
Supplementary Material:
Tractable Operations for Arithmetic Circuits of Probabilistic Models
This supplementary appendix contains proofs of the results in this paper.

A Proofs

Proof of Theorem 1 We first observe that for DNNF circuits f1 and f2, checking whether f1 ^ f2 is
consistent is NP-hard [Darwiche and Marquis, 2002]. We will now reduce this consistency test to
multiplying two decomposable ACs. We first convert each DNNF circuit f

i

into an arithmetic circuit
AC

i

by replacing or-gates with +-nodes, and-gates with *-nodes, inputs x with �
x

, and true/false with
1/0. The resulting AC is decomposable and satisfies AC

i

(x) = 0 iff f
i

outputs 0 on input x (i.e.,
AC

i

(x) > 0 iff f
i

outputs 1 on input x ). Hence, f1^f2 outputs 0 on input x iff AC1(x)·AC2(x) = 0.
Therefore, f1 ^ f2 is consistent iff there exists an input x with (AC1 · AC2)(x) > 0, which holds iff
the partition function of AC1 · AC2 is greater than 0. The latter condition can be checked in polytime
on decomposable ACs. An analogous argument can be used for the multiplication of decomposable
and deterministic ACs, using a consistency test on the conjunction of two d-DNNFs [Darwiche and
Marquis, 2002]. ⇤

Proof of Theorem 2 That the AC is decomposable and deterministic follows directly from the
definition of a PSDD and its underlying SDD. That the AC represents the distribution induced by the
PSDD can be shown using an inductive argument on the structure of the PSDD. For the base case, we
have a PSDD literal x and AC indicator �

x

, or a PSDD terminal ? and AC constant 0, or a PSDD
simple or-node and AC ↵�

x

+ (1� ↵)�¬x

. The theorem holds for all cases.

For the inductive case, consider an or-node n of the PSDD with elements (p
i

, s
i

,↵
i

), and the
corresponding +-node AC

n

of the AC which has the form
P

i

↵
i

· AC
pi · AC

si . By induction, we
assume the PSDD/AC pairs p

i

/AC
pi and s

i

/AC
si induce the same distribution, i.e., the value of the

PSDD is the same as the value of the AC given the same input. Given input x, at most one element
(p

i

, s
i

,↵
i

) of the PSDD will have its corresponding SDD wire evaluate to 1 (see Footnote 3). The
value of the PSDD given input x is the product of ↵

i

and the values of p
i

and s
i

. Similarly, the AC
has the same non-zero child ↵

i

· AC
pi · AC

si (the others must have value zero by induction). Hence,
the distributions of PSDD n and circuit AC

n

are the same. ⇤

Proof of Theorem 3 Let input PSDDs n1 and n2 have elements (p
i

, s
i

,↵
i

) and (q
j

, r
j

,�
j

), respec-
tively. If vtree v is over variables X, then denote the variables of the left and right children vl and vr

by X

l and X

r, respectively. Let Pr
n

denote the distribution of a PSDD n. First, for an instantiation
x

l there is a unique p
i

and a unique q
j

where x

l |= p
i

and x

l |= q
j

. Subsequently:

Pr
n1(x) · Prn2(x) =

⇣
Pr

pi(x
l

) · Pr
si(x

r

) · ↵
i

⌘
·
⇣
Pr

qj (x
l

) · Pr
rj (x

r

) · �
j

⌘

= (Pr
pi(x

l

) · Pr
qj (x

l

)) · (Pr
si(x

r

) · Pr
rj (x

r

)) · (↵
i

· �
j

)

=

⇣
1


piqj

· Pr
pi(x

l

) · Pr
qj (x

l

)

⌘
·
⇣

1


sirj

· Pr
si(x

r

) · Pr
rj (x

r

)

⌘
·
⇣

piqj · sirj · ↵i

· �
j

⌘

where 
piqj and 

sirj are the normalizing constants of p
i

· q
j

and s
i

· r
j

, respectively. Let  =P
ij


piqj · sirj · ↵i

· �
j

denote the normalizing constant of Pr
n1 · Prn2 . The above expression

corresponds to a PSDD for the desired distribution 1


· Pr
n1 · Prn2 , which has elements:

⇣
1


piqj

· p
i

· q
j

,
1


sirj

· s
i

· r
j

,
1


· 

piqj · sirj · ↵i

· �
j

⌘

Algorithm 1 recursively constructs this PSDD. The base case used in Line 3 is as follows:

n1\n2 ? X ¬X X : �
? (?, 0) (?, 0) (?, 0) (?, 0)
X (?, 0) (X , 1) (?, 0) (X , �)

¬X (?, 0) (?, 0) (¬X , 1) (¬X , 1� �)
X : ↵ (?, 0) (X , ↵) (¬X , 1� ↵) (X :

↵·�


, )
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The notation X : ✓ represents a simple or-gate over variable X such that the literal X has weight ✓
and the literal ¬X has weight 1� ✓. Moreover,  = ↵ · � + (1� ↵) · (1� �).

Let i
v

denote a node in input PSDD n1 normalized for vtree node v and let j
v

denote a node in input
PSDD n2 normalized for vtree v. Let size(i

v

) be the number of elements for PSDD node i
v

(and
similarly for j

v

). The size of input PSDD n1 is then s1 =

P
v,iv

size(i
v

) (and similarly for s2). Due
to caching, we invoke the algorithm at most once for each pair of PSDD nodes (i

v

, j
v

). Moreover,
given the Cartesian product on the elements of i

v

and j
v

, the overall complexity of the algorithm is

O(

X

v

X

ivjv

size(i
v

) · size(j
v

)) = O

0

@

2

4
X

v,iv

size(i
v

)

3

5

2

4
X

v,jv

size(j
v

)

3

5

1

A
= O(s1s2).

⇤

Proof of Theorem 4 We first observe that for a d-DNNF circuit f , checking the validity of 9Xf is
NP-hard [Darwiche and Marquis, 2002]. We will now reduce this test to summing out a variable from
a deterministic and decomposable AC. We first convert the d-DNNF circuit f into a decomposable
and deterministic arithmetic circuit AC as given in the proof of Theorem 1. Recall that the resulting
AC is such that AC(x) = 0 iff f outputs 0 on input x. Let Y = X \X . Then 9Xf outputs 0 on
input y iff (

P
X

AC)(y) = 0. Therefore, 9Xf is valid iff min

y

(

P
X

AC)(y) > 0, which can be
decided in polytime if

P
X

AC is decomposable and deterministic. ⇤

Proof of Theorem 5 The proof is constructive. First, we identify a distribution that has no compact
PSDD representation for any vtree. We then show that this distribution results from summing out a
variable from another distribution that can be represented compactly as a PSDD.

Let PSDDs n1 and n2 represent two fully-factorized distributions Pr1 and Pr2 over variables Z.
Let PSDD a represent the weighted addition Pr

a

= ✓1Pr1 + ✓2Pr2 where ✓1 and ✓2 are positive
weights that sum to one. Let X and Y be a partition of variables Z and consider the conditional
distribution Pr

a

(Y | x) for some instantiation x. We now have

Pr
a

(Y,x) = ✓1Pr1(Y,x) + ✓2Pr2(Y,x) = ✓1Pr1(x)Pr1(Y) + ✓2Pr2(x)Pr2(Y)

Pr
a

(x) =

X

y

Pr
a

(xy) =

X

y

⇥
✓1Pr1(xy) + ✓2Pr2(xy)

⇤
= ✓1Pr(x) + ✓2Pr(x).

Hence,

Pr
a

(Y | x) = Pr
a

(Y,x)

Pr
a

(x)

=

✓1Pr1(x)Pr1(Y) + ✓2Pr2(x)Pr2(Y)

✓1Pr1(x) + ✓2Pr2(x)

= ⌧
x

Pr1(Y) + (1� ⌧
x

)Pr2(Y)

where

⌧
x

=

✓1Pr1(x)

✓1Pr1(x) + ✓2Pr2(x)
=

1

1 +

✓2Pr2(x)
✓1Pr1(x)

.

The conditional distribution Pr
a

(Y | x) is then a weighted sum of the fully factorized distributions
Pr1(Y) and Pr2(Y), where the weight ⌧

x

is a function of the instantiation x. Assume that Pr1(Y)

and Pr2(Y) are distinct. First, note that any distinct weight ⌧
x

yields a distinct conditional distribution
Pr

a

(Y | x). Second, with the appropriate parameterization of Pr1,Pr2, we can guarantee that the
weight ⌧

x

is distinct for all distinct instantiations x.9 Since we have 2

|X| distinct instantiations x, we
have 2

|X| distinct conditional distributions Pr
a

(Y | x).
A vtree node v

i

on the right most path will partition variables Z into X and Y, where Y are the
variables inside vtree v

i

. Any distinct conditional distribution Pr
a

(Y | x) must have a distinct PSDD
node normalized for vtree v

i

, leading to 2

|X| such nodes in the above construction. Hence, the PSDD
for Pr

a

is exponentially large. This is analogous to the Sieling and Wegener [1993] construction and
bound for OBDDs.

9Note Pr2(x)
Pr1(x)

=
Q

i2I
x

qi
pi

Q
j /2I

x

1�qj
1�pj

where I
x

is the set of indices i where Xi is set to true by x. Each
I
x

is unique for each distinct x, so each ⌧
x

is unique if we set 1�pi
1�qi

= 1
2 and pi

qi
to a unique prime for all i.
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Consider now the distribution Pr
c

(U,X,Y) with Pr
c

(u,x,y) = ✓1Pr1(X,Y) and Pr
c

(u,x,y) =
✓2Pr2(X,Y), where Pr1,Pr2 and ✓1, ✓2 are as given above. Distribution Pr

c

can be represented as
a PSDD whose size is linear in n = |Z|. Summing-out variable U from Pr

c

results in the distribution
Pr

a

(X,Y), which has an exponentially large PSDD for any vtree (as shown above). ⇤

Proof of Theorem 6 The proof (sketch) is based on constructing a particular vtree, leading to a
PSDD with the mentioned size.

Assume first that we have a jointree for the given factors, whose largest cluster has size  w + 1

(such a jointree must exist by the definitions of jointree and treewidth). Designate an arbitrary cluster
of the jointree as root. We will now construct a vtree recursively from this jointree/root pair.

1. The base case is for a jointree with only one cluster C, for which we construct a right-linear
vtree over the variables of C. A right-linear vtree is a vtree in which the left child of each
internal node is a leaf (e.g., the third vtree of Figure 4).

2. For the inductive case, let C be the jointree root.

(a) Remove C from the jointree, leading to a number of disconnected trees t
i

, while
selecting the neighbor of C in each t

i

as the root for t
i

.
(b) Recursively construct a vtree v

i

from each tree t
i

and its root.
(c) Connect vtree nodes v

i

arbitrarily into a vtree v
C

.
(d) Connect vtree node v

C

and the variables of cluster C into a right-linear vtree structure,
with the variables of cluster C appearing first and node v

C

appearing last.

This construction leads to a decision vtree as defined in [Oztok and Darwiche, 2014], where factors
play the role of CNF clauses.

Suppose now that we construct a PSDD for the given factors using the above vtree and the method
proposed in this paper, and let Pr(.) be the distribution induced by this PSDD. Suppose that vtree
node v was added when processing cluster C (in Steps 1, 2c or 2d), where X are the variables of
vtree v. One can show that we have at most 2|C| distinct distributions of the form Pr(X|c) [Kisa
et al., 2014]. Hence, the PSDD will have at most 2|C| distinct nodes normalized for v. Moreover, one
can show that each PSDD node will have two elements [Oztok and Darwiche, 2014]. Hence, the size
of resulting PSDD will be O(m · exp(w)). ⇤
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