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Abstract

We present a theoretical analysis of active learning with more realistic interactions
with human oracles. Previous empirical studies have shown oracles abstaining on
difficult queries until accumulating enough information to make label decisions.
We formalize this phenomenon with an “oracle epiphany model” and analyze active
learning query complexity under such oracles for both the realizable and the agnos-
tic cases. Our analysis shows that active learning is possible with oracle epiphany,
but incurs an additional cost depending on when the epiphany happens. Our results
suggest new, principled active learning approaches with realistic oracles.

1 Introduction

There is currently a wide gap between theory and practice of active learning with oracle interaction.
Theoretical active learning assumes an omniscient oracle. Given a query x, the oracle simply
answers its label y by drawing from the conditional distribution p(y | x). This oracle model is
motivated largely by its convenience for analysis. However, there is mounting empirical evidence
from psychology and human-computer interaction research that humans behave in far more complex
ways. The oracle may abstain on some queries [Donmez and Carbonell, 2008] (note this is distinct
from classifier abstention [Zhang and Chaudhuri, 2014, El-Yaniv and Wiener, 2010]), or their answers
can be influenced by the identity and order of previous queries [Newell and Ruths, 2016, Sarkar et al.,
2016, Kulesza et al., 2014] and by incentives [Shah and Zhou, 2015]. Theoretical active learning
has yet to account for such richness in human behaviors, which are critical to designing principled
algorithms to effectively learn from human annotators.

This paper takes a step toward bridging this gap. Specifically, we formalize and analyze the phe-
nomenon of “oracle epiphany.” Consider active learning from a human oracle to build a webpage
classifier on basketball sport vs. others. It is well-known in practice that no matter how simple
the task looks, the oracle can encounter difficult queries. The oracle may easily answer webpage
queries that are obviously about basketball or obviously not about the sport, until she encounters
a webpage on basketball jerseys. Here, the oracle cannot immediately decide how to label (“Does
this jersey webpage qualify as a webpage about basketball?”). One solution is to allow the oracle
to abstain by answering with a special I-don’t-know label [Donmez and Carbonell, 2008]. More
interestingly, Kulesza et al. [2014] demonstrated that with proper user interface support, the oracle
may temporarily abstain on similar queries but then have an “epiphany”: she may suddenly decide
how to label all basketball apparel-related webpages. Empirical evidence in [Kulesza et al., 2014]
suggests that epiphany may be induced by the accumulative effect of seeing multiple similar queries.
If a future basketball-jersey webpage query arrives, the oracle will no longer abstain but will answer
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with the label she determined during epiphany. In this way, the oracle improves herself on the subset
of the input space that corresponds to basketball apparel-related webpages.

Empirical evidence also suggests that oracle abstention, and subsequent epiphany, may happen
separately on different subsets of the input space. When building a cooking vs. others text classifier,
Kulesza et al. [2014] observed oracle epiphany on a subset of cooking supplies documents, and
separately on the subset of culinary service documents; on gardening vs. others, they observed
separate oracle epiphany on plant information and on local garden documents; on travel vs. others,
they observed separate oracle epiphany on photography, rental cars, and medical tourism documents.

Our contributions are three-fold: (i) We formalize oracle epiphany in Section 2; (ii) We analyze
EPICAL, a variant of the CAL algorithm [Cohn et al., 1994], for realizable active learning with
oracle epiphany in Section 3. (iii) We analyze Oracular-EPICAL, a variant of the Oracular-CAL
algorithm [Hsu, 2010, Huang et al., 2015], for agnostic active learning in Section 4. Our query
complexity bounds show that active learning is possible with oracle epiphany, although we may
incur a penalty waiting for epiphany to happen. This is verified with simulations in Section 5, which
highlights the nuanced dependency between query complexity and epiphany parameters.

2 Problem Setting

As in standard active learning, we are given a hypothesis class H ⊆ YX for some input space X
and a binary label set Y , {−1, 1}. There is an unknown distribution µ over X × Y, from which
examples are drawn IID. The marginal distribution over X is µX. Define the expected classification
error, or risk, of a classifier h ∈ H to be err(h) , E(x,y)∼µ [1 (h(x) 6= y)]. As usual, the active
learning goal is as follows: given any fixed ε, δ ∈ (0, 1), we seek an active learning algorithm which,
with probability at least 1− δ, returns a hypothesis with classification error at most ε after sending a
“small” number of queries to the oracle. What is unique here is an “oracle epiphany model.”

The input space consists of two disjoint sets X = K ∪ U. The oracle knows the label for items in K
(for “known”) but initially does not know the labels in U (for “unknown”). The oracle will abstain if
a query comes from U (unless epiphany happens, see below). Furthermore, U is partitioned into K
disjoint subsets U = U1 ∪ U2 ∪ . . . ∪ UK . These correspond to the photograph/rental cars/medical
tourism subsets in the travel task earlier. The active learner does not know the partitions nor K.
When the active learner submits a query x ∈ X to the oracle, the learner will receive one of three
outcomes in Y+ , {−1, 1,⊥}, where ⊥ indicates I-don’t-know abstention.

Importantly, we assume that epiphany is modeled as K Markov chains: Whenever a unique x ∈ Uk
is queried on some unknown region k ∈ {1, . . . ,K} which did not experience epiphany yet, the
oracle has a probability β ∈ [0, 1] of epiphany on that region. If epiphany happens, the oracle
then understands how to label everything in Uk. In effect, the state of Uk is flipped from unknown
to known. Epiphany is irrevocable: Uk will stay known from now on and the oracle will answer
accordingly for all future x therein. Thus the oracle will only answer ⊥ if Uk remains unknown. The
requirement for a unique x is to prevent a trivial active learning algorithm which repeatedly queries
the same ⊥ item in an attempt to induce oracle epiphany. This requirement does not pose difficulty
for analysis if µX is continuous on X, since all queries will be unique with probability one.

Therefore, our oracle epiphany model is parameterized by (β,K,U1, . . . ,UK). All our analyses
below will be based on this epiphany model. Of course, the model is only an approximation to real
human oracle behaviors; In Section 6 we will discuss more sophisticated epiphany models for future
work.

3 The Realizable Case

In this section, we study the realizable active learning case, where we assume there exists some
h∗ ∈ H such that the label of an example x ∈ X is y = h∗(x). It follows that err(h∗) = 0. Although
the realizability assumption is strong, the analysis is insightful on the role of epiphany. We will
show that the worst-case query complexity has an additional 1/β dependence. We also discuss nice
cases where this 1/β can be avoided depending on U’s interaction with the disagreement region.
Furthermore, our analysis focuses on the K = 1 case; that is, the oracle has only one unknown region
U = U1. This case is the simplest but captures the essence of the algorithm we propose in this section.
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For convenience, we will drop the superscript and write U. In the next section, we will eliminate both
assumptions, and present and analyze an algorithm for the agnostic case with an arbitrary K ≥ 1.

We modify the standard CAL algorithm [Cohn et al., 1994] to accommodate oracle epiphany. The
modified algorithm, which we call EPICAL for “epiphany CAL,” is given in Alg. 1. Like CAL,
EPICAL receives a stream of unlabeled items; It maintains a version space; If the unlabeled item falls
into the disagreement region of the version space the oracle is queried. The essential difference to
CAL is that if the oracle answers ⊥, no update to the version space happens. The stopping criterion
ensures that the true risk of any hypothesis in the version space is at most ε, with high probability.

Algorithm 1 EPICAL
Input: ε, δ, oracle, X, H
Version space V← H
Disagreement region D← {x ∈ X | ∃h, h′ ∈ V, h(x) 6= h′(x)}
for t = 1, 2, 3, . . . do

Sample an unlabeled example from the marginal distribution restricted to D: xt ∼ µX|D
Query oracle with xt to get yt
if yt 6= ⊥ then
V← {h ∈ V | h(xt) = yt}
D← {x ∈ X | ∃h, h′ ∈ V, h(x) 6= h′(x)}

end if
if µX(D) ≤ ε then

Return any h ∈ V
end if

end for

Our analysis is based on the following observation: before oracle epiphany and ignoring all queries
that result in ⊥, EPICAL behaves exactly the same as CAL on an induced active-learning problem.
The induced problem has input space K, but with a projected hypothesis space we detail below. Hence,
standard CAL analysis bounds the number of queries to find a good hypothesis in the induced problem.
Now consider the sequence of probabilities of getting a ⊥ label in each step of EPICAL. If these
probabilities tend to be small, EPICAL will terminate with an ε-risk hypothesis without even having
to wait for epiphany. If these probabilities tend to be large, we may often hit the unknown region U.
But the number of such steps is bounded because epiphany will happen with high probability.

Formally, we define the induced active-learning problem as follows. The input space is X̄ , K, and
the output space is still Y. The sampling distribution is µ̄X(x) , µX(x)1 (x ∈ K) /µX(K). The
hypothesis space is the projection of H onto X̄: H̄ , {h̄ ∈ YX̄ | ∃h ∈ H,∀x ∈ X̄ : h̄(x) = h(x)}.
Clearly, the induced problem is still realizable; let h̄∗ be the projected target hypothesis. Let θ be the
disagreement coefficient [Hanneke, 2014] for the original problem without unknown regions. The
induced problem potentially has a different disagreement coefficient:

θ̄ , sup
r>0

r−1 ·Ex∼µ̄X

[
1
(
∃h̄ ∈ H̄ s.t. h̄∗(x) 6= h̄(x), Ex′∼µ̄X

[
1
(
h̄(x′) 6= h̄∗(x′)

)]
≤ r
)]
.

Let m̄ be the number of queries required for the CAL algorithm to find a hypothesis of ε/2 risk with
probability 1− δ/4 in the induced problem. It is known [Hanneke, 2014, Theorem 5.1] that

m̄ ≤ M̄ , θ̄

(
dim(H̄) ln θ̄ + ln

(
4

δ
ln

2

ε

))
ln

2

ε
.

where dim(·) is the VC dimension. Similarly, let mCAL be the number of queries required for
CAL to find a hypothesis of ε risk with probability 1 − δ/4 in the original problem, and we have
mCAL ≤ MCAL , θ

(
dim(H) ln θ + ln

(
4
δ ln 1

ε

))
ln 1

ε . Furthermore, define m⊥ , |{t | yt = ⊥}|
to be the number of queries in EPICAL for which the oracle returns ⊥. We define Ut to be U for an
iteration t before epiphany, and ∅ after that. We define Dt to be the disagreement region D at iteration
t. Finally, define the unknown fraction within disagreement as αt , µX(Dt ∩ Ut)/µX(Dt). We are
now ready to state the main result of this section.

Theorem 1. Given any ε and δ, EPICAL will, with probability at least 1− δ, return an ĥ ∈ H with
err(ĥ) ≤ ε, after making at most MCAL + M̄ + 3

β ln 4
δ queries.
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Remark The bound above consists of three terms. The first is the standard CAL query complexity
bound with an omniscient oracle. The other two are the price we pay when the oracle is imperfect. The
second term is the query complexity for finding a low-risk hypothesis in the induced active-learning
problem. In situations where µX(U) = ε/2 and β � 1, it is hard to induce epiphany, but it suffices to
find a hypothesis from H̄ with ε/2 risk in the induced problem (which implies at most ε risk under
the original distribution µX); it indicates M̄ is unavoidable in some cases. The third term is roughly
the extra query complexity required to induce epiphany. It is unavoidable in the worst case: when
U = X, one has to wait for oracle epiphany to start collecting labeled examples to infer h∗; the
average number of steps until epiphany is on the order of 1/β. Finally, note that not all three terms
contribute simultaneously to the query complexity of EPICAL. As we will see in the analysis and in
the experiments, usually one or two of them will dominate, depending on how U interacts with the
disagreement region. Summing them up simplifies our exposition, without changing the order of the
worst-case bounds.

Our analysis starts with the definition of the following two events. Lemmas 2 and 3 show that they
hold with high probability when running EPICAL; the proofs are delegated to Appendix A. Define:

E⊥ ,

{
m⊥ ≤

1

β
ln

4

δ

}
and Eα ,

{
|{t | αt > 1/2}| ≤ 2

β
ln

4

δ

}
.

Lemma 2. Pr{E⊥} ≥ 1− δ/4 .
Lemma 3. Pr{Eα} ≥ 1− δ/4.
Lemma 4. Assume event Eα holds. Then, the number of queries from K before oracle epiphany or
before EPICAL terminates, whichever happens first, is at most m̄+ 2

β ln 4
δ .

Proof. (sketch) Denote the quantity by m. Before epiphany, V and D in EPICAL behave in exactly
the same way as in CAL on K. It takes m̄ queries to get to ε/2 accuracy in K by the definition of
m̄. If m ≤ m̄, then m < m̄+ 2

β ln 4
δ trivially, and we are done. Otherwise, it must be the case that

αt > 1/2 for every step after V reaches ε/2 accuracy on K. Suppose not. Then there is a step t where
αt ≤ 1/2. Note V reaching ε/2 accuracy on K implies µX(Dt)−µX(Dt ∩Ut) ≤ ε/2. Together with
αt = µX(Dt ∩Ut)/µX(Dt) ≤ 1/2, we have µX(Dt) < ε. But this would have triggered termination
of EPICAL at step t, a contradiction. Since we assume Eα holds, we have m ≤ m̄+ 2

β ln 4
δ .

Proof of Theorem 1. We will prove the query complexity bound, assuming (i) events E⊥ and Eα hold;
and (ii) M̄ and MCAL successfully upper bound the corresponding query complexity of standard
CAL. By Lemmas 2 and 3 and a union bound, the above holds with probability at least 1− δ.

Suppose epiphany happens before EPICAL terminates. By event E⊥ and Lemma 4, the total number
of queried examples before epiphany is at most m̄ + 3

β ln 4
δ . After epiphany, the total number of

queries is no more than that of running CAL from scratch; this number is at most MCAL. Therefore,
the total query complexity is at most M̄ +MCAL + 3

β ln 4
δ .

Suppose epiphany does not happen before EPICAL terminates. In this case, the number of queries in
the unknown region is at most 1

β ln 4
δ (event E⊥), and the number of queries in the known region is at

most m̄+ 2
β ln 4

δ (Lemma 4). Thus, the total number of queries is at most M̄ + 3
β ln 4

δ .

4 The Agnostic Case

In the agnostic setting the best hypothesis, h∗ , arg minh err(h), has a nonzero error. We want
an active learning algorithm that, for a given accuracy ε > 0, returns a hypothesis h with small
regret reg(h, h∗) , err(h)− err(h∗) ≤ ε while making a small number of queries. Among existing
agnostic active learning algorithms we choose to adapt the Oracular-CAL algorithm, first proposed
by Hsu [2010] and later improved by Huang et al. [2015]. Oracular-CAL makes no assumption on H
or µ, and can be implemented solely with an empirical risk minimization (ERM) subroutine, which is
often well approximated by convex optimization over a surrogate loss in practice. This is a significant
advantage over several existing agnostic algorithms, which either explicitly maintain a version space,
as done in A2 [Balcan et al., 2006], or require a constrained ERM routine [Dasgupta et al., 2007] that
may not be well approximated efficiently in practice. IWAL [Beygelzimer et al., 2010] and Active
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Algorithm 2 Oracular-EPICAL

1: Set c1 , 4 and c2 , 2
√

6 + 9. Let η0 , 1 and ηt , 12
t ln

(
32t|H| ln t

δ

)
, t ≥ 1.

2: Initialize labeled data Z0 ← ∅, the version space V1 ← H, and the ERM h1 as any h ∈ H.
3: for t = 1, 2, . . . do
4: Observe new example xt, where (xt, yt)

i.i.d.∼ µ.
5: if xt ∈ Dt , {x | x ∈ X,∃(h, h′) ∈ V2

t s.t. h(x) 6= h′(x)} then
6: Query oracle with xt.

7: Zt ←
{
Zt−1 ∪ {(xt, yt)}, oracle returns yt.
Zt−1, oracle returns ⊥.

8: ut ← 1 (oracle returns ⊥) .
9: else

10: Zt ← Zt−1 ∪{(xt, ht(xt))}. // update the labeled data with the current ERM’s prediction
11: ut ← 0.
12: end if
13: err(h, Zt) , 1

t

∑t
i=1 1 (xi ∈ Di) (1−ui)1 (h(xi) 6= yi) +1 (xi /∈ Di)1 (h(xi) 6= hi(xi)) .

14: ht+1 ← arg minh∈H err(h, Zt).

15: bt ← 1
t

∑t
i=1 ui.

16: ∆t ← c1
√
ηt err(ht+1, Zt) + c2(ηt + bt).

17: Vt+1 ← {h ∈ H | err(h, Zt)− err(ht+1, Zt) ≤ ∆t}.
18: end for

Cover [Huang et al., 2015] are agnostic algorithms that are implementable with an ERM routine,
both using importance weights to correct for querying bias. But in the presence of ⊥’s, choosing
proper importance weights becomes challenging. Moreover, the improved Oracular-CAL [Huang
et al., 2015] we use2 has stronger guarantees than IWAL, and in fact, the best known worst-case
guarantees among efficient, agnostic active learning algorithms.

Our proposed algorithm, Oracular-EPICAL, is given in Alg. 2. Note t here counts unlabeled data,
while in Alg. 1 it counts queries. Roughly speaking, Oracular-EPICAL also has an additive factor
of O(K/β) compared to Oracular-CAL’s query complexity. It keeps a growing set Z of labeled
examples. If the unlabeled example xt falls in the disagreement region, the algorithm queries its label:
when the oracle returns a label yt, the algorithm adds xt and yt to Z; when the oracle returns ⊥, no
update to Z happens. If xt is outside the disagreement region, the algorithm adds xt and the label
predicted by the current ERM hypothesis ht(xt) to Z. Alg. 2 keeps an indicator ut, which records
whether ⊥ was returned on xt, and it always updates the ERM and the version space after every new
xt. For simplicity we assume a finite H; this can be extended to H with finite VC dimension.

The critical modification we make here to accommodate oracle abstention is that the threshold ∆t

defining the version space additively depends on the average number of ⊥’s received up to round
t. This allows us to show that Oracular-EPICAL retains the favorable bias guarantee of Oracular-
CAL: with high probability, all of the imputed labels are consistent with the classifications of h∗,
so imputation never pushes the algorithm away from h∗. Oracular-EPICAL only uses the version
space in the disagreement test. With the same technique used by Oracular-CAL, summarized in
Appendix B, the algorithm is able to perform the test solely with an ERM routine.

We now state Oracular-EPICAL’s general theoretical guarantees, which hold for any oracle model,
and then specialize them for the epiphany model in Section 2. We start with a consistency result:

Theorem 5 (Consistency Guarantee). Pick any 0 < δ < 1/e and let ∆∗t := c1
√
ηt err(h∗)+ c2(ηt+

bt). With probability at least 1− δ, the following holds for all t ≥ 1,

err(h)− err(h∗) ≤ 4∆∗t for all h ∈ Vt+1, and (1)
err(h∗, Zt)− err(ht+1, Zt) ≤ ∆t. (2)

2This improved version of Oracular-CAL defines the version space using a tighter threshold than the one
used by Hsu [2010], and has the same worst-case guarantees as Active Cover [Huang et al., 2015].
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All hypotheses in the current version space, including the current ERM, have controlled expected
regrets. Compared with Oracular-CAL’s consistency guarantee, this is worse by an additive factor of
O(bt), the average number of ⊥’s over t examples. Importantly, h∗ always remains in the version
space, as implied by (2). This guarantees that all predicted labels used by the algorithm are consistent
with h∗, since the entire version space makes the same prediction. The query complexity bound is:

Theorem 6 (Query Complexity Bound). Let Qt ,
∑t
i=1 1 (xi ∈ Di) denote the total number of

queries Alg. 2 makes after observing t examples. Under the conditions of Theorem 5, with probability
at least 1− δ the following holds: ∀t > 0, Qt is bounded by

4θ err(h∗)t+ θ ·O
(√

t err(h∗) ln(t|H|/δ) ln2 t+ ln(t|H|/δ) ln t+ tbt ln t+ 8 ln(8t2 ln t/δ)

)
,

where θ denotes the disagreement coefficient [Hanneke, 2014].

Again, this result is worse than Oracular-CAL’s query complexity [Huang et al., 2015] by an additive
factor. The magnitude of this factor is less trivial than it seems: since the algorithm increases the
threshold by bt, it includes more hypotheses in the version space, which may cause the algorithm
to query a lot more. However, our analysis shows that the number of queries only increases by
O(tbt ln t), i.e., ln t times the total number of ⊥’s received over t examples.

The full proofs of both theorems are in Appendix C. Here we provide the key ingredient. Consider an
imaginary dataset Z†t where all the labels queried by the algorithm but not returned by the oracle are
imputed, and define the error on this imputed data:

err(h, Z†t ) ,
1

t

t∑
i=1

1 (xi ∈ Di)1 (h(xi) 6= yi) + 1 (xi /∈ Di)1 (h(xi) 6= hi(xi)) . (3)

Note that the version space Vt and therefore the disagreement region Dt are still defined in terms
of err(h, Zt), not err(h, Z†t ). Also define the empirical regrets between two hypotheses h and h′:
reg(h, h′, Zt) , err(h, Zt)− err(h′, Zt) and reg(h, h′, Z†t ) on Z†t in the same way. The empirical
error and regret on Z†t are not observable, but can be easily bounded by observable quantities:

err(h, Zt) ≤ err(h, Z†t ) ≤ err(h, Zt) + bt, (4)

|reg(h, h′, Zt)− reg(h, h′, Z†t )| ≤ bt, (5)

where bt =
∑t
i=1 ui/t is also observable. Using a martingale analysis resembling Huang et al.

[2015]’s for Oracular-CAL, we prove concentration of the empirical regret reg(h, h∗, Z†t ) to its
expectation. For every h ∈ Vt+1, the algorithm controls its empirical regret on Zt , which bounds
reg(h, h∗, Z†t ) by the above. This leads to a bound on the expected regret of h. The query complexity
analysis follows the standard framework of Hsu [2010] and Huang et al. [2015].

Next, we specialize the guarantees to the oracle epiphany model in Section 2:

Corollary 7. Assume the epiphany model in Section 2. Fix ε > 0, δ > 0. Let d̃ , ln(|H|/(εδ)), K̃ ,
K ln(K/δ) and e∗ , err(h∗). With probability at least 1 − δ, the following holds: The ERM

hypothesis htε+1 satisfies err(htε+1) − e∗ ≤ ε, where tε = O
(
d̃e∗

ε2 + 1
ε

(
d̃+ K̃

β

))
, and the total

number of queries made up to round tε is
θ ·O

(
e∗

ε

(
d̃·e∗
ε + K̃

β

)
+ ln

((
e∗

ε2 + 1
ε

)
d̃+ K̃

εβ

)
·
((

e∗

ε + 1
)
d̃+ K̃

β

))
.

The proof is in Appendix D. This corollary reveals how the epiphany parametersK and β affect query
complexity. Setting K̃ = 0 recovers the result for a perfect oracle, showing that the (unlabeled) sample
complexity tε worsens by an additive factor of K̃/(βε) in both realizable and agnostic settings. For
query complexity, in the realizable setting the bound becomes θ ·O

(
ln
((
d̃+ K̃/β

)
/ε
)(
d̃+ K̃/β

))
.

In the agnostic setting, the leading term in our bound is θ ·O
(
(e∗/ε)2d̃+(K̃e∗)/(βε)

)
. In both cases,

our bounds are worse by roughly an additive factor of O(K̃/β) than bounds for perfect oracles.

As for the effect of U, the above corollary is a worst-case result: it uses an upper bound on tbt
that holds even for U = X. For certain U ’s the upper bound can be much tighter. For example, if
U ∩ Dt = ∅ for sufficiently large t, then tbt will be O(1) for all β, with or without epiphany.
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5 Experiments

To complement our theoretical results, we present two simulated experiments on active learning
with oracle epiphany: learning a 1D threshold classifier and handwritten digit recognition (OCR).
Specifically, we will highlight query complexity dependency on the epiphany parameter β and on U.

EPICAL on 1D Threshold Classifiers. Take µX to be the uniform distribution over the interval
X = [0, 1]. Our hypothesis space is the set of threshold classifiers H = {ha : a ∈ [0, 1]} where
ha(x) = 1 (x ≥ a). We choose h∗ = h 1

2
and set the target classification error at ε = 0.05.

We illustrate epiphany with a single unknown region K = 1,U = U1. However, we contrast two
shapes of U: in one set of experiments we set U = [0.4, 0.6] which contains the decision boundary
0.5. In this case, the active learner EPICAL must induce oracle epiphany in order to achieve ε risk.
In another set of experiments U = [0.7, 0.9], where we expect the learner to be able to “bypass” the
need for epiphany. Intuitively, this latter U could soon be excluded from the disagreement region.
For both U, we systematically vary the oracle epiphany parameter β ∈ {2−6, 2−5, . . . , 20}. A small
β means epiphany is less likely per query, thus we expect the learner to spend more queries trying
to induce epiphany in the case of U = [0.4, 0.6]. In contrast, β may not matter much in the case of
U = [0.7, 0.9] since epiphany may not be required. Note that β = 20 = 1 reverts back to the standard
active learning oracle, since epiphany always happens immediately. We run each combination of β,U
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(a) U = [0.4, 0.6] (b) U = [0.7, 0.9] (c) U = [0.4, 0.6]

Figure 1: EPICAL results on 1D threshold classifiers

for 10, 000 trials. The results are shown in Figure 1. As expected, (a) shows a clear dependency on
β. This indicates that epiphany is necessary in the case U = [0.4, 0.6] for learning to be successful.
In contrast, the dependence on β vanishes in (b) when U is shifted sufficiently away from the target
threshold (and thus from later disagreement regions). The oracle need not reach epiphany for learning
to happen. Note (b) does not contradict with EPICAL query complexity analysis since Theorem 1 is
a worst case bound that must hold true for all U.

To further clarify the role of β, note EPICAL query complexity bound predicts an additive term
of O(1/β) on top of the standard CAL query complexities (i.e., both M̄ and MCAL). This term
represents “excess queries” needed to induce epiphany. In Figure 1(c) we plot this excess against 1

β

for U = [0.4, 0.6]. Excess is computed as the number of EPICAL queries minus the average number
of queries for β = 1. Indeed, we see a near linear relationship between excess queries and 1/β.

Finally, as a baseline we compare EPICAL to passive learning. In passive learning x1, x2, . . . are
chosen randomly according to µX instead of adaptively. Note passive learning here is also subject
to oracle epiphany. That is, the labels yt are produced by the same oracle epiphany model, some of
them can be ⊥ initially. Our passive learning simply maintains a version space. If it encounters ⊥ it
does not update the version space. All EPICAL results are better than passive learning.

Oracular-EPICAL on OCR. We consider the binary classification task of 5 vs. other digits on
MNIST [LeCun et al., 1998]. This allows us to design the unknown regions {Uk} as certain other
digits, making the experiments more interpretable. Furthermore, we can control how confusable the
U digits are to “5” to observe the influence on oracle epiphany.

Although Alg. 2 is efficiently implementable with an ERM routine, it still requires two calls to a
supervised learning algorithm on every new example. To scale it up, we implement an approximate
version of Alg. 2 that uses online optimization in place of the ERM. More details are in Appendix E.
While being efficient in practice, this online algorithm may not retain Alg. 2’s theoretical guarantees.
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Figure 2: Oracular-EPICAL results on OCR.

We use epiphany parameters β ∈ {1, 10−1, 10−2, 10−3, 10−4, 0}, K = 1, and U is either “3” or “1”.
By using β = 1 and β = 0, we include the boundary cases where the oracle is perfect or never has an
epiphany. The two different U’s correspond to two contrasting scenarios: “3” is among the “nearest”
digits to “5” as measured by the binary classification error between “5” and every other single digit,
while “1” is the farthest. The two U’s are about the same size, each covering roughly 10% of the
data. More details and experimental results with other choices of U can be found in Appendix E.
For each combination of β and U, we perform 100 random trials. In each trial, we run both the
online version of Alg. 2 and online passive logistic regression (also subject to oracle epiphany) over
a randomly permuted training set of 60, 000 examples, and check the error of the online ERM on
the 10, 000 testing examples every 10 queries from 200 up to our query budget of 13, 000. In each
trial we record the smallest number of queries for achieving a test error of 4%. Fig. 2(a) and Fig. 2(b)
show the median of this number over the 100 random trials, with error bars being the 25th and 75th
quantiles. The effect of β on query complexity is dramatic for the near U = “3” but subdued for
the far U = “1”. In particular, for U = “3” small β’s force active learning to query as many labels
as passive learning. The flattening at 13, 000 at the end means no algorithm could achieve a 4%
test error within our query budget. For U = “1”, active learning is always much better than passive
regardless of β. Again, this illustrates that both β and U affect the query complexity. As performance
references, passive learning on the entire labeled training data achieves a test error of 2.6%, while
predicting the majority class (non-5) has a test error of 8.9%.

6 Discussions

Our analysis reveals a worst case O(1/β) term in query complexity due to the wait for epiphany, and
we hypothesize Ω(K/β) to be the tight lower bound. This immediately raises the question: can we
decouple active learning queries from epiphany induction? What if the learner can quickly induce
epiphany by showing the oracle a screenful of unlabeled items at a time, without the oracle labeling
them? This possibility is hinted in empirical studies. For example, Kulesza et al. [2014] observed
epiphanies resulting from seeing items. Then there is a tradeoff between two learner actions toward
the oracle: asking a query (getting a label or small contribution toward epiphany), or showing several
items (not getting labels but potentially large contribution toward epiphany). One must formalize
the cost and benefit of this tradeoff. Of course, real human behaviors are even richer. Epiphanies
may be reversible on certain queries, where the oracle begins to have doubts on her previous labeling.
Extending our model under more relaxed assumptions is an interesting open question for future
research.
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A Additional Proofs for Section 3

Proof of Lemma 2. Suppose the oracle returns ⊥ exactly m times. It implies the oracle has no
epiphany for at least the firstm steps. The probability of such an event is (1−β)m. Let the right-hand
side be δ/4 and solve for m, we obtain

m =
ln(δ/4)

ln(1− β)
≤ 1

β
ln

4

δ
.

Proof of Lemma 3. Note that αt > 1/2 means in step t the active learner is likely to propose a query
xt that falls in Ut ⊆ U. Specifically, the probability that epiphany happens in step t, denoted by βt,
is given by

βt = β · µX|Dt(xt ∈ Ut) + 0 · µX|Dt(xt /∈ Ut) = βαt >
β

2
,

where Dt is the disagreement region in step t when xt is sampled. Suppose there are exactly m such
steps with αt; denote these steps by t1, t2, . . . , tm. It implies the oracle has no epiphany for at least
the first m steps, the probability of which is

m∏
i=1

(1− βti) ≤
(

1− β

2

)m
.

Let the right-hand side be δ/4 and solve for m, we obtain

m =
log(δ/4)

log(1− β/2)
≤ 2

β
log

4

δ
.

B Implementation of Oracular-EPICAL’s Disagreement Test with ERM

Because Oracular-EPICAL’s version space is defined in terms of empirical error, we are able to carry
out the disagreement test using the following technique inspired by Dasgupta et al. [2007], which
only relies on an ERM subroutine: To test whether x ∈ Dt, we call the ERM subroutine to find

h′ := arg min
h∈H

err(h, Zt−1) + ∆t−11 (h(x) 6= −ht(x)) ,

where ht = arg minh∈H err(h, Zt−1). In practice, this means we create a labeled example
(x,−ht(x)) with a weight of (t−1)∆t−1, add it to Zt−1 and feed the augmented data to a supervised
learning algorithm, whose output will be h′. Then we return 1 (h′(x) = ht(x)) as 1 (x /∈ Dt).

To see why this is a valid test, first consider h′(x) 6= ht(x). Since h′ minimizes the augmented
empirical error, it is true that err(h′, Zt−1) ≤ err(ht, Zt−1) + ∆t−1, implying h′ ∈ Vt and therefore
xt ∈ Dt. Now suppose h′(x) = ht(x). For all h ∈ H such that h(x) = −ht(x), it must be the case
that err(h, Zt−1) ≥ err(h′, Zt−1) + ∆t−1 ≥ err(ht, Zt−1) + ∆t−1, i.e, h /∈ Vt. This implies that
∀h ∈ Vt, h(x) = ht(x), so x /∈ Dt.

C General Analysis for Oracular-EPICAL

To analyze Alg. 2, we need some more notations. Let reg(h, h′) , err(h)− err(h′) denote the regret
between two hypotheses h and h′. Consider an imaginary dataset Z†t where all the labels queried by
the algorithm but not returned by the oracle are imputed, and define the error on this imputed data:

err(h, Z†t ) ,
1

t

t∑
i=1

1 (xi ∈ Di)1 (h(xi) 6= yi) + 1 (xi /∈ Di)1 (h(xi) 6= hi(xi)) . (6)

Note that the version space Vt and therefore the disagreement region Dt are still defined in terms of
err(h, Zt), not err(h, Z†t ). Also define the empirical regrets between two hypotheses h and h′:

reg(h, h′, Zt) = err(h, Zt)− err(h′, Zt), (7)

reg(h, h′, Z†t ) = err(h, Z†t )− err(h′, Z†t ). (8)
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The two quantities (6) and (8) are not observable, but can be easily bounded by observable quantities:

err(h, Zt) ≤ err(h, Z†t ) ≤ err(h, Zt) + bt, (9)

|reg(h, h′, Zt)− reg(h, h′, Z†t )| ≤ bt, (10)

where bt = 1
t

∑t
i=1 ui is also observable. In addition to empirical quantities, we also need their

expectations conditioned on all history. More formally, let Ft , σ({(xi, yi, ui)}ti=1) denote the
σ-algebra on all history up to round t, and let Et [·] , E [· | Ft−1] denote expectation at round t
conditioned on all history up to round t− 1.

Expected error and regret Define the following expected error and regret terms at round t:

err†t(h) , Et [1 (xt ∈ Dt)1 (h(xt) 6= yt) + 1 (xt /∈ Dt)1 (h(xt) 6= ht(xt))] , (11)

reg†t(h, h
′) , err†t(h)− err†t(h

′) (12)

and their averages

ẽrrt(h) ,
1

t

t∑
i=1

err†i (h), r̃egt(h, h
′) ,

1

t

t∑
i=1

reg†i (h). (13)

Also define the following expected error and regret terms restricted to disagreement regions.

errt(h) := E(x,y)∼µ [1 (x ∈ Dt)1 (h(x) 6= y)] , (14)

errt(h) :=
1

t

t∑
i=1

erri(h), (15)

regt(h) := errt(h)− errt(h
∗), (16)

regt(h) := errt(h)− errt(h
∗). (17)

We start with two important lemmas.
Lemma 8 (Favorable Bias). ∀i ≥ 1,∀h ∈ H,∀h̄ ∈ Vi, we have

reg†i (h, h̄) ≥ reg(h, h̄). (18)

Proof. Pick any i ≥ 1, h ∈ H and h̄ ∈ Vi. Note that the definitions of reg†i (h, h̄) and reg(h, h̄) only
differ on x /∈ Di, and ∀x /∈ Di, h̄(x) = hi(x). We thus have

reg†i (h, h̄)− reg(h, h̄)

= E(x,y)∼µ

[
1 (x /∈ Di)

((
1 (h(x) 6= hi(x))− 1

(
h̄(x) 6= hi(x)

) )
−
(
1 (h(x) 6= y)− 1

(
h̄(x) 6= y

) ))]
= E(x,y)∼µ

[
1 (x /∈ Di)

(
1 (h(x) 6= hi(x))− (1 (h(x) 6= y)− 1 (hi(x) 6= y))

)]
.

The desired result then follows from the inequality that

1 (h(x) 6= y)− 1 (hi(x) 6= y) ≤ 1 (h(x) 6= hi(x)) .

Lemma 9 (Deviation Bounds). Pick 0 < δ < 1/e. With probability at least 1 − δ the following
holds. For all (h, h′) ∈ H2 and ∀n ≥ 3,

|r̃egn(h, h′)− reg(h, h′, Z†n)| ≤
√
ηn(ẽrrn(h) + ẽrrn(h′)) + ηn (19)

| errdis(h, Z
†
n)− errn(h)| ≤

√
ηnerrn(h) + ηn, (20)

where

errdis(h, Z
†
n) :=

1

n

n∑
i=1

1 (xi ∈ Di)1 (h(xi) 6= yi)),

ηn :=
12

n
ln

(
32n|H| lnn

δ

)
.
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Proof. Our proof strategy is the following. Starting with a fixed i and some fixed (h, h′) ∈ H2,
we apply the concentration result given by Lemma 3 of Kakade and Tewari [2009] to bound the
deviations of the regret and error terms. Then we apply a union bound over i and pairs of hypotheses
to obtain the desired result. First consider the empirical regret. Define

Ri , 1 (xi ∈ Di) (1 (h(xi) 6= yi)− 1 (h′(xi) 6= yi)) +

1 (xi /∈ Di) (1 (h(xi) 6= hi(xi))− 1 (h′(xi) 6= hi(xi))). (21)

Because Ri is measurable with respect to Fi = σ({(xj , yj , uj)}ij=1), we have that Ri −Ei [Ri] is a
martingale difference sequence adapted to the filtration Fi. We also have Ei [Ri −Ei [Ri]] ≤ 2 and

Ei
[
(Ri −Ei [Ri])

2
]
≤ Ei

[
R2
i

]
(22)

= Ei
[
1 (xi ∈ Di) (1 (h(xi) 6= yi)− 1 (h′(xi) 6= yi))

2
]

+

Ei
[
1 (xi /∈ Di) (1 (h(xi) 6= hi(xi))− 1 (h′(xi) 6= hi(xi)))

2
]

(23)

≤ Ei [1 (xi ∈ Di) (1 (h(xi) 6= yi) + 1 (h′(xi) 6= yi))] +

Ei [1 (xi /∈ Di) (1 (h(xi) 6= hi(xi)) + 1 (h′(xi) 6= hi(xi)))] (24)

= err†i (h) + err†i (h
′). (25)

Applying Lemma 3 of Kakade and Tewari [2009] to the sequence Ri − Ei [Ri], we have for any
i ≥ 3 and 0 < δi < 1/e, the following holds with probability at most 8 ln(i)δi:

|reg(h, h′, Z†i )− r̃egi(h, h
′)| ≥ 2

√
1

i
(ẽrri(h) + ẽrri(h′)) ln(1/δi) + 6 ln(1/δi)/i.

Now consider the error terms. Let

Ei := 1 (xi ∈ Di)1 (h(xi) 6= yi) .

Again, Ei is measurable with respect to Fi, and we have |Ei −Ei [Ei] | ≤ 1 and

Ei
[
(Ei −Ei [Ei])

2
]
≤ Ei

[
E2
i

]
≤ Ei [Ei] .

By using the same concentration lemma of Kakade and Tewari [2009] to the martingale difference
sequence Ei −Ei [Ei], we have that the following holds

| errdis(h, Z
†
i )− erri(h)| ≥ 2

√
erri(h)

i
ln(1/δi) + 3 ln(1/δi)/i

with probability at most 8 ln(i)δi for any i ≥ 3, 0 < δi < 1/e and h.

To bound the probability of the union of these large-deviation events over all n ≥ 3 and all hypotheses,
it suffices to choose δn = δ/(n232|H|2 lnn), which leads to the desired result.

Using these two lemmas, we obtain the main theorem providing a generalization guarantee. In fact,
here we prove a stronger result than Theorem 5, where the expected regret bound ∆∗i is defined in
terms of erri(h

∗) ≤ err(h∗).

Theorem 10 (Generalization Guarantee). Pick any 0 < δ < 1/e and let

∆∗i := c1
√
ηierri(h∗) + c2(ηi + bi).

With probability at least 1− δ, the follow holds for all i ≥ 1,

reg(h, h∗) ≤ 4∆∗i for all h ∈ Vi+1, and (26)
reg(h∗, hi+1, Zi) ≤ ∆i. (27)

Proof. Conditioning on the high probability event in Lemma 9, we prove this theorem by induction.
For i ≤ 3 both statements are true by the fact that regrets are upper-bounded by 1 ≤ min(∆i,∆

∗
i )
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for i ≤ 3. Suppose the inductive hypothesis holds for 1 ≤ i ≤ m− 1. We first prove (26) for i = m.
Using the bound (19) from Lemma 9, we have for any h ∈ Vm+1

r̃egm(h, h∗) (28)

≤ reg(h, h∗, Z†m) +
√
ηm(ẽrrm(h) + ẽrrm(h∗)) + ηm

≤ reg(h, h∗, Zm) + bm +
√
ηm(ẽrrm(h) + ẽrrm(h∗)) + ηm

≤ reg(h, hm+1, Zm) +
√
ηm(r̃egm(h, h∗) + 2ẽrrm(h∗)) + ηm + bm

≤ ∆m +
√
ηm(r̃egm(h, h∗) + 2ẽrrm(h∗)) + ηm + bm

≤ ∆m +
r̃egm(h, h∗)

2
+
√

2ηmerrm(h∗) +
3ηm

2
+ bm

≤ (c1
√
ηm err(h∗, Zm) + c2(ηm + bm)) +

r̃egm(h, h∗)

2
+
√

2ηmerrm(h∗) +
3ηm

2
+ bm

≤ (c1

√
ηm err(h∗, Z†m) + c2(ηm + bm)) +

r̃egm(h, h∗)

2
+
√

2ηmerrm(h∗) +
3ηm

2
+ bm. (29)

In the above, the second inequality is by the bound (10). The third inequality is by the fact that
hm+1 = arg minh∈H err(h, Zm). The fourth inequality is due to h ∈ Vm+1, so it has a small
empirical regret against the current ERM hm+1. The fifth inequality involves more reasoning. By the
inductive hypothesis that (27) holds for 1 ≤ i ≤ m− 1, we have h∗ ∈ Vi for 1 ≤ i ≤ m. This and
Lemma 8 imply that

r̃egm(h, h∗) ≥ reg(h, h∗) ≥ 0. (30)

We then apply the inequality
√
a+ b ≤

√
a+
√
b for a, b ≥ 0 and Cauchy-Schwarz to obtain√

ηm(r̃egm(h, h∗) + 2ẽrrm(h∗)) ≤
√
ηmr̃egm(h, h∗) +

√
2ẽrrm(h∗)

≤ r̃egm(h, h∗)

2
+
ηm
2

+
√

2ẽrrm(h∗).

The sixth inequality is by the definition of ∆m and the fact that err(hm+1, Zm) ≤ err(h∗, Zm). The
final inequality is by the bound (9). Because h∗ ∈ Vi for 1 ≤ i ≤ m, h∗ agrees with hi on all
predicted labels for 1 ≤ i ≤ m, implying

err(h∗, Z†m) = errdis(h
∗, Z†m). (31)

Applying the deviation bound (20) and Cauchy-Schwarz, we get

errdis(h
∗, Z†m) ≤ 3

2
(errm(h∗) + ηm). (32)

Combining (29), (30), (31), and (32) we obtain

reg(h, h∗) ≤ r̃egm(h, h∗)

≤ 2
(
c1

√
3

2
ηm(errm(h∗) + ηm) + c2(ηm + bm)

)
+ 2
√

2ηmerrm(h∗) + 3ηm + 2bm

= (c1
√

6 + 2
√

2)
√
ηmerrm(h∗) + (c1

√
6 + 2c2 + 3)ηm + (2c2 + 2)bm

≤ 4∆∗m,

where the last inequality is by our choices of c1 and c2. We thus establish (26) for i = m.

Next we prove (27) for i = m. Again, starting with the deviation bound (19) we have

reg(h∗, hm+1, Z
†
m) ≤ r̃egm(h∗, hm+1) +

√
ηm(ẽrrm(h∗) + ẽrrm(hm+1)) + ηm

= r̃egm(h∗, hm+1) +
√
ηm(2ẽrrm(h∗) + r̃egm(hm+1, h∗)) + ηm.

As explained earlier, we have h∗ ∈ Vi for 1 ≤ i ≤ m by the inductive hypothesis (27), which implies
that ẽrrm(h∗) = errm(h∗) and r̃egm(hm+1, h

∗) ≥ reg(hm+1, h
∗) ≥ 0 (by Lemma 8). Thus we
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have

reg(h∗, hm+1, Z
†
m) ≤ r̃egm(h∗, hm+1) +

1

2
r̃egm(hm+1, h

∗) +
√

2ηmerrm(h∗) +
3

2
ηm

=
1

2
r̃egm(h∗, hm+1) +

√
2ηmerrm(h∗) +

3

2
ηm

≤
√

2ηmerrm(h∗) +
3

2
ηm. (33)

The deviation bound (20) implies that

errm(h∗) ≤ 2 errdis(h
∗, Z†m) + 3ηm = 2 err(h∗, Z†m) + 3ηm, (34)

where the equality is due to h∗ ∈ Vi for 1 ≤ i ≤ m. Combining (33) and (34), we get

reg(h∗, hm+1, Z
†
m) ≤

√
2ηm(2 err(h∗, Z†m) + 3ηm) +

3

2
ηm

≤ 2
√
ηm(err(h∗, Zm) + bm) + (

√
6 + 3/2)ηm

= 2
√
ηm(reg(h∗, hm+1, Zm) + err(hm+1, Zm)) + ηmbm + (

√
6 + 3/2)ηm

≤ 1

2
reg(h∗, hm+1, Zm) + 2

√
ηm err(hm+1, Zm) + 2

√
ηmbm + (

√
6 + 7/2)ηm

≤ 1

2
reg(h∗, hm+1, Zm) + 2

√
ηm err(hm+1, Zm) + (

√
6 + 9/2)ηm + bm.

This and the bound (10) imply that

reg(h∗, hm+1, Zm) ≤ 4
√
ηm err(hm+1, Zm) + (2

√
6 + 9)ηm + 4bm ≤ ∆m.

Next we provide a proof for the query complexity bound. Again, we prove a stronger result that uses
errn(h∗) in place of err(h∗) in Theorem 6.
Theorem 11 (Query Complexity Bound). Under the conditions of Theorem 10, with probability at
least 1− δ the following holds: ∀n > 0, Qn is bounded by

4θ err(h∗)n+θ·O
(√

nerrn(h∗) ln(n|H|/δ) ln2 n+ ln(n|H|/δ) lnn+ nbn lnn) + 8 ln(8n2 lnn/δ)

)
.

Proof. The random variable 1 (xi ∈ Di) is measurable with respect to Fi := σ({(xj , yj , uj)}ij=1),
so

Ri := 1 (xi ∈ Di)−Ei [1 (xi ∈ Di)]
forms a martingale difference sequence adapted to the filtration Fi, i ≥ 1. Moreover, we have
|Ri| ≤ 1 and

Ei
[
R2
i

]
≤ Ei [1 (xi ∈ Di)] .

Applying Lemma 3 of Kakade and Tewari [2009] with the above bounds and Cauchy-Schwarz, we
get that with probability at least 1− δ,

∀n ≥ 3, Qn ≤ 2

n∑
i=1

Ei [1 (xi ∈ Di)] + 8 ln(4n2(lnn)/δ). (35)

We next bound the sum of the conditional expectations. Pick some i and consider the case xi ∈ Di.
Define

h̄ :=

{
hi, hi(xi) 6= h∗(xi),

h′, h′(xi) 6= h∗(xi),

where

hi := arg min
h∈H

err(h, Zi−1), (36)

h′ := arg min
h∈H∧h(xi) 6=hi(xi)

err(h, Zi−1). (37)
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Because xi ∈ Di, we have h′ ∈ Vi, implying h̄ ∈ Vi. Conditioned on the high probability event in
Theorem 10, we have h∗ ∈ Vi and hence

Ex∼µX

[
1
(
h̄(x) 6= h∗(x)

)]
= Ex∼µX

[
1
(
h̄(x) 6= h∗(x) ∧ x ∈ Di

)]
≤ erri(h̄) + erri(h

∗)

= regi(h̄) + 2 erri(h
∗)

≤ 4∆∗i−1 + 2 erri(h
∗),

where the last inequality is by Theorem 10 and the condition that both h̄ and h∗ are in Vi. This
implies that

xi ∈ D({h | Ex∼µX [1 (h(x) 6= h∗(x))] ≤ 4∆∗i−1 + 2 erri(h
∗)}).

We thus have

Ei [1 (xi ∈ Di)] ≤ Ei
[
1
(
xi ∈ D({h | Ex∼µX [1 (h(x) 6= h∗(x))] ≤ 4∆∗i−1 + 2 erri(h

∗)})
)]

≤ θ(4∆∗i−1 + 2 erri(h
∗)), (38)

where the last inequality uses the definition of the disagreement coefficient:

θ = θ(h∗) , sup
r>0

Ex∼µX [1 (∃h ∈ H s.t.h∗(x) 6= h(x), Ex′∼µX [1 (h(x′) 6= h∗(x′))] ≤ r)]
r

.

(39)
Summing (38) over i ∈ {1, . . . , n} and noting that the high probability event in Theorem 10 holds
over all rounds, we get that with probability at least 1− δ,

∀n ≥ 3,

n∑
i=1

Ei [1 (xi ∈ Di)] ≤ 3 +

n∑
i=4

θ(4∆∗i−1 + 2 erri(h
∗)) (40)

≤ 3 + 2nθerrn(h∗) + 4θ

n∑
i=4

∆∗i−1 (41)

= 3 + 2nθerrn(h∗) + 4θ

n∑
i=4

1

i− 1
(i− 1)∆∗i−1. (42)

For all i ≤ n, we have

i∆∗i = c1
√
i2ηierri(h∗) + ic2(ηi + bi) (43)

≤ c1
√
n2ηnerrn(h∗) + nc2(ηn + bn) (44)

= n∆∗n (45)

by plugging in the definitions of ηi and erri(h
∗). Therefore, we have

n∑
i=1

Ei [1 (xi ∈ Di)] ≤ 3 + 2nθerrn(h∗) + 8θn∆∗n ln(n) (46)

= 3 + 2nθerrn(h∗) (47)

+θO

(√
nerrn(h∗)

(
ln
(n|H|

δ

)
ln2 n

)
+ ln

(n|H|
δ

)
lnn+ nbn lnn

)
.

Combining this and (35) via a union bound leads to the desired result.

D Specialization to Oracle Epiphany

Here we prove Corollary 7. First, Lemma 2 and a union bound over the K unknown regions show
that for any fixed t > 0,

Pr

{
tbt ≤

K

β
ln

4K

δ

}
≥ 1− δ/4. (48)

Conditioning on the high-probability events in (48) and Theorem 10, we will find t such that

4∆∗t ≤ C ·

(√
e∗ ln(t|H|/δ)

t
+

ln(t|H|/δ)
t

+
K̃

βt

)
≤ ε, (49)
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where C is some absolute constant. We do this in two steps. First, we find t1, t2 and t3 that satisfy

ε ≥ C ·

√
e∗ ln(t1|H|/δ)

t1
, ε ≥ C · ln(t2|H|/δ)

t2
and ε ≥ C · K̃

βt3

respectively. This gives

t1 = O

(
e∗

ε2
ln
|H|
ε2δ

)
, t2 = O

(
1

ε
ln
|H|
εδ

)
, and t3 = O

(
K̃

βε

)
.

Setting tε = t1 + t2 + t3 then gives the desired form for tε. To bound the query complexity, we
substitute tε for n in the query complexity bounds (47) and (35), and use that fact that 4∆∗tε ≤ ε and
errtε(h

∗) ≤ err(h∗). Thus we obtain

Qtε ≤ 3 + θ ·
(
2tεe

∗ + 2tεε ln tε + 8 ln(4t2ε ln(tε)/δ)
)
. (50)

Plugging tε into the expression above leads to the desired query complexity bound.

E Details for OCR Experiments

We implement an approximate version of Alg. 2 that uses online optimization. This implementation
is based on online logistic regression in Vowpal Wabbit (hunch.net/~vw). It processes the data in
one pass, updating an approximate ERM and performing an online disagreement test with a reverting
weight technique [Karampatziakis and Langford, 2011, Appendix F]. This online test costs O(d)
time per new example, where d is the average number of features. While being efficient in practice,
this online algorithm may not retain the theoretical guarantees of Alg. 2.

We obtain the MNIST data from the LIBSVM dataset page3. The training and testing sets have
60,000 and 10,000 examples, respectively. Table 1 shows the percentages of the ten digits in the data.
We use online linear logistic regression in Vowpal Wabbit4 (VW) as our base supervised learning

Table 1: Percentages of ten digits in MNIST

digit 0 1 2 3 4 5 6 7 8 9
train (%) 9.87 11.24 9.93 10.22 9.74 9.04 9.86 10.44 9.75 9.92
test (%) 9.80 11.35 10.32 10.10 9.82 8.92 9.58 10.28 9.74 10.09

algorithm, with the default learning rate and bit precision. We consider the binary classification task
of “5” vs. other digits, and pick U based on the binary classification error for “5” vs. every other
single digit, summarized in Table 2. In addition to single digits, we also consider multiple digits

Table 2: Binary classification error for “5" vs. every other digit

digit 0 1 2 3 4 6 7 8 9
error (%) 1.1 0.4 2.3 4.4 0.8 2.5 0.6 4.6 1.3

as U. In particular, we start from both ends of the confusion spectrum and include more digits into
U. This results in a total of six settings of U: {“8”}, {“8”, “3”}, {“8”, “3”, “6”}, {“1”}, {“1”, “7”}
and {“1”, “7”, “4”}. Fig. 3 shows the median, the 25th and 75th quantiles of the smallest number
of queries for achieving a test error of 4% over 100 random trials, for the six different U’s. For the
less confusing U’s, Oracular-EPICAL always performs much better than passive when U = {“1”},
but starts approaching passive as U gets larger and β gets smaller. For the more confusing U’s, it
is interesting that β has a much weaker effect for U = {“8”} than for U = {“3”} (see Section 5),
which are almost equally confused with “5". One possibility is that they are confused with “5” in
different sub-spaces of the feature space, and the confusion with “8" could somehow be resolved
by learning from other digits, while the confusion with “3” cannot. The size of U does not have a

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/
{mnist.bz2,mnist.t.bz2}

4hunch.net/~vw
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Figure 3: Oracular-EPICAL results on MNIST (median, 25th and 75th quantiles)

clear effect because the steep increase in the number of queries over decreasing β could very well be
caused by U = {“3”}.
In addition to the average performance demonstrated so far, we are also interested in the tail per-
formance, which better aligns with our high-probability bounds. Fig. 4 and Fig. 5 show the 95th
and 85th quantiles of number of queries over 100 random trials, respectively. Oracular-EPICAL
performs surprisingly poor for β = 1 across all U’s at the 95th quantile. Further investigation shows
that in roughly 15% of the random trials for β = 1, Oracular-EPICAL becomes overly confident
about its own (mis-)predicted labels, stops querying prematurely, and never recovers from that bias.
This is caused by an overly small “mellowness” parameter, which is a tuning parameter in our online
implementation of Oracular-EPICAL that controls the multiplicative constant in the threshold ∆t.
A larger mellowness parameter improves the tail performance for β = 1, but reduces the average
improvement over passive learning across all β. Thus, choosing a proper mellowness parameter in a
data-dependent, active learning setting is an important practical issue for further investigation.
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Figure 4: Oracular-EPICAL results on MNIST (95th quantile)
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Figure 5: Oracular-EPICAL results on MNIST (85th quantile)
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