## 8 Supplementary Material for Graph Clustering: Block-models and model free results

## **Proof of Proposition 2**

- 1. Proof by verification.
- 2.  $LY = Y\hat{\Lambda}Y^TY + (BB^T)\hat{L}(BB^T)Y = Y\hat{\Lambda}$ . Since *B* is the orthogonal complement of *Y*, it follows that it is a stable subspace as well.
- 3. This is a well known result; see for example [19].

The celebrated Sinus Theorem is reproduced here for completeness.

**Theorem 13 (Sinus Theorem of Davis-Kahan, from [19], Theorem V.3.6)** Let  $\hat{L}$  be a Hermitian matrix with spectral resolution given by (4), Y be any  $n \times K$  matrix with orthonormal columns, and M any symmetric  $K \times K$  matrix with eigenvalues  $\mu_{1:K}$ . Let  $R = \hat{L}Y - YM$  and  $\Delta = \min_{\lambda \in \hat{\lambda}_{K+1:n}, \mu \in \mu_{1:K}} |\lambda - \mu| > 0$ . Then, for any unitarily invariant norm || ||,  $|| \operatorname{diag}(\sin \theta_{1:K}(\hat{Y}, Y))|| \leq \frac{||R||}{\Delta}$ , where  $\theta_{1:K}$  are the canonical angles between  $\mathcal{R}(\hat{Y})$  and  $\mathcal{R}(Y)$ .

**Proof of Proposition 5** This is a corollary of Theorem 3.6 in [19]. If eigenvalues are sorted by their absolute values, then  $\hat{\lambda}_{K+1:n} \in [-|\hat{\lambda}_{K+1}|, |\hat{\lambda}_{K+1}|]$  and  $\mu_{1:K} \in \mathbb{R} \setminus (-|\hat{\lambda}_{K+1}| - \Delta, |\hat{\lambda}_{K+1}| + \Delta)$ . If we set  $M = \hat{\Lambda}$ , so that  $\hat{\lambda}_{1:K} \in \mathbb{R} \setminus (-|\hat{\lambda}_{K+1}| - \Delta, |\hat{\lambda}_{K+1}| + \Delta)$ . Now we view Y as a perturbation of  $\hat{Y}$ , hence

$$R = \hat{L}Y - Y\hat{\Lambda} = \hat{L}Y - LY + (LY - Y\hat{\Lambda}) = (\hat{L} - L)Y$$
(11)

$$R|| = ||(\hat{L} - L)Y|| \le ||\hat{L} - L||||Y|| \le \varepsilon.$$
(12)

From Theorem 13 the result follows.

## **Proof of Proposition 6** For 1:

||.

$$||F||_{F}^{2} = \operatorname{trace} FF^{T} = \operatorname{trace} U\Sigma V^{T} V\Sigma U^{T} = \operatorname{trace} U^{T} U\Sigma V^{T} V\Sigma = \operatorname{trace} \Sigma^{2}$$
$$= 1 + \sum_{k=2}^{K} \cos^{2} \theta_{k} = 1 + \sum_{k=2}^{K} (1 - \sin^{2} \theta_{k}) = K - \sum_{k=2}^{K} \sin^{2} \theta_{k} \operatorname{since} \theta_{1} = 0$$
(13)
$$\geq K - (K - 1)\varepsilon'^{2}$$
(14)

For 2: Denote trace  $\hat{M}^T M = \langle \hat{M}, M \rangle_F$ . Then  $||M - \hat{M}||_F^2 = ||M||_F^2 + ||\hat{M}||_F^2 - 2 < \hat{M}, M >_F \leq K + K - 2(K - (K - 1)\varepsilon'^2) = 2(K - 1)\varepsilon'^2$ .  $\Box$ 

**Proof of Proposition 7** We have that  $| < M - \hat{M}, M' - \hat{M} >_F | \le ||M - \hat{M}||_F ||M' - \hat{M}||_F$ . From Proposition 6 the r.h.s is no larger than  $2(K - 1)\varepsilon'^2$ .

$$- \langle M - \hat{M}, M' - \hat{M} \rangle_{F} \leq ||M - \hat{M}||_{F} ||M' - \hat{M}||_{F} \leq 2(K - 1)\varepsilon'^{2}$$
(15)

$$- < M, M' >_F + < \hat{M}, M >_F + < \hat{M}, M' >_F - ||\hat{M}||_F^2 \le 2(K-1)\varepsilon'^2$$
(16)

Now, note that trace  $MM' = \text{trace } YY^TY'(Y')^T = \text{trace}((Y')^TY))(Y^TY') = ||Y^TY'||_F^2$ . Moreover, by (7),  $Y_Z$  and Y differ by a unitary transformation. Since  $|| ||_F$  is unitarily invariant, the result follows.

**Proof of Theorem 4** We apply Theorem 9 of [13] with  $A_X = Z$ ,  $A_{X'} = Z'$ , and  $\tilde{A}_X = Y$ ,  $\tilde{A}_{X'} = Y'$ . It follows that  $p_{XY_{kk'}} = \sum_{i \in k \cap k'} \hat{d}_i / \sum_{i=1}^n \hat{d}_i$ . Hence, the point weights are proportional to  $\hat{d}_{1:n}$ . Also, evidently,  $p_{min}/p_{max} = \delta_0$ , and the result follows.

Note that we use the fact that both PFM's have degrees equal to  $\hat{d}_{1:n}$  to obtain this proof.

**Proposition 14** Assumptions 3 and 4, imply  $||\operatorname{diag}(\sin \theta_{1:K}(\hat{Y}, Y))|| \leq \varepsilon/|\hat{\lambda}_{K}^{A}| = \varepsilon'$ , where  $\hat{\lambda}_{K}^{A}$  is the K-th eigenvalue of  $\hat{A}$ .

**Proof of Proposition 14** We consider  $\hat{A}$  a perturbation of A, its eigenvectors  $\hat{Y}$  as the perturbed eigenvectors of A and  $M = \hat{\Lambda}$ . Then,  $R = A\hat{Y} - \hat{Y}\hat{\Lambda}$ 

$$||R|| = ||A\hat{Y} - \hat{Y}\hat{\Lambda}|| \tag{19}$$

$$= ||(A\hat{Y} - \hat{A}\hat{Y}) + (\hat{A}\hat{Y} - \hat{Y}\hat{\Lambda})||$$
(20)

$$\leq ||(A - \hat{A})\hat{Y}|| \tag{21}$$

$$\leq ||A - \hat{A}|| ||\hat{Y}|| \leq \varepsilon.$$
(22)

The separation between  $\hat{\Lambda}$  and the residual spectrum of A is  $|\hat{\lambda}_K|$ . From the main Davis-Kahan theorem 13 the result follows.

**Proof of Proposition 8** The proofs of 1 and 2 are straightforward. To show 3, note that  $A = ZC^{-1}Z^T \hat{A}ZC^{-1}Z^T = Y_ZC^{1/2}BC^{1/2}Y_Z^T = Y_ZU\Lambda U^TY_Z^T = Y\Lambda Y^T$ . The definition of B above shows that this is the Maximum Likelihood estimator of B given the clustering C.

$$\Leftrightarrow \quad B_{kl} = \frac{\# \text{edges from cluster } k \text{ to cluster } l}{n_k n_l}$$
(23)

**Proof of Theorem 9** We now follow the steps outlined in section 3 with  $\varepsilon'$  from Proposition 14 to obtain our main stability result.

**Proof of Proposition 10** In the Proof of Proposition 7, we replace the bounds corresponding to  $\langle \hat{M}, M \rangle_F, ||\hat{M} - M||_F$  by the actual values computed from  $M, \hat{M}$ . We obtain

$$< M, M' >_F \ge < \hat{M}, M >_F - (K-1)(\varepsilon')^2 - 2\sqrt{2(K-1)}\varepsilon' ||\hat{M} - M||_F.$$
 (24)

## **Proof of Proposition 3**

From the Proof of this theorem, we have that  $||L^* - \hat{L}|| = o(1)$ ,  $||(D^*)^{1/2} - \hat{D}^{1/2}|| = o(1)$ ,  $||\lambda^* - \hat{\Lambda}|| = o(1)$ , and  $||\hat{Y} - Y^*|| = o(1)$ . Let Z be the indicator matrix of  $\mathcal{C}^*$ . The principal eigenvectors of  $L^*$  are  $Y^* = (D^*)^{1/2}Z(C^*)^{-1/2}$ . It follows then that  $||Z^T\hat{D}Z - Z^TD^*Z|| = o(1)$ , and since  $C = Z^T\hat{D}Z$ ,  $Y_Z = \hat{D}^{1/2}ZC^{-1/2}$  we have that  $||Y_Z - Y^*|| = o(1)$ ,  $||F^* - F|| = o(1)$  where  $F^* = Y^TY^*$ . Moreover, since  $||\hat{Y} - Y^*|| = o(1)$ , ||F - I|| = o(1) Hence  $||UV^T - I|| = o(1)$ . Since the choice of B depends only on  $\mathcal{R}(Y_Z)$ , it follows immediately that  $||BB^T\hat{L}B^TB - B^*(B^*)^TL^*(B^*)^TB^*|| = o(1)$ . Now,  $L = Y_ZUV^T\hat{\Lambda}VU^TY_Z^T + BB^T\hat{L}B^TB$ , and  $L^* = Y^*\Lambda^*(Y^*)^T + B^*(B^*)^TL^*(B^*)^TB^*$ , which completes the proof.

**perturbation of the PFM model** To obtain a noisy PFM model A, we calculate the first K piecewise constant [14] eigenvectors V of the transition matrix  $P = D^{-1}A$ , from which we obtain  $V^*$  by perturbing each entry in V with a noise  $\epsilon \sim unif(0, 10^{-4})$ . The perturbed similarity matrix A is then obtained as  $A = D^{1/2}(D^{1/2}V^*\hat{\Lambda}V^{*T}D^{1/2} + \hat{Y}_{low}\hat{\Lambda}_{low}\hat{Y}_{low}^T)D^{1/2}$ . An adjacency matrix  $\hat{A}$  is generated from A. In figure 2, we show the perturbed graphs A and  $\hat{A}$ .



Figure 2: Left: the visualization of the perturbed A. Right: the visualization of the perturbed  $\hat{A}$