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Proof of Proposition 2

1. Proof by verification.

2. LY = Y Λ̂Y TY + (BBT )L̂(BBT )Y = Y Λ̂. Since B is the orthogonal complement of
Y , it follows that it is a stable subspace as well.

3. This is a well known result; see for example [19].

The celebrated Sinus Theorem is reproduced here for completeness.

Theorem 13 (Sinus Theorem of Davis-Kahan, from [19], Theorem V.3.6) Let L̂ be a Hermi-
tian matrix with spectral resolution given by (4), Y be any n × K matrix with orthonormal
columns, and M any symmetric K × K matrix with eigenvalues µ1:K . Let R = L̂Y − YM
and Δ = minλ∈λ̂K+1:n,µ∈µ1:K

|λ − µ| > 0. Then, for any unitarily invariant norm || ||,
|| diag(sin θ1:K(Ŷ , Y ))|| ≤ ||R||

Δ , where θ1:K are the canonical angles between R(Ŷ ) and R(Y ).

Proof of Proposition 5 This is a corollary of Theorem 3.6 in [19]. If eigenvalues are sorted by their
absolute values, then λ̂K+1:n ∈ [−|λ̂K+1|, |λ̂K+1|] and µ1:K ∈ R\(−|λ̂K+1|−Δ, |λ̂K+1|+Δ). If
we set M = Λ̂, so that λ̂1:K ∈ R \ (−|λ̂K+1|−Δ, |λ̂K+1|+Δ). Now we view Y as a perturbation
of Ŷ , hence

R = L̂Y − Y Λ̂ = L̂Y − LY + (LY − Y Λ̂) = (L̂− L)Y (11)

||R|| = ||(L̂− L)Y || ≤ ||L̂− L||||Y || ≤ ε. (12)

From Theorem 13 the result follows. ✷

Proof of Proposition 6 For 1:

||F ||2F = traceFFT = traceUΣV TV ΣUT = traceUTUΣV TV Σ = traceΣ2

= 1 +

K�

k=2

cos2 θk = 1 +

K�

k=2

(1− sin2 θk) = K −
K�

k=2

sin2 θk since θ1 = 0 (13)

≥ K − (K − 1)ε�2 (14)

For 2: Denote trace M̂TM =< M̂,M >F . Then ||M − M̂ ||2F = ||M ||2F + ||M̂ ||2F − 2 <

M̂,M >F≤ K +K − 2(K − (K − 1)ε�2) = 2(K − 1)ε�2. ✷

Proof of Proposition 7 We have that | < M − M̂,M � − M̂ >F | ≤ ||M − M̂ ||F ||M � − M̂ ||F .
From Proposition 6 the r.h.s is no larger than 2(K − 1)ε�2.

− < M − M̂,M � − M̂ >F ≤ ||M − M̂ ||F ||M � − M̂ ||F ≤ 2(K − 1)ε�2 (15)

− < M,M � >F + < M̂,M >F + < M̂,M � >F −||M̂ ||2F ≤ 2(K − 1)ε�2 (16)

< M,M � >F ≥ < M̂,M >F + < M̂,M � >F −K − 2(K − 1)ε�2 (17)

≥ 2K − 2(K − 1)ε�2 −K − 2(K − 1)ε�2 = K − 4(K − 1)ε�2✷(18)

Now, note that traceMM � = traceY Y TY �(Y �)T = trace((Y �)TY ))(Y TY �) = ||Y TY �||2F .
Moreover, by (7), YZ and Y differ by a unitary transformation. Since || ||F is unitarily invariant,
the result follows.

Proof of Theorem 4 We apply Theorem 9 of [13] with AX = Z,AX� = Z �, and ÃX = Y , ÃX� =

Y �. It follows that pXYkk� =
�

i∈k∩k� d̂i/
�n

i=1 d̂i. Hence, the point weights are proportional to
d̂1:n. Also, evidently, pmin/pmax = δ0, and the result follows.

Note that we use the fact that both PFM’s have degrees equal to d̂1:n to obtain this proof. ✷

Proposition 14 Assumptions 3 and 4, imply || diag(sin θ1:K(Ŷ , Y ))|| ≤ ε/|λ̂A
K | = ε�, where λ̂A

K

is the K-th eigenvalue of Â.
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Proof of Proposition 14 We consider Â a perturbation of A, its eigenvectors Ŷ as the perturbed
eigenvectors of A and M = Λ̂. Then, R = AŶ − Ŷ Λ̂

||R|| = ||AŶ − Ŷ Λ̂|| (19)

= ||(AŶ − ÂŶ ) + (ÂŶ − Ŷ Λ̂)|| (20)

≤ ||(A− Â)Ŷ || (21)

≤ ||A− Â||||Ŷ || ≤ ε. (22)

The separation between Λ̂ and the residual spectrum of A is |λ̂K |. From the main Davis-Kahan
theorem 13 the result follows. ✷

Proof of Proposition 8 The proofs of 1 and 2 are straightforward. To show 3, note that A =

ZC−1ZT ÂZC−1ZT = YZC
1/2BC1/2Y T

Z = YZUΛUTY T
Z = Y ΛY T . The definition of B

above shows that this is the Maximum Likelihood estimator of B given the clustering C.

⇔ Bkl =
#edges from cluster k to cluster l

nknl
(23)

Proof of Theorem 9 We now follow the steps outlined in section 3 with ε� from Proposition 14 to
obtain our main stability result.

Proof of Proposition 10 In the Proof of Proposition 7, we replace the bounds corresponding to
< M̂,M >F , ||M̂ −M ||F by the actual values computed from M,M̂ . We obtain

< M,M � >F≥< M̂,M >F −(K − 1)(ε�)2 − 2
�

2(K − 1)ε�||M̂ −M ||F . (24)

Proof of Proposition 3

From the Proof of this theorem, we have that ||L∗ − L̂|| = o(1), ||(D∗)1/2 − D̂1/2|| = o(1),
||λ∗ − Λ̂|| = o(1), and ||Ŷ − Y ∗|| = o(1). Let Z be the indicator matrix of C∗. The principal
eigenvectors of L∗ are Y ∗ = (D∗)1/2Z(C∗)−1/2. It follows then that ||ZT D̂Z − ZTD∗Z|| =
o(1), and since C = ZT D̂Z, YZ = D̂1/2ZC−1/2 we have that ||YZ − Y ∗|| = o(1), ||F ∗ −
F || = o(1) where F ∗ = Y TY ∗. Moreover, since ||Ŷ − Y ∗|| = o(1), ||F − I|| = o(1) Hence
||UV T − I|| = o(1). Since the choice of B depends only on R(YZ), it follows immediately that
||BBT L̂BTB − B∗(B∗)TL∗(B∗)TB∗|| = o(1). Now, L = YZUV T Λ̂V UTY T

Z + BBT L̂BTB,
and L∗ = Y ∗Λ∗(Y ∗)T +B∗(B∗)TL∗(B∗)TB∗, which completes the proof. ✷

perturbation of the PFM model To obtain a noisy PFM model A, we calculate the first K piecewise
constant [14] eigenvectors V of the transition matrix P = D−1A, from which we obtain V ∗ by
perturbing each entry in V with a noise � ∼ unif(0, 10−4). The perturbed similarity matrix A is
then obtained as A = D1/2(D1/2V ∗Λ̂V ∗TD1/2 + ŶlowΛ̂lowŶ

T
low)D

1/2. An adjacency matrix Â is
generated from A. In figure 2, we show the perturbed graphs A and Â.

A Â

Figure 2: Left: the visualization of the perturbed A. Right: the visualization of the perturbed Â
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