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Abstract

For statistical learning in high dimension, sparse regularizations have proven useful
to boost both computational and statistical efficiency. In some contexts, it is natural
to handle more refined structures than pure sparsity, such as for instance group
sparsity. Sparse-Group Lasso has recently been introduced in the context of linear
regression to enforce sparsity both at the feature and at the group level. We propose
the first (provably) safe screening rules for Sparse-Group Lasso, i.e., rules that allow
to discard early in the solver features/groups that are inactive at optimal solution.
Thanks to efficient dual gap computations relying on the geometric properties of
e-norm, safe screening rules for Sparse-Group Lasso lead to significant gains in
term of computing time for our coordinate descent implementation.

1 Introduction

Sparsity is a critical property for the success of regression methods, especially in high dimension.
Often, group (or block) sparsity is helpful when a known group structure needs to be enforced. This
is for instance the case in multi-task learning [1]] or multinomial logistic regression [7, Chapter 3]. In
the multi-task setting, the group structure appears natural since one aims at jointly recovering signals
whose supports are shared. In this context, sparsity and group sparsity are generally obtained by
adding a regularization term to the data-fitting: £; norm for sparsity and ¢, » norm for group sparsity.

Along with recent works on hierarchical regularization [15, 20] have focused on a specific case:
the Sparse-Group Lasso. This method is the solution of a (convex) optimization program with a
regularization term that is a convex combination of the two aforementioned norms, enforcing sparsity
and group sparsity at the same time.

With such advanced regularizations, the computational burden can be particularly heavy in high
dimension. Yet, it can be significantly reduced if one can exploit the known sparsity of the solution in
the optimization. Following the seminal paper on “safe screening rules” [11], many contributions
have investigated such strategies [24} 23] |5]]. These so called safe screening rules compute some
tests on dual feasible points to eliminate primal variables whose coefficients are guaranteed to be
zero in the exact solution. Still, the computation of a dual feasible point can be challenging when
the regularization is more complex than ¢; or ¢; » norms. This is the case for the Sparse-Group
Lasso as it is not straightforward to characterize if a dual point is feasible or not [23]. Here, we
propose an efficient computation of the associated dual norm. It is all the more crucial since the naive
implementation computes the Sparse-Group Lasso dual norm with a quadratic complexity w.r.t the
groups dimensions.

We propose here efficient safe screening rules for the Sparse-Group Lasso that combine sequential
rules (i.e., rules that perform screening thanks to solutions obtained for a previously processed tuning
parameter) and dynamic rules (i.e., rules that perform screening as the algorithm proceeds) in a
unified way. We elaborate on GAP safe rules, a strategy relying on dual gap computations introduced
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for the Lasso [[12] and to more general learning tasks in [[18]]. Note that alternative (unsafe) screening
rules, for instance the “strong rules” [22], have been applied to the Lasso and its simple variants.

Our contributions are two fold here. First, we introduce the first safe screening rules for this problem,
other alleged safe rules [23] for Sparse-Group Lasso were in fact not safe, as explained in detail in
[L8]], and could lead to non-convergent implementation. Second, we link the Sparse-Group Lasso
penalties to the e-norm in [8]. This allows to provide a new algorithm to efficiently compute the
required dual norms, adapting an algorithm introduced in [9]. We incorporate our proposed GAP Safe
rules in a block coordinate descent algorithm and show its practical efficiency in climate prediction
tasks. Another strategy leveraging dual gap computations and active sets has recently been proposed
under the name Blitz [16]]. It could naturally benefit from our fast dual norm evaluations in this
context.

Notation For any integer d € N, we denote by [d] the set {1, ..., d}. The standard Euclidean norm
is written ||-||, the ¢; norm ||-||1, the £o, norm ||-||, and the transpose of a matrix @ is denoted by
QT. We also denote (t); = max(0,¢). Our observation vector is y € R™ and the design matrix
X = [X1,...,X,] € R"*P has p features, stored column-wise. We consider problems where the
vector of parameters 3 = (31,...,,) " admits a natural group structure. A group of features is a
subset g  [p] and n, is its cardinality. The set of groups is denoted by G and we focus only on
non-overlapping groups that form a partition of [p]. We denote by (3, the vector in R"s which is the
restriction of (3 to the indexes in g. We write [5,]; the j-th coordinate of 3,. We also use the notation
Xy € R™*"s for the sub-matrix of X assembled from the columns with indexes j € g; similarly
[X,]; is the j-th column of [X].

For any norm 2, Bq, refers to the corresponding unit ball, and B (resp. B,) stands for the Euclidean
(resp. /o) unit ball. The soft-thresholding operator (at level 7 > 0), S, is defined for any = € R?
by [S-(x)]; = sign(z;)(|z;| — 7)+, while the group soft-thresholding (at level 7) is S&(z) =
(1 = 7/||=||) + . Denoting II¢ the projection on a closed convex set C, this yields S, = Id —II, 5, .
The sub-differential of a convex function f : R? — R at x is defined by df(z) = {z e R : Vy €
Re f(x) — f(y) = 2" (z — y)}. We recall that the sub-differential d||-||; of the £, norm is sign(-),
{sign(z;)}, ifz; #0,

defined element-wise by Vj € [d], sign(z); = {[ 1] a0
) ) g = Y.

Note that the sub-differential 0||-|| of the Euclidean norm is 0||-|| (z) = {éx/”z} ’ Iii f 8’

For any norm  on R¢, QP is the dual norm of €2, and is defined for any x € R? by QP (z) =
maXyes, V' 2, e.g., ||/|P = ||/lo and ||-]|P = |:||. We only focus on the Sparse-Group Lasso
norm, so we assume that Q@ = ., where Q. (8) = 7|81 + (1 — 7) X cq wyl| By, for
7€ [0,1],w = (wg)geg With wy > 0 for all g € G. The case where w, = 0 for some g € G together
with 7 = 0 is excluded (€2 ,, is not a norm in such a case).

2 Sparse-Group Lasso regression

For A > 0 and 7 € [0, 1], the Sparse-Group Lasso estimator denoted by B(A’Q) is defined as a
minimizer of the primal objective Py o defined by:

o 1
B e argmin g fly - XBI* + X2B) = Pra(B) (1)
cRp
A dual formulation (see [6, Th. 3.3.5]) of (1)) is given by

~ 1 A2 2
009 —argmax _ [lyl* = 5 [0 — 4| = D0, @
benx o 2 2 A

where Ax o = {6 € R" : QP(XT6) < 1}. The parameter A > 0 controls the trade-off between
data-fitting and sparsity, and 7 controls the trade-off between features sparsity and group sparsity. In
particular one recovers the Lasso [21] if 7 = 1, and the Group-Lasso [23]] if 7 = 0.



For the primal problem, Fermat’s rule (¢f. Appendix for details) reads:
NN = ¢ — x D) (link-equation) 3)
XTONDY € o0 (M) (sub-differential inclusion). (4)

Remark 1 (Dual uniqueness). The dual solution §*®) is unique, while the primal solution 3(*:%)
might not be. Indeed, the dual formulation (@) is equivalent to %) = argmingea , , 10 — y/Al.

50 0D = TIa ., (y/\) is the projection of /) over the dual feasible set Ax q.

Remark 2 (Critical parameter: A\, ,x). There is a critical value Ay,.x such that O is a primal solution
of (I for all A > Apax. Indeed, the Fermat’s rule states 0 € arg ming g, ||y — X 3%/2 + AQ(8)—
0 e {XTy} + 10Q(0)=0P (X Ty) < A Hence, the critical parameter is given by: Apax =
(91 (XQTEg);) Note that evaluating A\, highly relies on the ability to (efficiently) compute the dual
norm Q.

3 GAP safe rule for the Sparse-Group Lasso

The safe rule we propose here is an extension to the Sparse-Group Lasso of the GAP safe rules
introduced for Lasso and Group-Lasso [[12, [18]]. For the Sparse-Group Lasso, the geometry of the
dual feasible set A x  is more complex (an illustration is given in Fig. . Hence, computing a dual
feasible point is more intricate. As seen in Section [3.2] the computation of a dual feasible point
strongly relies on the ability to evaluate the dual norm Q. This crucial evaluation is discussed in
Section[d We first detail how GAP safe screening rules can be obtained for the Sparse-Group Lasso.

3.1 Description of the screening rules

Safe screening rules exploit the known sparsity of the solutions of problems such as (). They discard
inactive features/groups whose coefficients are guaranteed to be zero for optimal solutions. Then, a
significant reduction in computing time can be obtained ignoring “irrelevant” features/groups. The
Sparse-Group Lasso benefits from two levels of screening: the safe rules can detect both group-wise

zeros in the vector £(*%) and coordinate-wise zeros in the remaining groups.

To obtain useful screening rules one needs a safe region, i.e., a set containing the optimal dual

solution H*2). Following [[L1]], when we choose a ball B(0,.,r) with radius r and centered at 6, as a
safe region, we call it a safe sphere. A safe sphere is all the more useful that 7 is small and 6. close to
6*D)_ The safe rules for the Sparse-Group Lasso work as follows: for any group ¢ in G and any safe
sphere B(0.,r)

Group level safe screening rule: max ||S;(X]0)| < (1 —T)w, = MY =0,  (5)
0eB(0..r) : : -

Feature level safe screening rule: Vjeg, . IBD(E;X : |XjT0| <T= BJ(/\’Q) =0. (6)
eB(0.,r

This means that provided one the last two test is true, the corresponding group or feature can be
(safely) discarded. For screening variables, we rely on the following upper-bounds:

Proposition 1. For all group g € G and j € g,

X0 <|X]6. X 7
Jmax |XT6] < X0l + 71X ()

and
1S (XT0)|| + 7 (1%, | if || Xg 0cl|, > 7

(HXJQCHOO + 7 || Xyl = 7)1+  otherwise. ®

max ||ST(X;9)H < Ty = {

0eB(0,,r)

Assume now that one has found a safe sphere B(6., r) (their creation is deferred to Section , then
the safe screening rules given by (3)) and (@) read:

Theorem 1 (Safe rules for the Sparse-Group Lasso). Using T, defined in {8), we can state the
following safe screening rules:

Group level safe screening: Vge G, ifTy<(1—T1)wg, then Bé/\’m =0,
Feature level safe screening: Yge G,Vj € g, if\XjTt96| + || X5l <7, then BAJ(A’Q) = 0.



(a) Lasso dual ball Bgp for (b) Group-Lasso dual ball B,p for (c) Sparse-Group Lasso dual ball
QP (6) = 10]|- QP (0) = max(\/0? + 62,103]). Bap = {0: Vg e G,[8-(0,)] <
(1- T)wg}.

Figure 1: Lasso, Group-Lasso and Sparse-Group Lasso dual unit balls Boo = {0 : QP (0) < 1}, for
the case of G = {{1,2},{3}} (i.e, g1 = {1,2},92 = {3}, n =p =3, wy, = wy, = land 7 = 1/2.

The screening rules can detect which coordinates or group of coordinates can be safely set to zero.
This allows to remove the corresponding features from the design matrix X during the optimization
process. While standard algorithms solve () scanning all variables, only active ones, i.e., non
screened-out variables (using the terminology from Section [3.3)) need to be considered with safe
screening strategies. This leads to significant computational speed-ups, especially with a coordinate
descent algorithm for which it is natural to ignore features (see Algorithm 2, in Appendix G).

3.2 GAP safe sphere

We now show how to compute the safe sphere radius and center using the duality gap.

3.2.1 Computation of the radius

With a dual feasible point § € Ax o and a primal vector 5 € RP at hand, let us construct a safe sphere

centered on 6, with radius obtained thanks to dual gap computations.

Theorem 2 (Safe radius). For any § € Ax g and 3 € RP, one has 6N e B 0,rr0(8,0)), for
2(P; — Dy(0

i.e., the aforementioned ball is a safe region for the Sparse-Group Lasso problem.

Proof. The result holds thanks to strong concavity of the dual objective, c¢f. Appendix C. O

3.2.2 Computation of the center

In GAP safe screening rules, the screening test relies crucially on the ability to compute a vector
that belongs to the dual feasible set Ax . The geometry of this set is illustrated in Figure |I|
Following [5]], we leverage the primal/dual link-equation (3) to construct a dual point based on a
current approximation 3 of B (A9 When 8 = 8 N is obtained as an approximation for a previous
value of X' # X we call such a strategy sequential screening. When 3 = 3}, is the primal value at
iteration k obtained by an iterative algorithm, we call this dynamical screening. Starting from a
residual p = y — X 3, one can create a dual feasible point by choosingﬂ

_ P

= s, QP (X))
We refer to the sets B(6,7x (3, 0)) as GAP safe spheres. Note that the generalization to any smooth
data fitting term would be straightforward see [18]].s

Remark 3. Recall that A\ > Apay vields B2 = 0, in which case p := y — XD = y is the
optimal residual and y/ Ay is the dual solution. Thus, as for getting Apax = Op (X Ty), the scaling
computation in (9) requires a dual norm evaluation.

(C))

"We have used a simpler scaling w.r.t. [4] choice’s (without noticing much difference in practice): § = sp

where s = min | max £ —1 L
AMlell2? @P(XTp) ) > QP (X Tp) |
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Algorithm 1 Computation of A(z, a, R).

Input: So = z(0), S(()Q) = x?o), ap =0
z=(z1,...,2q) €R? ae[0,1], R=0 for k € [n; — 1] do
Output: A(z, o, R) Sk = Skfl(-‘y)- T(k); S,(f) = S,(Czjl + xfk)
ifa = 0and R = 0 then _ S8 s,
Az, 0, R) — o Ak41 = Zors 236(“1) +k+1
elseif « = 0 and R # 0 then if 22 ¢ [ak, axi1[ then
A(z, o, R) = ||z||/R Jo=k+1
else if R = 0 then break
Az, o, R) = ||z[|oo/cx if a2jo — R? = 0 then
else 53
Get I := {z e[d] : |zi] > %} M@, a, R) = 558
ny := Card(I) else ‘

S —1]a252 —5) (a2jo—R2
Sort z(1) = T(2) = -+ = T(ng) Alw, o, R) = 0N "0 o (od0—F5)

a?jo—R2

3.3 Convergence of the active set

The next proposition states that the sequence of dual feasible points obtained from (9 converges to the

dual solution §*) if (Bk ) ken converges to an optimal primal solution B (A9 (proof in Appendix).
It guarantees that the GAP safe spheres B(6y, rx o (S, 0k)) are converging safe regions in the sense
introduced by [12]], since by strong duality limg_,o o8k, 0k) = 0.

Proposition 2. [flimy, o, B = D), then limy, o, 6), = 6O,

For any safe region R, i.e., a set containing é(’\ﬂ), we define two levels of active sets, one for the
group level and one for the feature level:

Agp(R) = {g € G, max||S (X O)|| = (1 = )y}, Au(R) = GALJ(R){j € g+ max|X [0 > 7}.
9EAD

If one considers sequence of converging regions, then the next proposition (whose proof in Appendix)
states that we can identify in finite time the optimal active sets defined as follows:

Eoi={9e9: [SH(x]00D)| = (1= rw,}, &= | {ieg: 1X]60 =7},

g€y

Proposition 3. Let (Ry)ken be a sequence of safe regions whose diameters converge to 0. Then,
klim Agp(Ri) = Egp and klim Ar(Ri) = &
—00 —00

4 Properties of the Sparse-Group Lasso

To apply our safe rule, we need to be able to evaluate the dual norm QP efficiently. We describe such
as step hereafter along with some useful properties of the norm €2. Such evaluations are performed
multiple times during the algorithm, motivating the derivation of an efficient algorithm, as presented
in Algorithm 1]

4.1 Connections with ¢-norms

Here, we establish a link between the Sparse-Group Lasso norm 2 and the e-norm (denoted ||-||)

introduced in [8]. For any € € [0, 1] and z € R?, |||, is defined as the unique nonnegative solution

v of the equation Zf:1(|xL| — (1 —=ew)2 = (er)? (||z]lo := ||z||e). Using soft-thresholding, this

is equivalent to solve in v the equation Z:;l:l S(l_e)y(:ci)Q = IS —ey (2)||* = (ev)?. Moreover, the
dual norm of the e-norm is given b lyll2 = ellyl|® + (1 = e)|lyl|2 = ellyll + (1 — €)||yl1. Now
we can express the Sparse-Group Lasso norm €2 in term of the dual e-norm and derive some basic
properties.

Zsee [9} Eq. (42)] or Appendix



(1=7)wgy
Lasso norm satisfies the following properties: for any 8 and £ in RP

Proposition 4. For all groups g in G, let us introduce €, := . Then, the Sparse-Group

1€l

_ _ D D _ €g

05) = S+ (=nu B2, and 97O —mp 0
Bap = {geRP Vg e G,||8: (&) < (1—T)wg}. (11)

The sub-differential at (3 reads 0X(3) = {z € R? : Vg € G, zy € 70| |[1(Bq) + (1 — T)wy0||-||(Bq)} -

We obtain from the characterization of the unit dual ball that for the Sparse-Group Lasso, any
dual feasible point § € Ax q verifies: Vg € G, XJQ € (1 —=1)wgB + 7By.

From the dual norm formulation (I0), a vector § € R™ is feasible if and only if Qb (X TQ) <1,
ie,VgeG,|X] 0|, <7+ (1—7)w, Hence we deduce from (TT) a new characterization of the

dual feasible set: Ax o = {# e R" :Vge G, [ X] 0|, <7+ (1 —T)wy}.

4.2 Efficient computation of the dual norm

The following proposition shows how to compute the dual norm of the Sparse-Group Lasso (and the
e-norm). This is turned into an efficient procedure in Algorithm [I| (see the Appendix for details).

Proposition 5. For o € [0,1],R > 0 and = € R? the equation Y| Sy (:)? = (VR)? has
a unique solution v := A(x,«, R) € Ry, that can be computed in O(dlogd) operations in the
worst case. Withny = Card {i € [d] : |z;| > a||z|x/(a + R)}, the complexity of Algorithm|l]is
nr + nylog(ny), which is comparable to the ambient dimension d.

Thanks to Remark [2] we can explicit the critical parameter Ay for the Sparse-Group Lasso that is
\ :maxA(XJy’l_GWEQ)

T T+ (1 - 1w,
and get a dual feasible point (), since (X T p) = maxgeg A(X] p,1 — €4, ¢4) /(7 + (1 = T)wy).

— QP (XTy), (12)

5 Implementation

In this section we provide details on how to solve the Sparse-Group Lasso primal problem, and how
we apply the GAP safe screening rules. We focus on the block coordinate iterative soft-thresholding
algorithm (ISTA-BC); see [19]]. This algorithm requires a block-wise Lipschitz gradient condition
on the data fitting term f(3) = ||y — X 3||?/2. For our problem (I), one can show that for all
group g in G, L, = || X,||3 (where ||-||2 is the spectral norm of a matrix) is a suitable block-wise
Lipschitz constant. We define the block coordinate descent algorithm according to the Majorization-
Minimization principle: at each iteration [, we choose (e.g., cyclically) a group g and the next

iterate 3! is defined such that 80! = gL, if ¢’ # g and otherwise 5™ = argming czn, |8, —
(BL = Vo f(BY)/Lg) 12 /2+ (71 Bglly + (1 = T)wg || By ||) A/ Ly, where we denote for all g in G, ory :=
A/Lyg. This can be simplified to S, = SE‘;{:T)%% (Sray (B —Vgf(B8Y)/Ly)). The expensive
computation of the dual gap is not performed at each pass over the data, but only every f°° pass (in
practice f°°¢ = 10 in all our experiments). A pseudo code is given in Appendix G.

6 Experiments

In this section we present our experiments and illustrate the numerical benefit of screening rules for
the Sparse-Group Lasso.

6.1 Experimental settings and methods compared

We have run our ISTA-BC algorithmto obtain the Sparse-Group Lasso estimator for a non-increasing
sequence of 1" regularization parameters ()\t)tE[T,l] defined as follows: Ay := Apax 1070C¢—1D/(T=1),

3The source code can be found in https://github.com/EugeneNdiaye/GAPSAFE_SGL,


https://github.com/EugeneNdiaye/GAPSAFE_SGL

250- ;
NO SCREENING
STATIC SAFE

- ().
-0.8 200 - DYNAMIC SAFE
] DYNAMIC SAFE _ - DST3
-0.7 GAP SAFE SEQUENTIAL
0.6 _ GAP SAFE
150

-0.5
-0.4

).3

).2

-0

)

1
: I STATIC SAFE
;
3
7
9+
1
< 3 DST3
53
2 9
1
3
5
7
9
14
34
5
7
9
(

(RN

Time (s)

100 -

(K)

l GAP SAFE SEQUENTIAL L
(
L . ‘ ‘ - X o M o I IIII \

(A Amaz) duallty )

ot

logy(K)

Figure 2: Experiments on a synthetic dataset (p = 0.5,y; = 10,72 = 4,7 = 0.2).

(a) Proportion of active variables, i.e., variables not safely eliminated, as a function of parameters (\;)
and the number of iterations K. More red, means more variables eliminated and better screening. (b)
Time to reach convergence w.r.t the accuracy on the duality gap, using various screening strategies.

By default, we choose § = 3 and T' = 100, following the standard practice when running cross-
validation using sparse models (see R glmnet package [13]). The weights are always chosen as

wy = /Ny (as in [20]).

We also provide a natural extension of the previous safe rules [11} [5] to the Sparse-Group
Lasso for comparisons (please refer to Appendix D for more details). The static safe region
is given by B (y/\, ||[y/Amax — y/Al]). The corresponding dynamic safe region [3]]) is given by
B (y/, |0k — y/Al]), where (0))ken is a sequence of dual feasible points obtained by dual scaling;
¢f. Equation (9). The DST3, is an improvement of the preceding safe region, see [24] [5]], that we
adapted to the Sparse-Group Lasso. The GAP safe sequential rules corresponds to using only
GAP Safe spheres whose centers are the (last) dual point output by the solver for a former value
of A in the path. The GAP safe rules corresponds to performing our strategy both sequentially and
dynamically. Presenting the sequential rule allows to measure the benefits due to sequential rules and
to the dynamic rules.

We now demonstrate the efficiency of our method in both synthetic (Fig. (2)) and real datasets
(Fig. [6.2). For comparison, we report computation times to reach convergence up to a certain
tolerance on the duality gap for all the safe rules considered.

Synthetic dataset: We use a common framework based on the model y = X3 + 0.01¢
where ¢ ~ N(0,1d,,), X € R™*? follows a multivariate normal distribution such that V(i, j) €
[p]?, corr(X;, X;) = pli=7l. We fix n = 100 and break randomly p = 10000 in 1000 groups of
size 10 and select ; groups to be active and the others are set to zero. In each selected groups, v
coordinates are drawn with [3,]; = sign(¢) x U for U is uniform in [0.5, 10]), £ uniform in [—1, 1].

Real dataset: NCEP/NCAR Reanalysis 1 [17] The dataset contains monthly means of climate data
measurements spread across the globe in a grid of 2.5° x 2.5° resolutions (longitude and latitude
144 x 73) from 1948/1/1 to 2015/10/31 . Each grid point constitutes a group of 7 predictive variables
(Air Temperature, Precipitable water, Relative humidity, Pressure, Sea Level Pressure, Horizontal
Wind Speed and Vertical Wind Speed) whose concatenation across time constitutes our design matrix
X e R8MX73577_gych data have therefore a natural group structure.

In our experiments, we considered as target variable y € R84, the values of Air Temperature in a
neighborhood of Dakar. Seasonality and trend are first removed, as usually done in climate analysis
for bias reduction in the regression estimates. Similar data has been used in [10], showing that the
Sparse-Group Lasso estimator is well suited for prediction in climatology. Indeed, thanks to the
sparsity structure, the estimates delineate via their support some predictive regions at the group level,
as well as predictive features via coordinate-wise screening.

We choose 7 in the set {0,0.1,...,0.9, 1} by splitting in 50% the observations and run a training-test
validation procedure. For each value of 7, we require a duality gap of 10~% on the training part
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and pick the best one in term of prediction accuracy on the test part. The result is displayed in
Figure[6.2](a). We fixed § = 2.5 for the computational time benchmark in Figure [6.2](b)

6.2 Performance of the screening rules

In all our experiments, we observe that our proposed GAP Safe rule outperforms the other rules
in term of computation time. On Figure Q(c) we can see that we need 65s to reach convergence
whereas others rules need up to 212s at a precision of 1078, A similar performance is observed on
the real dataset (Figure [6.2)) where we obtain up to a 5x speed up over the other rules. The key reason
behind this performance gain is the convergence of the GAP Safe regions toward the dual optimal
point as well as the efficient strategy to compute the screening rule. As shown in the results presented
on Figure [2] our method still manages to screen out variables when A is small. It corresponds to low
regularizations which lead to less sparse solutions but need to be explored during cross-validation.

In the climate experiments, the support map in Figure[6.2}(c) shows that the most important coeffi-
cients are distributed in the vicinity of the target region (in agreement with our intuition). Nevertheless,
some active variables with small coefficients remain and cannot be screened out.

Note that we do not compare our method to the TLFre [23]], since this sequential rule requires the
exact knowledge of the dual optimal solution which is not available in practice. As a consequence,
one may discard active variables which can prevent the algorithm from converging as shown in [18]].

7 Conclusion

The recent GAP safe rules introduced have shown great improvements, for a wide range of regularized
regression, in the reduction of computing time, especially in high dimension. To apply such GAP
safe rules to the Sparse-Group Lasso, we have proposed a new description of the dual feasible set
by establishing connections between the Sparse-Group Lasso norm and e-norms. This geometrical
connection has helped providing an efficient algorithm to compute the dual norm and dual feasible
points, bottlenecks for applying the GAP Safe rules. Extending GAP safe rules on general hierarchical
regularizations, is a possible direction for future research.
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A Convex optimization reminder

We first recall the necessary tools for building screening rules, namely the Fermat’s first order
optimality condition (also called Fermat’s rule) and the characterization of the sub-differential of a
norm by means of its dual norm.

Proposition 6 (Fermat’s rule). (/3 Prop. 26.1]) For any convex function f : R* — R,
x* € argmin f(z) < 0€ of(z*). (13)

zeR4
Proposition 7. (/2| Prop. 1.2]) The sub-differential of the norm Q at x, denoted 02(x), is given by

{{zeRd:QD(z)<1}=BQD ifx =0,

14
{zeR1:QP(2) =1land 2"z = Q(z)} otherwise. 14

B Additional convexity and optimization tools

In what follows we will use the dot product notation for any z, =’ € R? we write (x,z') = z"z’.
We denote by ¢ the indicator function of a set C' defined as

0, ifxeC,

15
+00, otherwise. (15

o :RES R, () —{

We denote by f* : R? — R the Fenchel conjugate of f defined for any z € R? by f*(2) =
SUPyege w2 — F(w).

Proposition 8. (/2| Prop. 1.4]) The Fenchel conjugate of the norm 0 is given by
0%(€) = sup [¢"w — Qw)] = 15, (€)- (16)

weR?

C Proofs

We first remind the simple properties underlying the concept of safe screening rules [[11] in our
Sparse-Group Lasso context.

Proposition 0. The two levels of screening rules for the Sparse-Group Lasso are:
Feature level screening:

Vjeg, |XJT0A(/\’Q)\ <7 = BJ(»A’Q) =0.
Group level screening:

Vg e g,

sT(X;éMm)H < (1= 7wy = B = 0.
Remark 4. The first rule is has a strict inequality, but can be relaxed to a non-strict one if 7 # 1.
Proof. Let us consider BéA’Q) # 0, g € G. Then combining the subdifferential inclusion @) the

subdifferential of the /5-norm and the decomposition of any dual feasible point from Proposition
we obtain :

A fAD) )
X0 = rvg + (1 — 7)wy=2—— where v € 0 ||-[|, (BMD),
o]
X 0O =g, (X)) + S.(X] XD
. GO .
So we can deduce that ST(XJQ(/\’Q)) e (1 — 1w, {Igg“z)l} Since (M) is feasible then

HST(XJQA()"Q))H < (1 — 7)w, is equivalent to ||ST(X;—é(A*SZ))|| # (1 — 7)wy which implies, by

11



léclloo +7 =7
o —t

B(&e, T)

(a)QB(ﬁc,f) NTByw # ;& € (b) B(&e,7) < 7B (C)DB(&,?) NTBo = O; & ¢
TBOO TB(D

contrapositive, that Bé’\’ﬂ) = 0. Hence we obtain the group level safe rule. Furthermore, from the
subdifferential of the /1 -norm, we have:

5(02)
j : A(A,8) e A(AQ)
Vi g, XTAOD ¢ (1 —7)wy { 0] } +7 {&gn(ﬁj )} ,if B # 0,
) J A
[-7,7], if SN = 0.

A~ ~ ~ 3(X2) ~
Hence, ifﬁj()"m # 0 then X [ M) — sign(ﬁj()"ﬂ)) [(1 - T)’u}g”l—gﬁ + T] and so | X [ O] >

7. By contrapositive, we obtain the feature level safe rule. O

Proposition[1} For all group g€ G and j € g,

xXTo|<|xo, Xl 17
%ggzﬂl 501 <X 0. + 7| X5l (17)

maxges(o, ) IS+ (X, 0)|| is upper bounded by

_ {||ST(X506)|| + 1 X| if || X 0|, > 7,
-

(“X;06||OO+THXH” —1T); otherwise. (18)

Proof. | X[ 0] < |[X] (0 —0c)];]1 + | X, 0c| < || X;] + | X[ 0] as soon as 6 € B(b., 7).

Since 0 € B(0.,r) implies that X0 € B(X] 0., 7| X)), we have maxgep(o, IS+ (X, 0)] <
maxeep(e, ) |- ()| where & = X ] 0. and 7 = r| X;]|. From now, we just have to show how to
compute maxeep(e, 7 ||Sr(§)]-

e In the case where &, € 7B, if [|€c]| oo +7 < 7 (i.e., B(e,7) < TBy), we have I3, (€) =
€ and thus, maxeepe..7) [ S7 () || = maxeep(e..m 1€ — Uz, (E)] = 0.

e Otherwise if {. € 7By, and ||€,|| o0 + 7 > 7, for any vector § € 0B(&c, 7) N (7Bx)¢ and any
vector § € 7By 0 [§, &l 1§ — e, (I < I — &Il = 7 = [I§ — &[] Hence

¢ T, (€]l < - i-e

max
£€0B(&e,7) N (7B )°
geaTBoon[é.8c]

max
§eB(8e,T)

<7 g IS &

=7 =T+ [[&elly -

This upper bound is attained. Indeed, maxges (e, 71§ — -5, (€)|| = 7~ (§) =&l =

7 — 7 + ||€.]loo Where € is a vector in OB(€,,7) such that T, 5, (€) = & + e+ (T — [|€c]|0)
and j* € arg max;e(, |(§c);l-

12



o If &, ¢ 7By, since the projection operator on a convex set is a contraction, we have

v& € aB(§c7f)7 ”5 - HTBw (5)“ < Hé- - HTBm <§C)||
< ch - HTBw <£C)|| + Hf - ch
= ch - HTB:x} (fc)” +7.

Moreover, it is straightforward to see that the vector & := 3, + (1 — 7). (£.) where
Y = 1+ qeaso ey belongs to 0B (&, 7); it verifies 1,5, (&) = 15, (&) and it

attains this bound. O

Theorem(Safe radius). Forany 0 € Ax q and any (3 € RP, one has 0% e B (0,rx.a(5,0)),
for

ran(.8) = | AD2000) = DAY,

i.e., the aforementioned ball is a safe region for the Sparse-Group Lasso problem.

Proof. By weak duality, V3 € RP, D,(6*9) < Py o(B). Then, note that the dual objective
function (T)) is A\®-strongly concave. This implies:

/\2
V(6,0") € Ax o x Ax.a, Da(0) < DA(0) + VDA\(0)T(6—-¢) - > H9 — 9’H2 .
Moreover, since §*%) maximizes the concave function Dy, the following inequality holds true:

Ve Axq, VDAON)T(H-ND) <o.
Hence, we have forall § € Ax o and 5 € RP:
A2 A 2 A
5 |0 629" < DA@O™) — Dy (6)
Pya(B) — Da(0). O
Proposition Iflime o Be = BODY, then limy_op 0, = 6D,

N

Proof. Let ay, = max(\,QF (X7 py)) and recall that pj, = y — X 3. We have :

~ 1 1 ~
o0 =80 = |Gt = X80 - 3w = x50
11 (XD — X3)
== =-=) (- X8 —
‘(Oék A) (v Bk) \
11 XA — X8,
<|l=—-Zly-X el |
o A‘ ly — X Bl + ;y

If B — BNY), then ay, — max(\, QP (X T (y — XAD)) = max(\, AL, (X TIND)) = A
since y — X ﬁ:(’\’ﬂ) = XD thanks to the link-equation (3) and since §*M) is feasible
ie., Qg (X TOND) < 1. Hence, both terms in the previous inequality converge to zero. O

Proposition 3} Letr (Ry)ken be a sequence of safe regions whose diameters converge to 0. Then,

kli_{r(}o Agp(Ri) = Egp and kh_{rolc An(Ri) = &

Proof. We proceed by double inclusion. First let us prove that 3kg s.t. Vk > ko, Agp(Ri) € Egp.
Indeed, since the diameter of Ry converges to zero, for any € > 0 there exist kg € N,Vk >

ko, V0 € Ry, [0 — 0P| < e. The triangle inequality implies that Yg ¢ &g, 1S-(X, 0)] <
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T THAQ THQ : : : - echi
[8-(XJ0) =S, (X 0ND)||+ IS, (X, 0*D)]|. Since the soft-thresholding operator is 1-Lipschitz,

we have:
IS-(Xg O < [ X0 = 00| + [l 80Dy | < el X, ) + || (x5 02|,
as soon as k = ko. Moreover, Vg ¢ Eqp,

T T
18- (X 0| < max(|S: (X7 0)[| < emax X[ + max

.00
It suffices to choose € such that

e max|| X —l—maxHST XD H < (1—71)w,,
ma| X, | + max 8 (X] 00 | < (1 = 7y,

(1-m)wg—maxggey ||S- (XgTé(*’m)H
max g e,, | Xgll

{geG:|S, (X;HA(A))H < (I = 7T)wg} < Agp(Ry)¢, the set of variables removed by our screening
rule. This proves the first inclusion.

Now we show that Vi € N, Ag(Ry) 2 Ep. Indeed, for all g* € Egp, [|S-(XLONY)|| = (1—7)wge.

Since for all k in N, §*%) e Ry, then gn%xHST(XgTG)H > IS (XLOAD)|| = (1 — 7)wgy+ hence
ERE

the second inclusion holds.

We have shown that Vk > ko, Agp(Ri) = Egp and so Ag(Ry) < Ugesgp
7}. Moreover, the same reasoning yields Vg € G, {j € ¢ : maxger, \XJ.TG\ >71tc{jeg:
|XJ-T9A(>"Q)| > 7}. Hence Vk > ko, Ax(Ri) < Ag. The reciprocal inclusion is straightforward. [

that is to say € <

, to remove the group g. For any k > ko, &g, =

{j € g : maxyer, \XJTQ\ >

ﬁ then the Sparse-Group Lasso norm

PropositionH . For all group g in G, let ¢4 :=
satisfies the following properties: for any vectors 3 and £ in RP

Qrw(B) = (7 + (1= )wy) [15,l7 (19)
9geg
1€l
D _ €g
Q‘nw (6) - I?Eagx T+ (1 o T)wg7 (20)
Bop, ={£€RP:Yg e G, [IS- (&) < (1 —7)w,}. (1)

The subdifferential OS2 ,,(3) of the norm Q. ., at B is given by

{xe R?:VgeG,zge 1|y (By) + (1 —7)wyd |- (Bg)}~

Proof.

VB EeRP, Q(B) = T8l + (L —7) Y wy 1Bl = X, (7 11Bglly + (L —7)wg 1]l

geg 9eg
- S+ e el + e g
= Z(T + (1= T7)wy) [(1 —eg) 1Bgll, + €9 HﬁgH]
9€G
= N (=) 13112
9€g

14



The definition of the dual norm reads Q° € = 5 3??? BT€, and solving this problem yields:

QP(€) = sup <ﬁ §>—sup1nf<f)’ Dy - u(ZQ (Bg) *1>

B:Q(B)< 9€g 9€9

= mf {Z Sgp [(Bg, Eg) — 1 (Bg)] + N}

9geg

. 3 . §
_ * g _ >9
—;2%{2“9 (5 #mf = jnt S () 0
9€g 9€g
= inf { max(g & + p p = max inf { Q¥ S +u
p>0 | geG 9F ,u 9eG 1>0 | 9 \ p

= f S Q,
= e ey 00 = ()

= max inf bup<ug,£g> w(Qg(ug) — 1) (with pug = By)

>0y,

= max sup  (ug,&y) = magxsup(ug,fg> st (74 (1= 7)wy) HugHZ <1

9€G w0y (uy)<1 9€G  u,
(ug, &) = U/ng ||€g||€g
=max su u max  su — I —max——— % —.
geg ug:Q (7139)<1 9759 geg w gl IﬁD <1 T+ (1 T)wg geG T + (]_ — T)’lj}g

We recall here the proof of [23]] for the sake of completeness. First let us write 2(5) = Q1 (8)+Q2(5),
where Q1 (8) = 7([8]|1 and Q2(3) = (1 — 7) X g wyllByll2- Since 4 and Q5 are continuous
everywhere, we have (see [14, Theorem 1]): Q*(§) = (Q1 + Q2)*(§) = ming4p—e[Q(a) +
Q3 (b)] = ming[QF (a) + Q% (€ — a)], which is also the inf-convolution (see [3} Chapter 12]) of these
two norms. Using the Fenchel conjugate of the £; norm (QF = ¢, ) and of the £ norm (0 = i),

we have
Q* Z min ¢, (aq) +15 <M> - Z LB (59800(55»> .

geG @9 (1 - T)wg 496G (1 — T)wg
Hence the indicator of the unit dual ball is ¢ ,, € = deg t(1—ryw,B (& — ILr8,,(§y)) and using
S:(&y) = & — 5., we have:

Bao = {€€ R : QP(€) <1} = {€c R : ¥g e G, [|S,(&,)] < (1 - P, }.
O

Proposition . For a € [0,1], R = 0 and = € RY, the equation Z?zl Sva(zi)? = (VR)? has a
unique solution v € R, denoted by A(x, «, R) and that can be computed in O(dlog d) operations
in worst case. Withn = Card {i € [d] : |z;| > a||z||s/(a + R)}, the complexity of Algorithm|[l]is
nr + nylog(ny), which is comparable to the ambient dimension d.

Proof. Dividing by v/2, which is positive as soon as = # 0, we get that Z;l:l Sva(zj)? = (VR)? is
equivalent to Z?:1 Sa(x;/v)? = R%. Note that 25:1 Salzj/v)? = 2?21 Sa(|zj]/v)?* so without
loss of generality we assume z € Ri.

The case o = 0 and R = 0 corresponds to the situation where all x; are equal to zero or we impose
v equals to infinity. So we avoid this trivial case.

If « =0and R # 0, v = ||z||/R. Indeed,

II'M&

2
So(z;/v)* = R* — Z:(scj/y)2 =R = @ = R? hence the result.
v
j=1
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If « # 0 and R = 0, we have :
mane[d] .’Ej

d
;Sa(ij)Q:O@Vje[d],(?a>+=0<=>Vje[d],xyj<a<:>y> -

So we choose the smallest v i.e., v = ||z] s /. In all the above cases, the computation is done in

0(d).

Otherwise a # 0 and R # 0. The function v — ijl Sa(x;/v)? is a non-increasing continuous
function with limit +o0 (resp. 0) when v — 0 (resp. v — +00). Hence, there is a unique solution to

d
Zj:l Solzj/v)? = R
We denote by z(1), - . ., ¥(q) the coordinates of = ordered in decreasing order (with the convention
Ty = +00 and 2(441) = 0). Note that Z;{:1 Salzj/v)? = Z;l:l Sa(z(;)/v)?. Then, there exists

an index jo € [p] such that
d 2
Sa ( > S., < ) . (22)
;) Z(j0) Z L(jo+1)

For such a jo, one can check that v € (x(;, 1)/, (j,)/]. The definition of the soft-thresholding

operator yields
N2 (zj/v—a)? ifz; >va, 5
Sal;/V) {0 ifz; <va. 23)

It can be simplified thanks to z; > 2(;,) = z; > vaand z; < (41 = 7; < v
Hence, R? = j" V(@ /v —a)? = Zg (@) /v)? + a? ZJO 1 -2« Zj L &(jy/v so solving
201 Salz(y/ V) = R? is equivalent to solve on R ;

Jo

Jo
(a?jo — R*)v? — <2a Z 1:(]-)> v+ Z xfj) =0. (24)
=1

i=1
If (a%jo — R?) = 0, thenv = >’ | = j)/(2o¢ ° | x(j)). Otherwise v is the unique solution lying
in (z(j,41)/, 2,y /a] of the quadratlc equatlon stated in Eq. (24).

In the worst case, to compute A(x, «, R), one needs to sort a vector of size d, what can be done in
O(dlog(d)) operations, and finding jg thanks to (22) requires O(d?) if we apply a naive algorithm.

In the following, we show that one can easily reduce the complexity to O(dlog(d)) in worst case.

For all j in [d], S, (ar—’> = O as soon as z; < xj,. This implies that (22)) is equivalent to

= 6 ?
s. ( ) 5. ( )) 25)
2 Z (o) Z T (jo+1)

Denoting S;, := Z ", x(;) and S( ) L1 ;) a direct calculation show that (23) can be
rewritten as

(2) (2
R? e o? St 91 + jo S 5o +io+1]. (26)
x?jo) L (o) m%joJrl) Z(jo+1)

Finally, solving 37_, So(2(;)/v)? = R? is equivalent to finding the solution of (a*jo — R?)v* —
(2a8;,)v + SJ(-? = 0 lying in (2(j,41)/@, x(;,)/a]. Hence,

aS;, — \/0425?0 — S;f)(ano — R2)

A = =: 27
(I7 O[, R) Oz2j0 _ R2 Vl ( )
or
aSJO + \/0[252 (a%jo — R?)
Az, a, R) o 5 =: Uy. (28)
ajy — R
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e If a?jy — R? < 0, then v < 0 and so it cannot be a solution since A(x, «, R) must be
positive.

e Otherwise, we have

= J == N> N> Jo
V2 a%jo— K2 aljo— %)];x(a) Otjoj;x(j) o

where the second inequality results from the fact that jo > jo — R?/a?. And again v, cannot
be a solution since A(z, a, R) belongs to (2, 1)/, T(j,) /.
Hence, in all cases, the solution is given by v;.

Moreover, we can significantly reduce the cost of the sort. In fact, for all v, we have ||S,, (z)]| =
|Saw () ||loo = maxjefq) (75| — va) 4. Hence, ||Sou (z)|| = VR = ||z — va —vR > 0 if and only
if v < ||z|lo/(cex + R). Combining this with Equation (23)), we take into account only the coordinates
which have an absolute value greater than «||x||« /(v + R). Indeed, by contrapositive, if v is a

solution then v > ||z||o/cv + R hence z; < of|z||o/a + R = z; < va @ Sa(z;/v) = 0.

Finally, computing A(x, «, R) can be done by applying Algorithm Note that this algorithm is
similar to [9, Algorithm 4]. O

D Notes about others methods

D.1 Extension of some previous methods to the Sparse-Group Lasso

D.1.1 Extension of [11]: static safe region

The static safe region can be obtained as in [11] using the ball B (y/A, ||y/Amax — y/All)-

Indeed y/Amax is a dual feasible point. Hence the distance between y/A and y/Apax is smaller than

the distance between y/A and 6™ since the last point is the projection of y/A over the (close and
convex) dual feasible set A x o.

Extension of [4]: dynamic safe region
The dynamic safe region can be obtained as in [11]] using the ball B (y/A, |6k — y/A||), where the

sequence (0 )ken converges to the dual optimal vector G

A sequence of dual points is required to construct such a ball, and following [11] we can
consider the dual scaling procedure. We have chosen a simple procedure here: Let 0, =
P/ max(\, Qf,w (X Tpr)), where py, := y — X By, for a primal converging sequence /3;. Hence, one
can use the safe sphere B (y/A, ||0x — y/\||) with the same reasoning as for the static safe region.

Hence, we can easily extend the corresponding screening rules to the Sparse-Group Lasso thanks to
the formulation (6) and (3).

Extension of [4]: DST3 safe region

Now we show that the safe regions proposed in [24] for the Lasso and generalized in [4]] to the Group-
Lasso can be adapted to the Sparse-Group Lasso. For that, we define g, = arg max g QP (X Ty),

V., = {GER” : ||X;6‘ §T+(1—T)u}g*} and H, = {96R":<977y>—7+(1—7)w9*}.

Ly*

Where 7 is the vector normal to V, at §/Amax and is given by  := Xg, V|||, (X, ¥/Amax). Where
VIIHle(®) = Sa—ojef. (€)/1Sa=e)e|. (€)]|2, see Lemmal5|below. Let

<y
y —(1+ (1 —71)w,,)
0.:==— ( A g n

A Inl|*
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be the projection of y/ onto the hyperplane H, and g, := /[ ly/\ — Ok[|2 — [ly/A — 0.]|2 where
0y is a dual feasible vector (which can be obtained by dual scaling). Then, the following proposition
holds.

Proposition 9. Let 0, and rg, defined as above. Then 0™ € B(6,, 74, ).

Proof. We set H; := {0 € R" : {§,n) < 7+ (1 — T)w, } the negative half-space induced by
the hyperplane #,. Since 0*% € Ay o < V,  H; and B (4,114 — 6%]|) is a safe region, then
0D e Hy B (4,14 = 6kl).

Moreover, for any 6 € H; n B (4, || — 60k]|), we have:

2 2
I3 -l >H%*9H =[x =)+ .o -

2 Yy _ _
|5 =0 +2(% - 0.,0.-0).
Since 0. = I1,,- (%) and H" is convex, then (. — £, 6. — ) < 0. Thus

y y 2 _.
7—01@ 2 N 0. +H9 —0|%, hence [|0 — 6.|| < 7—9;6 - X—HC =:Tp,.
Which show that H;” " B (4, [|% — 0i||) < B(6., g, ). Hence the result. O
E Sparse-Group Lasso plus Elastic Net
The Elastic-Net estimator ([26]]) can be mixed with the Sparse-Group Lasso by considering
.1 A
argmin - |y — XBII° + M Q(8) + 22 18] (29)
ﬂeRP 2 2
: v X n+p,p ~ (Y n+p
By setting X = ( N dp> eR and §j = 0)€ R™*P, we can reformulate (29) as
argmin = Hy XBH +nQ(8), (30)

BeRP
and we can adapt our GAP safe rule framework to this case.

F Properties of the c-norm

We describe, for completeness, some properties of the e-norm. The following material is inspired
from [9]].

Lemma 1. For all £ € RY, the e-decomposition reads: ¢ = 55 + &1, where £ := Si1_¢)¢)1. (€)
and 17 := £ — £°. Moreover, ||£°|| = €|£]| and [|¢'~ 6H (1 —e)||&]l, - Hence, the following
decomposmon holds for the e-norm: |||, = ||§€|| + ] 6||OO

Proof. |[E°|l = IS —e)je)i. (§)]| = €l[]| by definition of the e-norm [|]|c. Moreover,
d

€7 =Y [& —sign(&)(1&] — L — o) €] )+ Zagn &) [l&] = (&1 = @ =e) ligl)+1-

i=1 i=1
Thus, using the symbol a v b to represent max(a, b), one has

1€, = max [sign (&) [1€:] — (1€ — @ =€) [[€])+]]
= max 1€l — (&) = A=) €l )+ v max 1€l = (&l = (X =) lIgll )+
&l <(-olell l€51>(-o)l€ll
- max Gl v A=) gl = A=) €]l -

[€il<s(1—e)ll€lle
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Lemma 2. Let us define U(||¢||¢) := {ue R?: |jul| < €||¢]|c} and V([|€]le) := {v e R : ||lv]le <
(1~ o)l Then

€079 = argmin [jv,, and £&° = argmin |Ju .
ueU([Ill.) veV([I£ll.)

E=u+v E=u+tv
Proof.
¢ Existence and uniqueness of the solutions

It is clear that
argmin ||v]|s = argmin ||v]|,

uel([l&]le) £=U(llglle)
E=utw
and
argmin ||u|| = argmin ||u].
vGV(HEH ) &=V (llglle)

E=u+v

Thus, these two problems have unique solution because we minimize strict convex functions onto
convex sets.

¢ Uniqueness of the e-decomposition

From Lemmall] we have ¢ = £€ + €17 where ||€¢|| = €||¢|c and [|€'¢]|oc = (1 — €)|¢]|.. Hence
¢ e U(J|€]|) and €17¢ € V(||€]|c). Now it suffices to show that this e-decomposition is unique.

Suppose & # 0 (the uniqueness is trivial otherwise) and v € V (||¢||.). We show that for any u € R?
such that £ = u + v, v # £17¢ implies u ¢ U(||€]|.)-

2 2 € —€ 2 €2 € —€ —€ 2
lul® = 1€ =of® = [[&° + (€7 = v)||” = [IE°° +2(€5, 67 — o) + [|€1 7 — v
hence [[ul|* > €*[¢[|Z + 2(¢¢, €' — v) because [|€°]| = [|¢]|c and [[€' — ]| > 0 (v # £'7°).
Moreover,

d
€7 —vy = Z [sign (&) (€] — (1 =€) €]l )+ [sign (&) (I&:] = (16| = (1 =€) [|€]]e)+) — vi]
d

Z (&) = A =) gl )+ 1 1& | = (1&] = (1 =€) lglle)+) — visign(&s)]

> Z (€] = (L =) €I =€) [l — visign(&:)] = 0.

i=1
[€:1>1—e)ll€lle

The last inequality hold because v € V (||€]|¢) i.e., Vi € [d], v; < (1—¢€)||€||. Finally, ||ul|? > €%||¢||?
hence the result. O
Lemma3. {{eR%: €]l < v} ={u+v:uveR? [Ju]| <ev,|v]e < (1—€r}.

Proof. Thanks to Lemmal(l} we have & = £ + €17, [[€¢|| = €[]l and [|€2¢]|x = (1 — €)[|¢]-
Hence, ||£]| < v implies ||€¢|| < ev and ||€1 ¢ < (1 — €)v.

Suppose § = u + v such that ||u|| < ev and HU” < (1 — €)v. From the e-decomposition, we have
Elle = 1€5N + 11614l oo and 1€17¢]|oo < [|v]|so thanks to Lemmal[2} Hence
JEl < llal + lelloo < e+ (1= )y = v.

Lemma 4 (Dual norm of the e-norm). Let ¢ € R?, then [|€||P = €||€]| + (1 — €)||€]|:.

Proof.
len? ax 'z = max &' (u+v) thanks to Lemma[3]
H || <1 llull<e
Iollop<1—c
— e max €Tk (1) max €70 = el + (1= 1¢]1. o
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Lemma 5. Let ¢ € R?\{0}. Then V||-||(¢) = HéT\D'

Proof. Let us define i : R x R > R by h(v,€) = [|S(1—-e),(€)|| — ev. Then we have

oh S—e (&) 0810 (€) Sa_an(©7 .

— (v, &) = —€e=———>"—"—(1 —€)sign — €

o) @l ||5<1—e>u(€)||( e

BT TP L T 10 TR )
TSa-ou©If e>u(5 B [Sa-ow (O
S
H a-gv{ H (thanks to Lemma[d).
Sa-an©l
By definition of the e-norm, A(||{||,£) = 0. Since gl,(||§||e, §) = Hju?\f # 0, we obtain by

applying the Implicit Function Theorem

oh oh Se(llel. »€)
VH'HE (6) x 5(||§||67§) + (75(”5”6,5) = 0 hence V ||'||5 (&) = *m~

oh Sa-opele§) & £ .ol _ &
Moreover, 0£(H§||5, ) = ISaorer ©T = TeT = el hence the result: V||-||(§) = ED O

G Implementation

Here we present the ISTA-BC we considered, and provide the GAP safe rules we have implemented.
Note that the GAP safe rules we have used are both sequential and dynamical by nature and simply
refer to as GAP safe.

Algorithm 2 ISTA-BC with GAP safe rules

Il’lpllt :X7 Y€, K7 fce7 ()\t)tE[T—l]

Vg € G, compute L, = || X,||3

Cgmpute Ao = Amax thanks to (T2) and AlgorithmT]

pro =0

forte [T — 1] do

Vge G, ag — N/Ly

B — pr-1 // Get previous e-solution
for k € [K] do

if £ mod f°¢ = 1 then

Compute 6 thanks to (9) and Algorithm ]

SetR =8 (9, \/Q(PA’”Q(@);D’V(G))) // Safe sphere
if Py, o(B8) — Dy, (0) < e // Stopping criterion
then
P
break
Update Ag,(R) and A (R) thanks to Theorem 2]
for ge A, (R) do // Loop over active groups
for j € g n As(R) do // Loop over active features
Bj — STag (5g - %q(ﬂ)) // Component-wise Soft-thresholding step
By Sglp ey (By) // Block-wise Soft-thresholding step

Output: (5*)cpr_1]
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