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A Derivation of P (CN)

In this appendix, we derive P (CN ) for a general KP model, as well as the NBNB and NBD models.

A.1 KP Models

We start with equation 2 and note that

P (CN ) = P (CN |K)P (K), (1)

where K = |CN |. To evaluate P (CN |K), we need to sum over all possible cluster assignments:

P (CN |K) =
∑

z1,...,zN∈[K]

P (CN | z1, . . . , zN ,K)︸ ︷︷ ︸
I(z1,...,zN⇒CN )

P (z1, . . . , zN |K). (2)

Since N1, . . . , NK are completely determined by K and z1, . . . , zN , it follows that

P (z1, . . . , zN |K) = P (z1, . . . , zN |N1, . . . , NK ,K)P (N1, . . . , NK |K) (3)

=

∏K
k=1Nk!

N !

K∏
k=1

P (Nk |K) (4)

=
1

N !

K∏
k=1

Nk!µNk
. (5)
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Therefore,

P (CN |K) =
∑

z1,...,zN∈[K]

I(z1, . . . , zN ⇒ CN )
1

N !

K∏
k=1

Nk!µNk
(6)

=
1

N !

( ∏
c∈CN

|c|!µ|c|

) ∑
z1,...,zN∈[K]

I(z1, . . . , zN ⇒ CN ) (7)

=
K!

N !

∏
c∈CN

|c|!µ|c|. (8)

Substituting equation 8 into equation 1 and using K ∼ κ we obtain

P (CN ) =
|CN |!κ|CN |

N !

( ∏
c∈CN

|c|!µ|c|

)
. (9)

A.2 The NBNB Model

For fixed values of r and p, the NBNB model is a specific case of a KP model with

κk =
Γ (k + a) qk (1− q)a

(1− (1− q)a) Γ (a) k!
and µm =

Γ (m+ r) pm (1− p)r

(1− (1− p)r) Γ (r)m!
, (10)

for k and m in N = {1, 2, . . . }. Combining equations 9 and 10 gives

P (CN | a, q, r, p) =
|CN |!
N !

Γ (|CN |+ a) q|CN | (1− q)a

(1− (1− q)a) Γ (a) |CN |!
∏
c∈CN

|c|! Γ (|c|+ r) p|c| (1− p)r

(1− (1− p)r) Γ (r) |c|!
(11)

=
Γ (|CN |+ a) q|CN | (1− q)a

N ! (1− (1− q)a) Γ (a)

∏
c∈CN

Γ (|c|+ r) p|c| (1− p)r

(1− (1− p)r) Γ (r)
. (12)

Conditioning on N and removing constant terms, we obtain

P (CN |N, a, q, r, p) ∝ Γ (|CN |+ a)β|CN |
∏
c∈CN

Γ (|c|+ r)

Γ (r)
, (13)

where β = q (1−p)r
1−(1−p)r . Equation 13 leads to the following reseating algorithm:

• for n = 1, . . . , N , reassign element n to
– an existing cluster c ∈ CN \n with probability ∝ |c|+ r

– or a new cluster with probability ∝ (|CN \n|+ a)β.

Adding the prior terms for r and p to equation 12 we obtain the joint distribution of CN , r and p:

P (CN , r, p | a, q, ηr, sr, up, vp)
= P (r | ηr, sr)P (p |up, vp)P (CN | r, p) (14)

=
rηr−1e−

r
sr

Γ (ηr) s
ηr
r

pup−1(1− p)vp−1

B(up, vp)
×

Γ (|CN |+ a) q|CN | (1− q)a

N ! (1− (1− q)a) Γ (a)

∏
c∈CN

Γ (|c|+ r) p|c| (1− p)r

(1− (1− p)r) Γ (r)
(15)

∝ rηr−1 e−
r
sr pN+up−1 (1− p)vp−1

(
q (1− p)r

1− (1− p)r

)|CN |

×

Γ (|CN |+ a)

N !

∏
c∈CN

Γ (|c|+ r)

Γ (r)
. (16)
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Therefore, the conditional posterior distributions over r and p are

P (r |CN , p, ηr, sr) ∝
rηr−1 e−

r
sr (1− p)r |CN |

(1− (1− p)r)|CN |

∏
c∈CN

Γ (|c| − 1 + r)

Γ (r)
(17)

P (p |CN , r, up, vp) ∝
pN+up−1(1− p)r |CN |+vp−1

(1− (1− p)r)|CN |
. (18)

A.3 The NBD Model

For fixed µ, the NBD model is a specific case of a KP model. Therefore,

P (CN | a, q,µ) =
Γ (|CN |+ a) q|CN | (1− q)a

N ! (1− (1− q)a)Γ (a)

∏
c∈CN

|c|!µ|c|. (19)

Conditioning on N and removing constant terms, we obtain

P (CN |N, a, q,µ) ∝ Γ (|CN |+ a) q|CN |
∏

c∈|CN |

|c|!µ|c|.

Via Dirichlet–multinomial conjugacy,

µ |CN , α,µ(0) ∼ Dir
(
αµ

(0)
1 + L1, α µ

(0)
2 + L2, . . .

)
, (20)

where Lm is the number of clusters of size m in CN . Although µ is an infinite-dimensional vector,
only the first N elements affect P (CN | a, q,µ). Therefore, it is sufficient to sample the (N + 1)-
dimensional vector (µ1, . . . , µN , 1−

∑N
m=1 µm) from equation 20, modified accordingly:

(µ1, . . . , µN , 1−
N∑
m=1

µm) |CN , α, µ(0)
1 , . . . , µ

(0)
N

∼ Dir

(
αµ

(0)
1 + L1, . . . , α µ

(0)
N + LN , α

(
1−

N∑
m=1

µ(0)
m

))
. (21)

We can then discard 1−
∑N
m=1 µm.

B Proof of the Microclustering Property for a Variant of the NBNB Model

Theorem 1. If CN is drawn from a KP model with κ = NegBin (a, q) and µ = NegBin (r, p),2 then
for all ε > 0, P (MN /N ≥ ε)→ 0 as N →∞, where MN is the size of the largest cluster in CN .

In this appendix, we provide a proof of theorem 1.

We use the following fact: Γ (x+ a) /Γ (x) � xa as x → ∞ for any a ∈ R via Stirling’s approx-
imation to the gamma function. We use f(x) � g(x) to denote that f(x) / g(x)→ 1 as x→∞.
Lemma 1. For any k ∈ {1, 2, . . .}, P (K = k |N = n)→ 0 as n→∞.

Proof. Because N |K = k ∼ NegBin (kr, p),

P (K = k,N = n) =
Γ (k + a)

k! Γ (a)
(1− q)a qk Γ (n+ kr)

n! Γ (kr)
(1− p)kr pn.

Via the fact noted above, Γ (n+ kr) /Γ (n+ kr + r) � 1 / (n+ kr)r → 0 as n→∞, so
P (K = k,N = n)

P (K = k + 1, N = n)
=

Γ (k + a) (k + 1)

Γ (k + a+ 1) q

Γ (kr + r)

Γ (kr)

Γ (n+ kr)

Γ (n+ kr + r)
→ 0 as n→∞.

Therefore,

P (K = k |N = n) =
P (K = k,N = n)∑∞

k′=0 P (K = k′, N = n)
≤ P (K = k,N = n)

P (K = k + 1, N = n)
→ 0.

2We have not truncated the negative binomial distributions, so this is a minor variant the NBNB model.
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Lemma 2. For any ε ∈ (0, 1), there exist c1, c2, . . . ≥ 0, not depending on n, such that ck → 0 as
k →∞ and k P (N1 / n ≥ ε |K = k,N = n) ≤ ck for all n ≥ 2 / ε and k ∈ {1, 2, . . .}.

Before proving lemma 2, we first show how theorem 1 follows from it.

Proof of theorem 1. Let ε ∈ (0, 1) and choose c1, c2, . . . by lemma 2. For any n ≥ 2 / ε,

P (Mn / n ≥ ε |N = n)

=

∞∑
k=1

P (N1 / n ≥ ε or · · · or NK / n ≥ ε |K = k,N = n)P (K = k |N = n)

≤
∞∑
k=1

k∑
i=1

P (Ni / n ≥ ε |K = k,N = n)P (K = k |N = n)

=

∞∑
k=1

k P (N1 / n ≥ ε |K = k,N = n)P (K = k |N = n)

≤
∞∑
k=1

ck P (K = k |N = n) ≤ sup {ck : k > m}+

m∑
k=1

ck P (K = k |N = n)

for any m ≥ 1. (We note that we only summed over k ≥ 1 because P (K = 0 |N = n) = 0 for
any n ≥ 1.) Therefore, via lemma 1, limsupnP (Mn / n ≥ ε |N = n) ≤ sup {ck : k > m}. Finally,
because sup {ck : k > m} → 0 asm→∞, theorem 1 follows directly from lemma 2, as desired.

To prove lemma 2, we need two supporting results.

Lemma 3. If b > (r+ 1) / r and θk ∼ Beta (r, (k − 1) r), then k P (θk ≥ b log (k)
k )→ 0 as k →∞.

Proof. Let ak = (b log (k)) / k, and suppose that k is large enough that ak ∈ (0, 1). First, for
any θ ∈ (ak, 1), we have θr−1 ≤ 1 / ak. Second, B (r, (k − 1) r) = Γ (r) Γ (kr − r) /Γ (kr) �
Γ (r) (kr)−r as k → ∞, via Stirling’s approximation, as we noted previously. Third, because
1 + x ≤ exp (x) for any x ∈ R, (1− ak)kr ≤ exp (−ak)

kr
= k−rb. Therefore, we obtain

k P (θk ≥ ak)

=
k

B (r, (k − 1) r)

∫ 1

ak

θr−1 (1− θ)(k−1) r−1 dθ

≤ k / ak
B (r, (k − 1) r)

∫ 1

ak

(1− θ)(k−1)r−1 dθ =
k / ak

B (r, (k − 1) r)

(1− ak)(k−1) r

(k − 1) r

≤ k / ak
B (r, (k − 1) r)

k−rb (1− ak)−r

(k − 1) r
� k2 / (b log (k))

Γ (r) (kr)−r
k−rb

kr
=

rr−1 k−br+r+1

Γ (r) (b log (k))
→ 0

as k → 0 because b > (r + 1) / r.

Lemma 4. Let b > 0 and ε ∈ (0, 1), as well as k > 1 and n ∈ {1, 2, . . .}. If (b log (k)) / k < 1 and
X ∼ Bin (n, (b log (k)) / k), then P (X ≥ nε) ≤ (1 + b log (k))n / knε.

Proof. Let Z1, . . . , Zn
iid∼ Bern ((b log (k)) / k). Because x 7→ kx is strictly increasing,

P (X ≥ nε) = P (kX ≥ knε) ≤ E[kX ]

knε
=

∏n
i=1 E[kZi ]

knε
≤ (1 + b log (k))n

knε

via Markov’s inequality.

Proof of lemma 2. First, let ε ∈ (0, 1). Next, let b = (r + 2) / r and choose k∗ ∈ {2, 3, . . .} to
be sufficiently large that (1 + b log (k)) / kε < 1 and (b log (k)) / k < ε for all k ≥ k∗. Then, for
k = 1, 2, . . . , k∗ − 1, define ck = k, and, finally, for k = k∗, k∗ + 1, . . ., define

ck = k−1(1 + b log (k))2/ε + k P

(
θk ≥

b log (k)

k

)
,
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where θk ∼ Beta (r, (k − 1) r).

Via lemma 3, ck → 0 as k →∞. Trivially, for k < k∗, k P (N1 / n ≥ ε |K = k,N = n) ≤ k = ck.

Let k ≥ k∗ and suppose that n ≥ 2 / ε. Via a straightforward calculation, we can show that N1 |K =
k,N = n ∼ BetaBin (n, r, (k − 1) r). (This follows from the fact that if Y ∼ NegBin (r, p) and,
independently, Z ∼ NegBin (r′, p), then Y | (Y + Z) = n ∼ BetaBin (n, r, r′).) Therefore, if we
define θ ∼ Beta (r, (k − 1) r), X | θ ∼ Bin (n, θ), and a = (b log (k)) / k, then we have

k P (N1 / n ≥ ε |K = k,N = n) = k P (X ≥ nε)
= k P (X ≥ nε, θ < a) + k P (X ≥ nε, θ ≥ a).

However, k P (X ≥ nε, θ ≥ a) ≤ k P (θ ≥ a) = k P
(
θk ≥ b log (k)

k

)
. To handle the first term, we

note that as a function of θ, P (X = x | θ) is nondecreasing on (0, ε) whenever x /n ≥ ε because
dP (X=x | θ)

dθ =
(
n
x

)
θx−1 (1− θ)n−x−1 (x− nθ). Therefore, P (X ≥ nε | θ) =

∑
x≥nε P (X = x | θ)

is nondecreasing on (0, ε). Finally, because our choice of k∗ means that a ∈ (0, ε),

k P (X ≥ nε, θ < a)

= k

∫ a

0

P (X ≥ nε | θ)P (θ) dθ ≤ k P (X ≥ nε | θ = a)

≤ k (1 + b log (k))n / knε = k

(
1 + b log (k)

kε

)n
≤ k

(
1 + b log (k)

kε

)2/ε

= k−1 (1 + b log (k))
2/ε

,

where the second inequality is via lemma 4 and the third inequality holds because n ≥ 2 / ε and (1 +
b log (k)) / kε < 1 because of our choice of k∗. Thus, k P (N1 / n ≥ ε |K = k,N = n) ≤ ck.

This completes the proof of theorem 1.

C The Chaperones Algorithm

For large data sets with many small clusters, standard Gibbs sampling algorithms (such as the one
outlined in section 3) are too slow. In this appendix, we therefore propose a new Gibbs-type sampling
algorithm, which we call the chaperones algorithm. This algorithm is inspired by existing split–
merge Markov chain sampling algorithms [1, 2, 3]; however, it is simpler, more efficient, and—most
importantly—likely exhibits better mixing properties when there are many small clusters.

In a standard Gibbs sampling algorithm, each iteration involves reassigning each data point xn for
n = 1, . . . , N to an existing cluster or to a new cluster by drawing a sample from P (CN |N,CN \
n, x1, . . . , xN ). When the number of clusters is large, this step can be inefficient because the prob-
ability that element n will be reassigned to a given cluster will, for most clusters, be extremely small.

The chaperones algorithm focuses on reassignments that have higher probabilities. If cn ∈ CN
denotes the cluster containing data point xn, then each iteration consists of the following steps:

1. Randomly choose two chaperones, i, j ∈ {1, . . . , N} from a distribution
P (i, j |x1, . . . , xN ) where the probability of i and j given x1, . . . , xN is greater than
zero for all i 6= j. This distribution must be independent of the current state of the Markov
chain CN ; however, crucially, it may depend on the observed data points x1, . . . , xN .

2. Reassign each xn ∈ ci ∪ cj by sampling from P (CN |N,CN \n, ci ∪ cj , x1, . . . , xN ).

In step 2, we condition on the current partition of all data points except xn, as in a standard Gibbs
sampling algorithm, but we also force the set of data points in ci ∪ cj to remain unchanged—i.e.,
xn must remain in the same cluster as at least one of the chaperones. (If n is a chaperone, then this
requirement is always satisfied.) In other words, we view the non-chaperone data points in ci ∪ cj as
“children” who must remain with a chaperone at all times. Step 2 is almost identical to the restricted
Gibbs moves found in existing split–merge algorithms, except that the chaperones i and j can also
change clusters, provided they do not abandon any of their children. Splits and merges can therefore
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occur during step 2: splits occur when one chaperone leaves to form its own cluster; merges occur
when one chaperone, belonging to a singleton cluster, then joins the other chaperone’s cluster.

The chaperones algorithm can be justified as follows: For any fixed pair of chaperones (i, j), step 2
is a sequence of Gibbs-type moves and therefore has the correct stationary distribution. Randomly
choosing the chaperones in step 1 amounts to a random move, so, taken together, steps 1 and 2 also
have the correct stationary distribution (see, e.g., [4], sections 2.2 and 2.4). To guarantee irreducibility,
we start by assuming that P (x1, . . . , xN |CN )P (CN ) > 0 for any CN and by letting C ′N denote
the partition of N in which every element belongs to a singleton cluster. Then, starting from any
partition CN , it is easy to check that there is a positive probability of reaching C ′N (and vice versa) in
finitely many iterations; this depends on the assumption that P (i, j |x1, . . . , xN ) > 0 for all i 6= j.
Aperiodicity is also easily verified since the probability of staying in the same state is positive.

The main advantage of the chaperones algorithm is that it can exhibit better mixing properties than
existing sampling algorithms. If the distribution P (i, j |x1, . . . , xN ) is designed so that xi and xj
tend to be similar, then the algorithm will tend to consider reassignments that have a relatively high
probability. In addition, the algorithm is easier to implement and more efficient than existing split–
merge algorithms because it uses Gibbs-type moves, rather than Metropolis-within-Gibbs moves.

D The Syria2000 and SyriaSizes Data Sets
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Figure 1: Cluster size distributions for the Syria2000 (left) and SyriaSizes (right) data sets.
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