
ν equals to infinity. So we avoid this trivial case.

If α “ 0 and R ‰ 0, ν “ ‖x‖{R. Indeed,

d
ÿ

j“1

S0pxj{νq
2 “ R2 ðñ

d
ÿ

j“1

pxj{νq
2 “ R2 ðñ

‖x‖22
ν2

“ R2 hence the result.
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If α ‰ 0 and R “ 0, we have :
d
ÿ

j“1

Sα
´xj
ν

¯2

“ 0 ðñ @j P rds,
´xj
ν
´ α

¯

`
“ 0 ðñ @j P rds,

xj
ν
ď αðñ ν ě

maxjPrds xj

α
.

So we choose the smallest ν i.e., ν “ ‖x‖8{α. In all the above cases, the computation is done in
Opdq.

Otherwise α ‰ 0 and R ‰ 0. The function ν ÞÑ
řd
j“1 Sαpxj{νq2 is a non-increasing continuous

function with limit `8 (resp. 0) when ν Ñ 0 (resp. ν Ñ `8). Hence, there is a unique solution to
řd
j“1 Sαpxj{νq2 “ R2.

We denote by xp1q, . . . , xpdq the coordinates of x ordered in decreasing order (with the convention
xp0q “ `8 and xpd`1q “ 0). Note that

řd
j“1 Sαpxj{νq2 “

řd
j“1 Sαpxpjq{νq2. Then, there exists

an index j0 P rps such that

R2 P

«

d
ÿ

j“0

Sα
ˆ

α
xpjq

xpj0q

˙2

,
d
ÿ

j“0

Sα
ˆ

α
xpjq

xpj0`1q

˙2
¸

. (22)

For such a j0, one can check that ν P pxpj0`1q{α, xpj0q{αs. The definition of the soft-thresholding
operator yields

Sαpxj{νq2 “
"

pxj{ν ´ αq
2 if xj ě να,

0 if xj ă να.
(23)

It can be simplified thanks to xj ě xpj0q ñ xj ě να and xj ď xpj0`1q ñ xj ă να.
Hence, R2 “

řj0
j“1pxpjq{ν ´ αq2 “

řj0
j“1pxpjq{νq

2 ` α2
řj0
j“1 1 ´ 2α

řj0
j“1 xpjq{ν so solving

řp
j“1 Sαpxpjq{νq2 “ R2 is equivalent to solve on R`

pα2j0 ´R
2qν2 ´

˜

2α
j0
ÿ

j“1

xpjq

¸

ν `
j0
ÿ

j“1

x2
pjq “ 0. (24)

If pα2j0 ´R
2q “ 0, then ν “

řj0
j“1 x

2
pjq{p2α

řj0
j“1 xpjqq. Otherwise ν is the unique solution lying

in pxpj0`1q{α, xpj0q{αs of the quadratic equation stated in Eq. (24).

In the worst case, to compute Λpx, α,Rq, one needs to sort a vector of size d, what can be done in
Opd logpdqq operations, and finding j0 thanks to (22) requires Opd2q if we apply a naive algorithm.

In the following, we show that one can easily reduce the complexity to Opd logpdqq in worst case.

For all j in rds, Sα
´

α
xj
xj0

¯

“ 0 as soon as xj ď xj0 . This implies that (22) is equivalent to

R2 P

«

j0´1
ÿ

j“0

Sα
ˆ

α
xpjq

xpj0q

˙2

,
j0
ÿ

j“0

Sα
ˆ

α
xpjq

xpj0`1q

˙2
¸

. (25)

Denoting Sj0 :“
řj0
j“1 xpjq and Sp2qj0 :“

řj0
j“1 x

2
pjq, a direct calculation show that (25) can be

rewritten as

R2 P α2

«

S
p2q
j0´1

x2
pj0q

´ 2
Sj0´1

xpj0q
` j0,

S
p2q
j0

x2
pj0`1q

´ 2
Sj0

xpj0`1q
` j0 ` 1

¸

. (26)

Finally, solving
řp
j“1 Sαpxpjq{νq2 “ R2 is equivalent to finding the solution of pα2j0 ´R

2qν2 ´

p2αSj0qν ` S
p2q
j0
“ 0 lying in pxpj0`1q{α, xpj0q{αs. Hence,

Λpx, α,Rq “
αSj0 ´

b

α2S2
j0
´ S

p2q
j0
pα2j0 ´R2q

α2j0 ´R2
“: ν1 (27)

or

Λpx, α,Rq “
αSj0 `

b

α2S2
j0
´ S

p2q
j0
pα2j0 ´R2q

α2j0 ´R2
“: ν2. (28)
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• If α2j0 ´ R2 ă 0, then ν2 ă 0 and so it cannot be a solution since Λpx, α,Rq must be
positive.

• Otherwise, we have

ν2 ě
αSj0

α2j0 ´R2
“

1

αpj0 ´
R2

α2 q

j0
ÿ

j“1

xpjq ą
1

αj0

j0
ÿ

j“1

xpjq ě
xpj0q

α
,

where the second inequality results from the fact that j0 ą j0´R
2{α2. And again ν2 cannot

be a solution since Λpx, α,Rq belongs to pxpj0`1q{α, xpj0q{αs.

Hence, in all cases, the solution is given by ν1.

Moreover, we can significantly reduce the cost of the sort. In fact, for all ν, we have ‖Sανpxq‖ ě
‖Sανpxq‖8 “ maxjPrdsp|xj | ´ ναq`. Hence, ‖Sανpxq‖´ νR ě ‖x‖8 ´ να´ νR ą 0 if and only
if ν ă ‖x‖8{pα`Rq. Combining this with Equation (23), we take into account only the coordinates
which have an absolute value greater than α‖x‖8{pα`Rq. Indeed, by contrapositive, if ν is a

solution then ν ě ‖x‖8{α`R hence xj ă α‖x‖8{α`Rñ xj ă να
(23)
ñ Sαpxj{νq “ 0.

Finally, computing Λpx, α,Rq can be done by applying Algorithm 1. Note that this algorithm is
similar to [9, Algorithm 4].

D Notes about others methods

D.1 Extension of some previous methods to the Sparse-Group Lasso

D.1.1 Extension of [11]: static safe region

The static safe region can be obtained as in [11] using the ball B py{λ, ‖y{λmax ´ y{λ‖q.
Indeed y{λmax is a dual feasible point. Hence the distance between y{λ and y{λmax is smaller than
the distance between y{λ and θ̂pλ,Ωq since the last point is the projection of y{λ over the (close and
convex) dual feasible set ∆X,Ω.

Extension of [4]: dynamic safe region

The dynamic safe region can be obtained as in [11] using the ball B py{λ, ‖θk ´ y{λ‖q, where the
sequence pθkqkPN converges to the dual optimal vector θ̂pλ,Ωq.

A sequence of dual points is required to construct such a ball, and following [11] we can
consider the dual scaling procedure. We have chosen a simple procedure here: Let θk “

ρk{maxpλ,ΩDτ,wpX
Jρkqq, where ρk :“ y´Xβk, for a primal converging sequence βk. Hence, one

can use the safe sphere B py{λ, ‖θk ´ y{λ‖q with the same reasoning as for the static safe region.

Hence, we can easily extend the corresponding screening rules to the Sparse-Group Lasso thanks to
the formulation (6) and (5).

Extension of [4]: DST3 safe region

Now we show that the safe regions proposed in [24] for the Lasso and generalized in [4] to the Group-
Lasso can be adapted to the Sparse-Group Lasso. For that, we define g‹ “ arg maxgPG ΩDpXJyq,

V‹ “
!

θ P Rn :
∥∥XJg‹θ∥∥εg‹ ď τ ` p1´ τqwg‹

)

andH‹ “
"

θ P Rn : xθ, ηy “ τ ` p1´ τqwg‹

*

.

Where η is the vector normal to V‹ at y{λmax and is given by η :“ Xg‹∇‖¨‖εg‹
`

XJg‹y{λmax

˘

, where
∇‖¨‖εpxq “ Sp1´εq‖x‖εpxq{‖Sp1´εq‖x‖εpxq‖Dε , see Lemma 5 below. Let

θc :“
y

λ
´

˜

xη,yy
λ ´ pτ ` p1´ τqwg‹q

‖η‖2

¸

η
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be the projection of y{λ onto the hyperplaneH‹ and rθk :“
a

‖y{λ´ θk‖2 ´ ‖y{λ´ θc‖2 where
θk is a dual feasible vector (which can be obtained by dual scaling). Then, the following proposition
holds.
Proposition 9. Let θc and rθk defined as above. Then θ̂pλ,Ωq P Bpθc, rθkq.

Proof. We set H´‹ :“
 

θ P Rn : xθ, ηy ď τ ` p1 ´ τqwg‹
(

the negative half-space induced by
the hyperplane H‹. Since θ̂pλ,Ωq P ∆X,Ω Ă V‹ Ă H´‹ and B

`

y
λ , ‖

y
λ ´ θk‖

˘

is a safe region, then
θ̂pλ,Ωq P H´‹ X B

`

y
λ , ‖

y
λ ´ θk‖

˘

.

Moreover, for any θ P H´‹ X B
`

y
λ , ‖

y
λ ´ θk‖

˘

, we have:∥∥∥ y
λ
´ θk

∥∥∥2

ě

∥∥∥ y
λ
´ θ

∥∥∥2

“

∥∥∥´ y
λ
´ θc

¯

` pθc ´ θq
∥∥∥2

“∥∥∥ y
λ
´ θc

∥∥∥2

` ‖θc ´ θ‖2 ` 2
A y

λ
´ θc, θc ´ θ

E

.

Since θc “ ΠH´‹ p
y
λ q andH´‹ is convex, then xθc ´ y

λ , θc ´ θy ď 0. Thus∥∥∥ y
λ
´ θk

∥∥∥2

ě

∥∥∥ y
λ
´ θc

∥∥∥2

` ‖θc ´ θ‖2 , hence ‖θ ´ θc‖ ď
c∥∥∥ y

λ
´ θk

∥∥∥2

´

∥∥∥ y
λ
´ θc

∥∥∥2

“: rθk .

Which show thatH´‹ X B
`

y
λ , ‖

y
λ ´ θk‖

˘

Ă Bpθc, rθkq. Hence the result.

E Sparse-Group Lasso plus Elastic Net

The Elastic-Net estimator ([26]) can be mixed with the Sparse-Group Lasso by considering

arg min
βPRp

1

2
‖y ´Xβ‖2 ` λ1Ωpβq `

λ2

2
‖β‖2 . (29)

By setting X̃ “

ˆ

X?
λ2 Idp

˙

P Rn`p,p and ỹ “
ˆ

y
0

˙

P Rn`p, we can reformulate (29) as

arg min
βPRp

1

2

∥∥∥ỹ ´ X̃β∥∥∥2

` λ1Ωpβq, (30)

and we can adapt our GAP safe rule framework to this case.

F Properties of the ε-norm

We describe, for completeness, some properties of the ε-norm. The following material is inspired
from [9].
Lemma 1. For all ξ P Rd, the ε-decomposition reads: ξ “ ξε ` ξ1´ε, where ξε :“ Sp1´εq‖ξ‖εpξq
and ξ1´ε :“ ξ ´ ξε. Moreover, ‖ξε‖ “ ε ‖ξ‖ε and

∥∥ξ1´ε
∥∥
8
“ p1´ εq ‖ξ‖ε . Hence, the following

decomposition holds for the ε-norm: ‖ξ‖ε “ ‖ξε‖`
∥∥ξ1´ε

∥∥
8
.

Proof. ‖ξε‖ “ ‖Sp1´εq‖ξ‖εpξq‖ “ ε‖ξ‖ε by definition of the ε-norm ‖ξ‖ε. Moreover,

ξ1´ε “

d
ÿ

i“1

rξi ´ signpξiqp|ξi| ´ p1´ εq ‖ξ‖εq`s “
d
ÿ

i“1

signpξiq r|ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`s .

Thus, using the symbol a_ b to represent maxpa, bq, one has∥∥ξ1´ε
∥∥
8
“max
iPrds

|signpξiq r|ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`s|

“ max
iPrds

|ξi|ďp1´εq‖ξ‖ε

||ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`| _ max
iPrds

|ξi|ąp1´εq‖ξ‖ε

||ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`|

“ max
iPrds

|ξi|ďp1´εq‖ξ‖ε

|ξi| _ p1´ εq ‖ξ‖ε “ p1´ εq ‖ξ‖ε .
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Lemma 2. Let us define Up‖ξ‖εq :“ tu P Rd : ‖u‖ ď ε‖ξ‖εu and V p‖ξ‖εq :“ tv P Rd : ‖v‖8 ď
p1´ εq‖ξ‖εu. Then

ξp1´εq “ arg min
uPUp‖ξ‖εq
ξ“u`v

‖v‖8 and ξε “ arg min
vPV p‖ξ‖εq
ξ“u`v

‖u‖ .

Proof.
‚ Existence and uniqueness of the solutions

It is clear that
arg min
uPUp‖ξ‖εq
ξ“u`v

‖v‖8 “ arg min
ξ´Up‖ξ‖εq

‖v‖8,

and
arg min
vPV p‖ξ‖εq
ξ“u`v

‖u‖ “ arg min
ξ´V p‖ξ‖εq

‖u‖.

Thus, these two problems have unique solution because we minimize strict convex functions onto
convex sets.

‚ Uniqueness of the ε-decomposition

From Lemma 1 we have ξ “ ξε ` ξ1´ε where ‖ξε‖ “ ε‖ξ‖ε and ‖ξ1´ε‖8 “ p1 ´ εq‖ξ‖ε. Hence
ξε P Up‖ξ‖εq and ξ1´ε P V p‖ξ‖εq. Now it suffices to show that this ε-decomposition is unique.

Suppose ξ ‰ 0 (the uniqueness is trivial otherwise) and v P V p‖ξ‖εq. We show that for any u P Rd
such that ξ “ u` v, v ‰ ξ1´ε implies u R Up‖ξ‖εq.

‖u‖2 “ ‖ξ ´ v‖2 “
∥∥ξε ` pξ1´ε ´ vq

∥∥2
“ ‖ξε‖2 ` 2xξε, ξ1´ε ´ vy `

∥∥ξ1´ε ´ v
∥∥2
,

hence ‖u‖2 ą ε2‖ξ‖2ε ` 2xξε, ξ1´ε ´ vy because ‖ξε‖ “ ε‖ξ‖ε and ‖ξ1´ε ´ v‖ ą 0 (v ‰ ξ1´ε).
Moreover,

xξε, ξ1´ε ´ vy “
d
ÿ

i“1

rsignpξiqp|ξi| ´ p1´ εq ‖ξ‖εq`s rsignpξiqp|ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`q ´ vis

“

d
ÿ

i“1

rp|ξi| ´ p1´ εq ‖ξ‖εq`s rp|ξi| ´ p|ξi| ´ p1´ εq ‖ξ‖εq`q ´ vi signpξiqs

ě
ÿ

i“1
|ξi|ąp1´εq‖ξ‖ε

r|ξi| ´ p1´ εq ‖ξ‖εs rp1´ εq ‖ξ‖ε ´ vi signpξiqs ě 0.

The last inequality hold because v P V p‖ξ‖εq i.e., @i P rds, vi ď p1´εq‖ξ‖ε. Finally, ‖u‖2 ą ε2‖ξ‖2ε
hence the result.

Lemma 3.
 

ξ P Rd : ‖ξ‖ε ď ν
(

“
 

u` v : u, v P Rd, ‖u‖ ď εν, ‖v‖8 ď p1´ εqν
(

.

Proof. Thanks to Lemma 1, we have ξ “ ξε ` ξ1´ε, ‖ξε‖ “ ε‖ξ‖ε and ‖ξ1´ε‖8 “ p1 ´ εq‖ξ‖ε.
Hence, ‖ξ‖ε ď ν implies ‖ξε‖ ď εν and ‖ξ1´ε‖8 ď p1´ εqν.

Suppose ξ “ u` v such that ‖u‖ ď εν and ‖v‖8 ď p1´ εqν. From the ε-decomposition, we have
‖ξ‖ε “ ‖ξε‖` ‖ξ1´ε‖8. Moreover, ‖ξε‖ ď ‖u‖ and ‖ξ1´ε‖8 ď ‖v‖8 thanks to Lemma 2. Hence
‖ξε‖ ď ‖u‖` ‖v‖8 ď εν ` p1´ εqν “ ν.

Lemma 4 (Dual norm of the ε-norm). Let ξ P Rd, then ‖ξ‖Dε “ ε‖ξ‖` p1´ εq‖ξ‖1.

Proof.

‖ξ‖Dε :“ max
‖x‖εď1

ξJx “ max
‖u‖ďε

‖v‖8ď1´ε

ξJpu` vq thanks to Lemma 3

“ ε max
‖u‖ď1

ξJu` p1´ εq max
‖v‖8ď1

ξJv “ ε ‖ξ‖D ` p1´ εq ‖ξ‖D8 .
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Lemma 5. Let ξ P Rdzt0u. Then∇‖¨‖εpξq “ ξε

‖ξε‖Dε
.

Proof. Let us define h : Rˆ Rd ÞÑ R by hpν, ξq “ ‖Sp1´εqνpξq‖´ εν. Then we have

Bh

Bν
pν, ξq “

Sp1´εqνpξq
J∥∥Sp1´εqνpξq∥∥ BSp1´εqνpξqBν

´ ε “ ´
Sp1´εqνpξq

J∥∥Sp1´εqνpξq∥∥ p1´ εq signpξq ´ ε

“ ´

∥∥Sp1´εqνpξq∥∥1∥∥Sp1´εqνpξq∥∥ p1´ εq ´ ε “ ´p1´ εq
∥∥Sp1´εqνpξq∥∥1

` ε
∥∥Sp1´εqνpξq∥∥∥∥Sp1´εqνpξq∥∥

“ ´

∥∥Sp1´εqνpξq∥∥Dε∥∥Sp1´εqνpξq∥∥ (thanks to Lemma 4).

By definition of the ε-norm, hp‖ξ‖ε, ξq “ 0. Since Bh
Bν p‖ξ‖ε, ξq “ ´

‖ξε‖Dε
ε‖ξ‖ε ‰ 0, we obtain by

applying the Implicit Function Theorem

∇‖¨‖ε pξq ˆ
Bh

Bν
p‖ξ‖ε , ξq `

Bh

Bξ
p‖ξ‖ε , ξq “ 0 hence ∇‖¨‖ε pξq “ ´

Bh
Bξ p‖ξ‖ε , ξq
Bh
Bν p‖ξ‖ε , ξq

.

Moreover, Bh
Bξ p‖ξ‖ε, ξq “

Sp1´εq‖ξ‖ε pξq
‖Sp1´εq‖ξ‖ε pξq‖

“
ξε

‖ξε‖ “
ξε

ε‖ξ‖ε hence the result: ∇‖¨‖εpξq “ ξε

‖ξε‖Dε
.

G Implementation

Here we present the ISTA-BC we considered, and provide the GAP safe rules we have implemented.
Note that the GAP safe rules we have used are both sequential and dynamical by nature and simply
refer to as GAP safe.

Algorithm 2 ISTA-BC with GAP safe rules
Input :X, y, ε,K, f ce, pλtqtPrT´1s

@g P G, compute Lg “ ‖Xg‖22
Compute λ0 “ λmax thanks to (12) and Algorithm 1
βλ0 “ 0
for t P rT ´ 1s do
@g P G, αg Ð λt{Lg
β Ð βλt´1 // Get previous ε-solution
for k P rKs do

if k mod f ce “ 1 then
Compute θ thanks to (9) and Algorithm 1.

SetR “ B
´

θ,
b

2pPλt,Ωpβq´Dλt pθqq

λ2
t

¯

// Safe sphere

if Pλt,Ωpβq ´Dλtpθq ď ε // Stopping criterion
then

βλt Ð β
break

Update AgppRq and AftpRq thanks to Theorem 2
for g P AgppRq do // Loop over active groups

for j P g XAftpRq do // Loop over active features

βj Ð Sταg
´

βj ´
∇jfpβq
Lg

¯

// Component-wise Soft-thresholding step

βg Ð Sgp
p1´τqωgαg

pβgq // Block-wise Soft-thresholding step

Output :pβλtqtPrT´1s
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