
Stochastic Variance Reduction Methods for Saddle-Point Problems
P. Balamurugan and F. Bach

Supplementary material - NIPS 2016

A Formalization through Monotone Operators

Throughout the proofs, we will consider only maximal monotone operators on a Euclidean space E,
that is A is assumed to be a µ-strongly monotone (corresponding to M for saddle-points) and po-
tentially set-valued, while B is monotone and L-Lipschitz-continuous with respect to the Euclidean
norm (and hence single-valued). For an introduction to monotone operators, see [8, 28].

For simplicity, in this appendix, we will only consider a single-valued operator A (noting that the
proof extends to any set-valued operator A), and we will mostly focus here on the monotonicity
properties (noting that the “maximal” property can be treated rigorously [8], in particular to ensure
that the resolvent operator is defined everywhere). An operator is monotone if and only if for all
(z, z′), (A(z) − A(z′))⊤(z − z′) ! 0. The most basic example is the subdifferential of a convex
function. In this paper, we focus on saddle-point problems.

Application to saddle-point problems. For the saddle-point problems defined in Section 2 of the
main paper, where we have z = (x, y), we need to make a change of variable because of the two
potentially different scaling factors λ and γ. We consider the operators

B(x, y) = (λ−1/2∂xK(λ−1/2x, γ−1/2y),−γ−1/2∂yK(λ−1/2x, γ−1/2y))

A(x, y) = (λ−1/2∂xM(λ−1/2x, γ−1/2y),−γ−1/2∂yM(λ−1/2x, γ−1/2y)).

The solutions of A(x, y) +B(x, y) = 0 are exactly the solutions of the problem in Eq. (1), rescaled

by λ1/2 and γ1/2. Moreover, the operator A is µ-monotone with µ = 1, i.e., for any z, z′, we have
(A(z)−A(z′))⊤(z− z′) ! ∥z− z′∥2. Finally, our definition of the smoothness constants for B and
Bi in the main paper, exactly leads to a Lipschitz-constant of L with respect to the natural Euclidean
norm (a similar result holds for the constant L̄(π) defined later). Moreover, convergence results in
the Euclidean norm here transfer to convergence results in the norm Ω defined in the main paper.
Note that because of our proofs through operators, it is not easily possible to get bounds on the
primal and dual gaps.

Properties of monotone operators and resolvents. Given a maximal monotone operator A, we
may define its resolvent operator as z′ = (I + σA)−1(z), which is defined as finding the unique z′

such that z′ + σA(z′) = z. When A is the operator associated to the saddle-point function M as
described above, then the resolvent operator is exactly the proximal operator of M defined in Eq. (2)
of the main paper. Note that care has to be taken with the scaling factors λ and γ.

We will use the following properties (on top of Lipschitz-continuity) [8, 28]:

– Monotonicity property: for any (z, z′), (B(z)−B(z′), z − z′) ! 0.

– Contractivity of the resolvent operator for A µ-strongly-monotone: for any (z, z′), ∥(I +
σA)−1(z)− (I + σA)−1(z′)∥ " (1 + σµ)−1∥z − z′∥.

– Firm non-expansiveness of the resolvent: for any (z, z′), ∥(I +σA)−1(z)− (I+σA)−1(z′)∥2 "

(1 + σµ)−1(z − z′)⊤
(

(I + σA)−1(z)− (I + σA)−1(z′)
)

.

Moreover, given our strong-monotonicity assumption, A+B has a unique zero z∗ ∈ E.

Finally in order to characterize the running-times, we will consider the complexity Tfw(B) of com-
puting the operator B and the complexity Tbw(A) to compute the resolvent of A. For saddle-point
problems, these correspond to T (B) and Tprox(M) from the main paper.

B Proof for Deterministic Algorithms

All proofs in this section will follow the same principle, by showing that at every step of our algo-
rithms, a certain function (a “Lyapunov” function) is contracted by a factor strictly less than one.

10

For the forward-backward algorithm, this will be the distance to optimum ∥zt − z∗∥2; while for the
accelerated version, it will be different.

B.1 Forward-backward algorithm

We consider the iteration zt = (I+σA)−1(zt−1−σB(zt−1)), with B being monotone L-Lipschitz-
continuous and A being µ-strongly monotone. The optimum z∗ (i.e., the zero of A+B) is invariant
by this iteration. Note that this is the analysis of [19] and that we could improve it by putting some
of the strong-monotonicity in the operator B rather than in A.

We have:

∥zt − z∗∥2

"
1

(1 + σµ)2
∥zt−1 − z∗ − σ(B(zt−1)−B(z∗))∥2 by contractivity of the resolvent,

=
1

(1 + σµ)2

[

∥zt−1 − z∗∥2 − 2σ(zt−1 − z∗)
⊤(B(zt−1)−B(z∗)) + σ2∥B(zt−1)−B(z∗)∥2

]

"
1

(1 + σµ)2
(1 + σ2L2)∥zt−1 − z∗∥2 by monotonicity of and Lipschitz-continuity of B,

"

(1 + σ2L2

(1 + σµ)2

)t
∥z0 − z∗∥2, by applying the recursion t times.

Thus we get linear (i.e., geometric) convergence as soon as 1 + σ2L2 < (1 + σµ)2. If we consider
η = σµ

1+σµ ∈ [0, 1), and the rate above becomes equal to:

1 + σ2L2

(1 + σµ)2
= (1− η)2 + η2

L2

µ2
= 1− 2η + η2(1 +

L2

µ2
),

thus the algorithm converges if η < 2

1+L2

µ2

, and with η = 1

1+L2

µ2

which corresponds to σ = 1
µ

η
1−η =

µ
L2 , we get a linear convergence rate with constant 1− η = L2

µ2+L2 .

Thus the complexity to reach the precision ε×∥z0−z∗∥2 in squared distance to optimum ∥zt−z∗∥2

is equal to
(

1 + L2

µ2)
[

Tfw(B) + Tbw(A)
]

log 1
ε .

Note that we obtain a slow convergence when applied to convex minimization, because we are
not using any co-coercivity of B, which would lead to a rate (1 − µ/L) [6]. Indeed, co-coercivity
means that ∥B(z)−B(z′)∥2 " L(B(z)−B(z′))⊤(z−z′), and this allows to replace above the term
1+σ2L2 by 1 if σ " 2/L, leading to linear convergence rate with constant (1+µ/L)−2 ≈ 1−2µ/L.

B.2 Accelerated forward-backward algorithm

We consider the iteration zt = (I + σA)−1(zt−1 − σB[zt−1 + θ(zt−1 − zt−2)]), with B being
monotone L-Lipschitz-continuous and linear, and A being µ-strongly monotone. Note that this is
an extension of the analysis of [20] to take into account the general monotone operator situation.
Again z∗ is a fixed-point of the iteration.

11

Using the firm non-expansiveness of the resolvent operator, we get, with η = σµ
1+σµ , and then using

the linearity of B:

∥zt − z∗∥2 "
1

1 + σµ
(zt − z∗)

⊤
[

zt−1 − z∗ − σB[zt−1 − z∗ + θ(zt−1 − zt−2)]
]

= (zt − z∗)
⊤
[

(1− η)(zt−1 − z∗)−
η

µ
B[zt−1 − z∗ + θ(zt−1 − zt−2)]

]

= −
1− η

2
∥zt − zt−1∥2 +

1− η

2
∥zt − z∗∥2 +

1− η

2
∥zt−1 − z∗∥2

−
η

µ
(zt − z∗)

⊤B[zt−1 − z∗ + θ(zt−1 − zt−2)]

= −
1− η

2
∥zt − zt−1∥2 +

1− η

2
∥zt − z∗∥2 +

1− η

2
∥zt−1 − z∗∥2

−
η

µ
(zt − z∗)

⊤B(zt−1 − z∗)− θ
η

µ
(zt − z∗)

⊤B(zt−1 − zt−2),

by regrouping terms. By using the Lipschitz-continuity of B, we get:

∥zt − z∗∥2

" −
1− η

2
∥zt − zt−1∥2 +

1− η

2
∥zt − z∗∥2 +

1− η

2
∥zt−1 − z∗∥2 −

η

µ
(zt − z∗)

⊤B(zt−1 − zt)

−θ
η

µ
(zt−1 − z∗)

⊤B(zt−2 − zt−1) + θ
η

µ
L∥zt − zt−1∥∥zt−1 − zt−2∥

" −
1− η

2
∥zt − zt−1∥2 +

1− η

2
∥zt − z∗∥2 +

1− η

2
∥zt−1 − z∗∥2 −

η

µ
(zt − z∗)

⊤B(zt−1 − zt)

−θ
η

µ
(zt−1 − z∗)

⊤B(zt−2 − zt−1) +
θL

2

η

µ

[

α−1∥zt − zt−1∥2 + α∥zt−1 − zt−2∥2
]

,

with a constant α > 0 to be determined later. This leads to, with θ = 1−η
1+η , and by regrouping terms:

1 + η

2
∥zt − z∗∥2 +

(1− η

2
−

θηL

2µ
α−1

)

∥zt − zt−1∥2 − η(zt − z∗)
⊤B(zt−1 − zt)

"
1− η

2
∥zt−1 − z∗∥2 +

(αηθL

2µ

)

∥zt−1 − zt−2∥2 − θ
η

µ
(zt−1 − z∗)

⊤B(zt−2 − zt−1)

" θ

[

1 + η

2
∥zt−1 − z∗∥2 +

(ηαL

2µ

)

∥zt−1 − zt−2∥2 −
η

µ
(zt−1 − z∗)

⊤B(zt−2 − zt−1)

]

.

We get a Lyapunov function L : (z, z′) &→ 1+η
2 ∥z − z∗∥2 +

(

1−η
2 −

θηL
2µ α−1

)

∥z − z′∥2 − η(z −

z∗)⊤B(z′ − z), such that L(zt, zt−1) converges to zero geometrically, if αηL
µ " 1− η − ηθL

µ α−1

and

(

1 + η −ηL/µ
ηL/µ 1− η − ηθLµ−1α−1

)

0. By setting η = 1
1+2L/µ , and thus θ = 1−η

1+η = 1
1+µ/L ,

σ = 1
µ

η
1−η = 1

2L , and α = 1, we get the desired first property and the fact that the matrix above

is greater than

(

1/2 0
0 0

)

, which allows us to get a linear rate of convergence for ∥zt − z∗∥2 "

2L(zt, zt−1).

C Proof for Existing Stochastic Algorithms

We follow [22], but with a specific step-size that leads to a simple result, which also applies to non-
uniform sampling from a finite pool. We consider the iteration zt = (I+σtA)−1(zt−1−σt(Bzt−1+
Ctzt−1)), with B being monotone L-Lipschitz-continuous and A being µ-strongly monotone, and
Ct a random operator (not necessarily monotone) such that ECt(z) = 0 for all z. We assume that
all random operators Ct are independent, and we denote by Ft the σ-field generated by C1, . . . , Ct,
i.e., the information up to time t.

12

We have with Lip(Ct) the Lipschitz-constant of Ct:

∥zt − z∗∥2 "
1

(1 + σtµ)2
∥zt−1 − z∗ − σt(B(zt−1)−B(z∗))− σtCt(zt−1)∥2

by contractivity of the resolvent,

=
1

(1 + σtµ)2

[

∥zt−1 − z∗∥2 − 2σt(zt−1 − z∗)
⊤(B(zt−1)−B(z∗))

+σ2
t ∥B(zt−1)−B(z∗) + Ct(zt−1)∥2 + 2σt(Ct(zt−1))

⊤(zt−1 − z∗)
]

.

By taking conditional expectations, we get:

E
(

∥zt − z∗∥2
∣

∣Ft−1

)

"
1

(1 + σtµ)2
[

(1 + σ2
tL

2)∥zt−1 − z∗∥2 + σ2
tE(∥Ct(zt−1)∥2|Ft−1)

]

by monotonicity and Lipschitz-continuity of B,

"
1

(1 + σtµ)2
[

(1 + σ2
tL

2)∥zt−1 − z∗∥2 + 2σ2
tE(∥Ct(z∗)∥2|Ft−1)

+2σ2
t ∥zt−1 − z∗∥2E(sup

∥z−z′∥=1
∥Ct(z)− Ct(z

′)∥2|Ft−1)
]

=
1

(1 + σtµ)2
[

(1 + σ2
tL

2)∥zt−1 − z∗∥2 + 2σ2
tE(∥Ct(z∗)∥2|Ft−1)

+2σ2
t ∥zt−1 − z∗∥2E(Lip(Ct)

2|Ft−1)
]

=
1

(1 + σtµ)2
[

(1 + σ2
tL

2 + 2σ2
tE(Lip(Ct)

2|Ft−1))∥zt−1 − z∗∥2 + 2σ2
tE(∥Ct(z∗)∥2|Ft−1)

]

.

By denoting ηt =
σtµ

1+σtµ
∈ [0, 1), we get

E∥zt − z∗∥2 "

(

1− 2ηt + η2t + 2η2t
L2

µ2
+ 2η2t

1

µ2
E(Lip(Ct)

2|Ft−1)
)

∥zt−1 − z∗∥2 + 2
η2t
µ2

E(∥Ctz∗∥2|Ft−1)
]

.

By selecting ηt = 2

(t+1)+4L2

µ2 + 4

µ2 E(Lip(Ct)2|Ft−1)
= 2

t+1+A , with A = 4L2

µ2 + 4
µ2E(Lip(Ct)2|Ft−1),

we get:

E∥zt − z∗∥2 " (1 − ηt)E∥zt−1 − z∗∥2 + 2
η2t
µ2

E(∥Ctz∗∥2)
]

=
t− 1 +A

t+ 1 +A
E∥zt−1 − z∗∥2 +

8

(t+ 1 +A)2
1

µ2
E(∥Ctz∗∥2)

"
A(1 +A)

(t+ 1 +A)(t+A)
∥z0 − z∗∥2 +

8

µ2

t
∑

u=1

(u+A)(u + 1 +A)

(t+ 1 +A)(t+A)

1

(u + 1 +A)2
E(∥Cuz∗∥2)

by expanding the recursion t times,

"
A(1 +A)

(t+ 1 +A)(t+A)
∥z0 − z∗∥2 +

8

µ2

t
∑

u=1

1

(t+ 1+ A)(t+A)
E(∥Cuz∗∥2)

"
(1 +A)2

(t+A)2
∥z0 − z∗∥2 +

8

µ2(t+A)
sup

u∈{1,...,t}
E(∥Cuz∗∥2).

The overall convergence rate is in O(1/t) and the constant depends on the noise in the operator
values at the optimum. Note that initial conditions are forgotten at a rate O(1/t2).

Application to sampling from a finite family. When sampling from |I| operators Bi, i ∈ I, and
selecting it with probability vector π, then we have E(Lip(Ct)2|Ft−1) " L̄(π)2 = L̄2 defined as

sup∥z−z′∥!1

√

∑

i∈I
1
πi
∥Bi(z)−Bi(z′)∥2. Thus, we can take the step-size 2

t+1+4L2+L̄2

µ2

, which

leads to σt =
2/µ

t+1+4L2+L̄2

µ2

. Moreover, if L is unknown (or hard to compute), we can take L̄ instead.

13

We may further bound: E(∥Cuz∗∥2) " 2E(∥Cuz0∥2) + 2E(Lip(Ct)2)∥z0 − z∗∥2, and thus, if we
start from an initial point z0 such that Cuz0 = 0, which is always possible for bi-linear problems,
we get an overall bound of (taking L = L̄ for simplicity)

((1 + 8L̄2/µ2)2

(t+ 8L̄2/µ2)2
+

16L̄2/µ2

t+ 8L̄2/µ2

)

∥z0 − z∗∥2 "
1 + 24L̄2/µ2

t+ 8L̄2/µ2
∥z0 − z∗∥2.

We thus get an overall O(1/t) convergence rate.

D Proof for New Stochastic Algorithms

We also consider the monotone operator set-up, since this is the only assumption that we use. We
follow the proof of the corresponding convex minimization algorithms, with key differences which
we highlight below. In particular, (a) we do not use function values, and (b) we use shorter step-sizes
to tackle the lack of co-coercivity.

D.1 SVRG: Stochastic-Variance reduced saddle-point problems (Theorem 1)

We only analyze a single epoch starting from the reference estimate z̃, and show that the expected
squared distance to optimum is shrunk by a factor of 3/4 if the number of iterations per epoch is
well-chosen. The epoch is started with z0 = z̃.

We denote by Ft−1 the information up to time t − 1. We consider sampling it1, . . . , itm ∈ I with
replacement at time t. By using the contractivity of the resolvent operator of A, and the fact that
z∗ = (I + σA)−1(z∗ − σB(z∗)), we get:

∥zt − z∗∥2 "
1

(1 + σµ)2

∥

∥

∥
zt−1 − z∗ − σ[B(z̃)−B(z∗) +

1

m

m
∑

k=1

1

πitk

(Bitk(zt−1)−Bitk(z̃))]
∥

∥

∥

2

=
1

(1 + σµ)2

∥

∥

∥
zt−1 − z∗

−σ[B(zt−1)−B(z∗) +
1

m

m
∑

k=1

1

πitk

(Bitk(zt−1)−Bitk (z̃))− (B(zt−1)−B(z̃))]
∥

∥

∥

2
.

Expanding the squared norm, taking conditional expectations with E(1
πitk

Bitk|Ft−1) = B, and

using the independence of it1, . . . , itm, we get:

E
[

∥zt − z∗∥2|Ft−1

]

"
1

(1 + σµ)2
(

∥zt−1 − z∗∥2 − 2σ(zt−1 − z∗)
⊤(B(zt−1)−B(z∗)) + σ2∥B(zt−1)−B(z∗)∥2

)

+
1

m
E

[1

(1 + σµ)2

∥

∥

∥

1

πit
(Bit(zt−1)−Bit(z̃))− (B(zt−1)−B(z̃))

∥

∥

∥

2∣
∣

∣
Ft−1

]

.

Using the monotonicity of B and the Lipschitz-continuity of B (like in Appendix B.1) , we get the
bound

1 + σ2L2

(1 + σµ)2
∥zt−1−z∗∥2+

1

m
E

[1

(1 + σµ)2
∥

∥

1

πit
(Bit(zt−1)−Bit(z̃))−(B(zt−1)−B(z̃))

∥

∥

2∣
∣Ft−1

]

.

We denote by L̄2 the quantity L̄2 = supz,z′∈E
1

∥z−z′∥2

∑

i∈I
1
πi
∥Bi(z) − Bi(z′)∥2. We then have

(using the fact that a variance is less than the second-order moment):

E

[

∥

∥

1

πit
(Bit(zt−1)−Bit(z̃))−(B(zt−1)−B(z̃))

∥

∥

2∣
∣Ft−1

]

" E

[

∥

∥

1

πit
(Bit(zt−1)−Bit(z̃))

∥

∥

2∣
∣Ft−1

]

,

which is less than L̄2∥zt−1 − z̃∥2 because we sample it from π. This leads to

E
[

∥zt − z∗∥2|Ft−1

]

"
1 + σ2L2

(1 + σµ)2
∥zt−1 − z∗∥2 +

1

(1 + σµ)2
L̄2

m
∥zt−1 − z̃∥2

"

(

1− 2η + η2 + η2
L2

µ2
+

(1 + a)η2

µ2

L̄2

m

)

∥zt−1 − z∗∥2

+
(1 + a−1)η2

µ2

L̄2

m
∥z̃ − z∗∥2,

14

with η = σµ
1+σµ ∈ [0, 1) and a > 0 to be determined later. Assuming that η

(

1+ L2

µ2 +
(1+a)
µ2

L̄2

m

)

" 1,

and taking full expectations, this leads to:

E∥zt − z∗∥2 " (1− η)E∥zt−1 − z∗∥2 +
(1 + a−1)η2

µ2

L̄2

m
∥z̃ − z∗∥2,

that is we get a shrinking of the expected distance to optimum with additional noise that depends
on the distance to optimum of the reference point z̃. The difference with the convex minimization
set-up of [24] is that the proof is more direct, and we get a shrinkage directly on the iterates (we
have no choice for monotone operators), without the need to do averaging of the iterates. Moreover,
we never use any monotonicity of the operators Bi, thus allowing any type of splits (as long as the
sum B is monotone).

Then, using the fact that z0 = z̃, and expanding the recursion:

E∥zt − z∗∥2 " (1 − η)t∥z0 − z∗∥2 +
(

t−1
∑

u=0

(1 − η)u
) (1 + a−1)η2

µ2

L̄2

m
∥z̃ − z∗∥2

"

(

(1 − η)t +
(1 + a−1)η

µ2

L̄2

m

)

∥z̃ − z∗∥2.

If we take a = 2, η = 1
∣

∣1+L2+3L̄2/(mµ2)
, which corresponds to σ = 1

µ
η

1−η = µ
∣

∣L2+ 3
m L̄2

and

t = log 4/η = log 4× (1+ L2

µ2 +3 L̄2

mµ2), we obtain a bound of 3/4, that is, after t steps in an epoch,

we obtain E∥zt − z∗∥2 " 3
4∥z̃ − z∗∥2, which is the desired result.

In terms of running-time, we therefore need a time proportional to T (B) +
(

1 + L2

µ2 +

3 L̄2

mµ2

)(

mmaxi T (Bi) + Tprox(A)
)

, times log 1
ε to reach precision ε.

Note that if L2 is too expensive to compute (because it is a global constant), we may replace it by
L̄2 and get a worse bound (but still a valid algorithm).

D.2 SAGA: Online stochastic-variance reduced saddle-point problems (Theorem 2)

The proof follows closely the one of SVRG above. Following the same arguments, we get, by
contractivity of the resolvent operator:

∥zt − z∗∥2 "
1

(1 + σµ)2

∥

∥

∥
zt−1 − z∗ − σ[

∑

i∈I

git−1 −B(z∗) +
1

m

m
∑

k=1

1

πitk
(Bitk (zt−1)− gitkt−1)]

∥

∥

∥

2

=
1

(1 + σµ)2

∥

∥

∥
zt−1 − z∗ − σ[B(zt−1)−B(z∗)

+
1

m

m
∑

k=1

1

πitk

(Bitk(zt−1)− gitkt−1)− (B(zt−1)−
∑

i∈I

git−1)]
∥

∥

∥

2
.

Then, using independence, monotonicity and Lipschitz-continuity of B, we get (note that we never
use any monotonicity of Bi), like in the proof of Theorem 1:

E
[

∥zt − z∗∥2|Ft−1

]

"
1 + σ2L2

(1 + σµ)2
∥zt−1 − z∗∥2

+
1

m
E

[1

(1 + σµ)2
∥

∥

1

πit
(Bit(zt−1)− gitt−1)− (B(zt−1)−

∑

i∈I

git−1)
∥

∥

2∣
∣Ft−1

]

"
1 + σ2L2

(1 + σµ)2
∥zt−1 − z∗∥2 +

1

m

1

(1 + σµ)2

(

∑

i∈I

1

πi
∥Bi(zt−1)− git−1∥2

)

"

(

1− 2η + η2 + η2
L2

µ2
+

(1 + a)η2

µ2

L̄2

m

)

∥zt−1 − z∗∥2

+
(1 + a−1)η2

µ2m

(

∑

i∈I

1

πi
∥Bi(z∗)− git−1∥2

)

,

15

with η = σµ
1+σµ . Assuming η

(

1 + L2

µ2 + (1+a)
µ2

L̄2

m

)

" 1, we get

E
[

∥zt − z∗∥2|Ft−1

]

" (1− η)∥zt−1 − z∗∥2 +
(1 + a−1)η2

µ2m

(

∑

i∈I

1

πi
∥Bi(z∗)− git−1∥2

)

.

Like in the SVRG proof above, we get a contraction of the distance to optimum, with now an added
noise that depends on the difference between our stored operator values and the operator values at
the global optimum. We thus need to control this distance by adding the proper factors to a Lyapunov
function. Note that we never use any monotonicity of the operators Bi, thus allowing any type of
splits (as long as the sum B is monotone).

We assume that we update (at most m because we are sampling with replacement and we may
sample the same gradient twice) “gradients” git uniformly at random (when we consider uniform
sampling, we can reuse the same gradients as dependence does not impact the bound), by replacing
them by git = Bi(zt−1). Thus:

E

(

∑

i∈I

1

πi
∥Bi(z∗)− git∥2

∣

∣

∣
Ft−1

)

= E

(

∑

i selected

1

πi
∥Bi(z∗)−Bi(zt−1)∥2 +

∑

i non selected

1

πi
∥Bi(z∗)− git−1∥2

∣

∣

∣
Ft−1

)

=E

(

∑

i selected

1

πi

(

∥Bi(z∗)−Bi(zt−1)∥2 − ∥Bi(z∗)− git−1∥2
)

+
∑

i∈I

1

πi
∥Bi(z∗)− git−1∥2

∣

∣

∣
Ft−1

)

.

Since we sample uniformly with replacement, the marginal probabilities of selecting an element i is
equal to ρ = 1− (1− 1

|I|)
m. We thus get

E

(

∑

i∈I

1

πi
∥Bi(z∗)− git∥2

∣

∣

∣
Ft−1

)

" (1 − ρ)
∑

i∈I

1

πi
∥Bi(z∗)− git−1∥2 + ρ

∑

i∈I

1

πi
∥Bi(z∗)−Bi(zt−1)∥2

" (1 − ρ)
∑

i∈I

1

πi
∥Bi(z∗)− git−1∥2 + ρL̄2∥zt−1 − z∗∥2.

Therefore, overall, we have, for a scalar b > 0 to be chosen later:

E

(

∥zt − z∗∥2 + b
∑

i∈I

1

πi
∥Bi(z∗)− git∥2

∣

∣

∣
Ft−1

)

"

(

1− 2η + η2 + η2
L2

µ2
+

(1 + a)η2

µ2

L̄2

m
+ bρL̄2

)

∥zt−1 − z∗∥2

+b
(

1− ρ+ b−1 (1 + a−1)η2

mµ2

)

∑

i∈I

1

πi
∥Bi(z∗)− git−1∥2.

If we take a = 2, η = 1

max{ 3|I|
2m ,1+L2

µ2 +3 L̄2

mµ2 }
, which corresponds to σ = 1

µ
η

1−η =

µ
∣

∣max{ 3|I|
2m −1,L

2

µ2 +3 L̄2

mµ2 }
, with bρL̄2 = 3η

4 , then we get the bound (using η " 1/(L̄2/(3m))):

(1−
η

4
)∥zt−1 − z∗∥2 + (1−

ρ

3
)
∑

i∈I

1

πi
∥Bi(z∗)− git−1∥2,

which shows that the function (z, g) &→ ∥z − z∗∥2 + b
∑

i∈I
1
πi
∥Bi(z∗)− gi∥2 is a good Lyapunov

function for the problem that shrinks geometrically in expectation (it resembles the one from convex
minimization, but without the need for function values).

Finally, since we assume thatm " |I|, we have ρ = 1−(1−1/|I|)m ! 1−exp(−m/|I|) ! m/(2|I|).
This leads to, after t iterations

E∥zt − z∗∥2 " (1−min{
η

4
,
m

6|I|
})t

[

∥z0 − z∗∥2 +
3η

4ρL̄2

∑

i∈I

1

πi
∥Bi(z∗)−Bi(z0)∥2

]

.

16

We have η " 2m/(3|I|) and 3η/(4ρ) " 3
4

2m
3|I|

2|I|
m " 1, leading to

E∥zt − z∗∥2 " 2(1−
η

4
)t∥z0 − z∗∥2,

which is the desired result.

Note that we get the same overall running-time complexity than for SVRG.

Factored splits. Note that when applying to saddle-points with factored splits, we need to use a
Lyapunov function that considers these splits. The only difference is to treat separately the two parts
of the vectors, leading to replacing everywhere |I| by max{|J|, |K|}.

D.3 Acceleration

We also consider in this section a proof based on monotone operators. We first give the algorithm
for saddle-point problems.

Algorithms for saddle-point problems. At each iteration, we need solve the problem in Eq. (4)

of the main paper, with the SVRG algorithm applied to K̃(x, y) = K(x, y) − λτx⊤x̄ + γτy⊤ȳ,

and M̃(x, y) = M(x, y) + λτ
2 ∥x∥

2 − γτ
2 ∥y∥

2. These functions lead to constants λ̃ = λ(1 + τ),

γ̃ = γ(1 + τ) and L̃ = L/(1 + τ), σ̃ = σ(1 + τ)2. We thus get the iteration, for a single selected
operator,

(x, y)← proxσ̃
M̃

[

(x, y)− σ̃
(1/λ̃ 0

0 1/γ̃

)(

B̃(x̃, ỹ) +
{ 1

πi
B̃i(x, y)−

1

πi
B̃i(x̃, ỹ)

})]

.

A short calculation shows that proxσ̃
M̃
(x, y) = proxσ(1+τ)/(1+στ(1+τ))

M ((x, y)/(1 + στ(1 + τ))),
leading to the update (with σ the step-size from the regular SVRG algorithm in Section 3):

(x, y)← proxσ̃
M̃

[

(x, y)+στ(1+τ)(x̄, ȳ)−σ(1 + τ)
(1/λ 0

0 1/γ

)(

B(x̃, ỹ)+
{ 1

πi
B̃i(x, y)−

1

πi
B̃i(x̃, ỹ)

})]

.

This leads to Algorithm 3, where differences with the SVRG algorithm, e.g., Algorithm 1, are
highlighted in red. Given the value of τ , the estimate (x̄, ȳ) is updated every log(1 + τ) epochs of
SVRG. While this leads to a provably better convergence rate, in practice, this causes the algorithm
to waste time solving with too high precision the modified problem. We have used the simple
heuristic of changing (x̄, ȳ) one epoch after the primal-dual gap has been reduced from the previous
change of (x̄, ȳ).

Algorithm 3 Accelerated Stochastic Variance Reduction for Saddle Points

Input: Functions (Ki)i, M , probabilities (πi)i, smoothness L̄(π) and L, iterate (x, y)
number of epochs v, number of updates per iteration m, acceleration factor τ

Set σ =
[

L2 + 3L̄2/m
]−1

and (x̄, ȳ) = (x, y)
for u = 1 to v do

If u = 0 mod ⌈2 + 2 log(1 + τ)/(log 4/3)⌉, set (x̄, ȳ) = (x̃, ỹ)
Initialize (x̃, ỹ) = (x, y) and compute B(x̃, ỹ)
for k = 1 to log 4× (L2 + 3L̄2/m)(1 + τ)2 do

Sample i1, . . . , im ∈ I from probability vector (πi)i with replacement

z ← (x, y)+στ(1 + τ)(x̄, ȳ)−σ(1 + τ)
(1/λ 0

0 1/γ

)(

B(x̃, ỹ)+
{

1
πi
B̃i(x, y)− 1

πi
B̃i(x̃, ỹ)

})

(x, y)← proxσ(1+τ)/(1+στ(1+τ))
M (z/(1 + στ(1 + τ)))

end for
end for

Output: Approximate solution (x, y)

Proof of Theorem 3 using monotone operators. We consider τ ! 0, and we consider the following
algorithm, which is the transposition of the algorithm presented above. We consider a mini-batch
m = 1 for simplicity. We consider a set of SVRG epochs, where z̄ remains fixed. These epochs are
initialized by z̃ = z̄.

17

For each SVRG epoch, given z̄ and z̃, and starting from z = z̃, we run t iterations of:

z ← (I + σ(τI +A))−1
(

z − σ[Bz̃ +
1

πi
(Biz −Biz̃)− τ z̄]

)

,

and then update z̃ as z at the end of the SVRG epoch. It corresponds exactly to running the SVRG
algorithm to find (τI + A + B)−1(τ z̄) approximately, we know from the proof of Theorem 1 that

after log 4
(

1 + L2

µ2(1+τ)2 + L2

µ2(1+τ)2

)

iterations, we have an iterate z such that E∥z − (τI + A +

B)−1(τ z̄)∥2 " 3
4E∥z̃ − (τI + A + B)−1(τ z̄)∥2. Thus, if we run s epochs where we update z̃

(but not z̄) at each start of epoch, we get an iterate z such that E∥z − (τI + A + B)−1(τ z̄)∥2 "

(34)
sE∥z̄ − (τI +A+B)−1(τ z̄)∥2, and thus

E∥z − (τI +A+B)−1(τ z̄)∥2

"

(3

4

)s
E∥z̄ − (τI +A+B)−1(τ z̄)∥2

=
(3

4

)s
E∥z̄ − z∗ − (τI +A+B)−1(τ z̄) + (τI +A+ B)−1(τz∗)∥2

using z∗ = (τI +A+B)−1(τz∗),

=
(3

4

)s
E∥z̄ − z∗ − (I + τ−1(A+B))−1(z̄) + (I + τ−1(A+B))−1(z∗)∥2.

We may now use the fact that for any multi-valued maximal monotone operator C, I− (I+C)−1 =
(I + C−1)−1, which shows that I − (I + C)−1 is 1-Lipschitz-continuous. Thus, after s epochs of
SVRG,

E∥z − (τI +A+B)−1(τ z̄)∥2 "

(3

4

)s
E∥z̄ − z∗∥2.

This implies, by Minkowski’s inequality,

(E∥z − z∗∥2)1/2

" (E∥z − (τI +A+B)−1(τ z̄)∥2)1/2 + (E∥(τI +A+B)−1(τ z̄)− z∗∥2)1/2

"

(3

4

)s/2
(E∥z̄ − z∗∥2)1/2 + (E∥(τI +A+B)−1(τ z̄)− (τI +A+B)−1(τz∗)∥2)1/2

=
(3

4

)s/2
(E∥z̄ − z∗∥2)1/2 + (E∥(I + τ−1(A+B))−1(z̄)− (I + τ−1(A+B))−1(z∗)∥2)1/2

"

(3

4

)s/2
(E∥z̄ − z∗∥2)1/2 +

1

1 + τ−1µ
(E∥z̄ − z∗∥2)1/2

=
(3

4

)s/2
(E∥z̄ − z∗∥2)1/2 +

τ

τ + µ
(E∥z̄ − z∗∥2)1/2,

using the fact that the contractivity of resolvents of strongly monotone operators. Thus after s =

2 + 2
log(1+ τ

µ)

log 4
3

, we get a decrease by (1− µ
τ+µ), and thus the desired result.

D.4 Factored splits and bi-linear models

In the table below, we report the running-time complexity for the factored splits which we used in
simulations. Note that SAGA and SVRG then have different bounds. Moreover, all these schemes
are adapted when n is close to d. For n much different from d, one could imagine to (a) either
complete with zeros or (b) to regroup the data in the larger dimension so that we get as many blocks
as for the lower dimension.

18

Algorithms Complexity

Stochastic FB-non-uniform (1/ε) ×
(

max{n, d}∥K∥2F/(λγ)
∣

∣

∣

)

Stochastic FB-uniform (1/ε) ×
(

max{n, d}2∥K∥2max/(λγ)
∣

∣

∣

)

SVRG-uniform log(1/ε) ×
(

nd+max{n, d}2∥K∥2max/(λγ)
∣

∣

∣

)

SAGA-uniform log(1/ε) ×
(

max{n, d}2 +max{n, d}2∥K∥2max/(λγ)
∣

∣

∣

)

SVRG-non-uniform log(1/ε) ×
(

nd+max{n, d}∥K∥2F/(λγ)
∣

∣

∣

)

SAGA-non-uniform log(1/ε) ×
(

max{n, d}2 +max{n, d}∥K∥2F/(λγ)
∣

∣

∣

)

SVRG-non-uniform-acc. log(1/ε) ×
(

nd+max{n, d}3/2∥K∥F/
√
λγ

∣

∣

∣

)

Table 2: Summary of convergence results for the strongly (λ, γ)-convex-concave bilinear saddle-
point problem with matrix K and factored splits, with access to a single row and a single column
per iteration. The difference with the individual splits from Table 1 is highlighted in red.

E Surrogate to Area Under the ROC Curve

We consider the following loss function on Rn, given a vector of positive and negative labels, which
corresponds to a convex surrogate to the number of misclassified pairs [13, 14]:

ℓ(u) =
1

2n+n−

∑

i+∈I+

∑

i−∈I−

(1 − ui− + ui+)
2

=
1

2n+n−

∑

i+∈I+

∑

i−∈I−

{

1 + u2
i− + u2

i+ − 2ui− + 2ui+ − 2ui−ui+

}

=
1

2
+

1

n+

∑

i+∈I+

ui+ −
1

n−

∑

i−∈I−

ui− +
1

2n−

∑

i−∈I−

u2
i− +

1

2n+

∑

i+∈I+

u2
i+ −

1

n+n−

∑

i+∈I+

∑

i−∈I−

ui−ui+

=
1

2
+

1

n+
e⊤+u−

1

n−
e⊤−u+

1

2
u⊤Diag(

1

n+
e+ +

1

n−
e−)u−

1

2n+n−
u⊤(e+e

⊤
− + e−e

⊤
+)u

=
1

2
− a⊤u+

1

2
u⊤Au,

with e+ ∈ Rn the indicator vector of I+ and e− ∈ Rn the indicator vector of I−. We have A =
Diag(1

n+
e++ 1

n−
e−)− 1

n+n−

[

e+e⊤−+e−e⊤+
]

and a = e+/n+−e−/n−. A short calculation shows

that the largest eigenvalue of A is 1
M = 1

n+
+ 1

n−
.

We consider the function h(u) = 1
2u

⊤Au. It is (1/M)-smooth, its Fenchel conjugate is equal to

1

2
v⊤A−1v,

and our function g will be equal to v &→ 1
2v

⊤A−1v− M
2 ∥v∥

2. Given that 1 is a singular vector of A,

g(v) is finite only when v⊤1n = 0.

We need to be able to compute g(v), i.e., solve the system A−1v, and to compute the the proximal
operator

min
v

1

2
∥v − v0∥2 + σg(v) = min

v

1

2
∥v − v0∥2 +

σ

2
v⊤(A−1 −MI)v,

which leads to to the system: (A−1 −MI + σ−1I)v = σ−1v0, which is equivalent to: (I −MA+
σ−1A)v = σ−1Av0 We thus need to compute efficiently Aw, and (I+κA)−1w with κ > −M . We

19

have

I + κA = Diag((1 + κ/n+)e+ + (1 + κ/n−)e−)−
κ

n+n−

[

e+e
⊤
− + e−e

⊤
+

]

= Diag((1 + κ/n+)e+ + (1 + κ/n−)e−)
1/2

[

I −
κ

n+n−

([1
√

1 + κ/n+

e+
][1
√

1 + κ/n−
e−

]⊤ −
[1
√

1 + κ/n−
e−

][1
√

1 + κ/n+

e+
]⊤)

]

Diag((1 + κ/n+)e+ + (1 + κ/n−)e−)
1/2

= D1/2(I − αu+u
⊤
− − αu−u

⊤
+)D

1/2,

with u⊤
+u− = 0 and u+ = e+√

n+
, u− = e−√

n−
of norm 1 and D = Diag((1 + κ/n+)e+ + (1 +

κ/n−)e−). We have:

I − αu+u
⊤
− − αu−u

⊤
+ = I − u+u

⊤
+ − u−u

⊤
− + (u+, u−)

(1 −α
−α 1

)

(u+, u−)
⊤

(I − αu+u
⊤
− − αu−u

⊤
+)

−1 = I − u+u
⊤
+ − u−u

⊤
− +

1

1− α2
(u+, u−)

(1 α
α 1

)

(u+, u−)
⊤

= I + (1/(1− α2)− 1)u+u
⊤
+ + (1/(1− α2)− 1)u−u

⊤
− +

α

1− α2
(u+u

⊤
− + u−u

⊤
+)

= I + (1/(1− α2)− 1)
1

n+
e+e

⊤
+ + (1/(1− α2)− 1)

1

n−
e−e

⊤
−

+
α

1− α2

1
√
n+n−

(e+e
⊤
− + e−e

⊤
+).

We have here α = κ
n+n−

√

n+

1+κ/n+

√

n−

1+κ/n−
. Thus

(I + κA)−1 = D−1/2
[

I − u+u
⊤
+ − u−u

⊤
− +

1

1− α2
(u+, u−)

(1 α
α 1

)

(u+, u−)
⊤]D−1/2,

which can be done in O(n).

Moreover, we have

A = Diag((1/n+)e+ + (1/n−)e−)
1/2

[

I −
1

n+n−

([√
n+e+

][√
n−e−

]⊤ −
[√

n−e−
][√

n+e+
]⊤)

]

Diag((1/n+)e+ + (1/n−)e−)
1/2

= D1/2(I − u+u
⊤
− − u−u

⊤
+)D

1/2,

with u⊤
+u− = 0 and u+, u− of norm 1. Thus we have

I − u+u
⊤
− − u−u

⊤
+ = I − u+u

⊤
+ − u−u

⊤
− + (u+, u−)

(1 −1
−1 1

)

(u+, u−)
⊤

(I − u+u
⊤
− − u−u

⊤
+)

−1 = I − u+u
⊤
+ − u−u

⊤
− +

1

0
(u+, u−)

(1 1
1 1

)

(u+, u−)
⊤.

Thus, if v⊤1n = 0, we get:

v⊤A−1v = v⊤ Diag(n+e+ + n−e−)v − (v⊤e+)
2 − (v⊤e−)

2,

which has running-time complexity O(n).

Optimization problem. With a regularizer f(x) + λ
2 ∥x∥

2, we obtain the problem:

min
x∈Rd

λ

2
∥x∥2 + f(x) +

1

2
− a⊤Kx+

1

2
(Kx)⊤A(Kx)

min
x∈Rd

max
y∈Rn

λ

2
∥x∥2 + f(x) +

1

2
− a⊤Kx+ y⊤Kx−

M

2
∥y∥2 −

1

2
y⊤(A−1 −MI)y,

with g(y) = 1
2y

⊤(A−1 −MI)y.

20

F Additional Experimental Results

We complement the results of the main paper in several ways: (a) by providing all test losses, the
distance to optimum Ω(x− x∗, y − y∗) in log-scale, as well as the primal-dual gaps in log-scale, as
a function of the number of passes on the data. We consider the three machine learning settings:

– Figure 1: sido dataset, AUC loss and cluster norm (plus squared-norm) regularizer (both non
separable).

– Figure 2: sido dataset, square loss and ℓ1-norm (plus squared-norm) regularizer (both separable).

– Figure 3: rcv1 dataset, square loss and ℓ1-norm (plus squared-norm) regularizer (both separable).

We consider the following methods in all cases (all methods are run with the step-sizes proposed in
their respective convergence analysis):

– fb-acc: accelerated forward-backward saddle-point method from Section 2.2,

– fb-sto: stochastic forward-backward saddle-point method from Section 2.3,

– saga: our new algorithm from Section 4, with non-uniform sampling, and sampling of a single
row and column per iteration,

– saga (unif): our new algorithm from Section 4, with uniform sampling, and sampling of a single
row and column per iteration,

– svrg: our new algorithm from Section 3, with non-uniform sampling, and sampling of a single
row and column per iteration,

– svrg-acc: our new accelerated algorithm from Section 3, with non-uniform sampling, and sam-
pling of a single row and column per iteration,

– fba-primal: accelerated proximal method [10], which can be applied to the primal version of our
problem (which is the sum of a smooth term and a strongly convex term).

Moreover, for the separable cases, we add:

– saga-primal: SAGA with non-uniform sampling [25], which can only be run with separable losses.

We can make the following observations:

– Non-uniform sampling is key to good performance.

– The distance to optimum (left plots) exhibits a clear linear convergence behavior (which is pre-
dicted by our analysis), which is not the case for the primal-dual gap, which does converge, but
more erratically. It would be interesting to provide bounds for these as well.

– When λ decreases (bottom plots, more ill-conditioned problems), the gains of accelerated meth-
ods with respect to non-accelerated ones are unsurprisingly larger. Note that for two out of three
settings, the final test loss is smaller for the smaller regularization, and non-accelerated methods
need more passes on the data to reach good testing losses.

– Primal methods which are not using separability (here “fba-primal”) can be run on all instances,
but are not competitive. Note that in some situations, they achieve early on good performances
(e.g., Figure 2), before getting caught up by stochastic-variance-reduced saddle-point techniques
(note also that since these are not primal-dual methods, we compute dual candidates through the
gradient of the smooth loss functions, which is potentially disadvantageous).

– Primal methods that use separability (here “saga-primal”) cannot be run on non-separable prob-
lems, but when they can run, they are still significantly faster than our saddle-point techniques.
We believe that this is partly due to adaptivity to strong convexity (the convergence bounds for
the two sets of techniques are the same for this problem).

21

0 100 200 300 400 500

10−5

100
sido − distance to optimizers − λ/λ0=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
10−4

10−3

10−2

10−1

100
sido − primal−dual gap − λ/λ0=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
sido − test error − λ/λ0=1.00 − min = 0.140

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
10−5

100
sido − distance to optimizers − λ/λ0=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500

100
sido − primal−dual gap − λ/λ0=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
sido − test error − λ/λ0=0.10 − min = 0.177

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

Figure 1: sido dataset. Top: λ = λ0 = ∥K∥2F/n2, Bottom: λ = λ0/10 = 1
10∥K∥

2
F/n

2. AUC loss
and cluster-norm regularizer. Distances to optimum, primal-dual gaps and test losses, as a function
of the number of passes on the data. Note that the primal SAGA (with non-uniform sampling) cannot
be used because the loss is not separable. Best seen in color.

0 100 200 300 400 500
10−15

10−10

10−5

100
sido − distance to optimizers − λ/λ0=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500
10−15

10−10

10−5

100
sido − primal−dual gap − λ/λ0=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
sido − test error − λ/λ0=1.00 − min = 0.114

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500

10−5

100
sido − distance to optimizers − λ/λ0=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500

10−5

100
sido − primal−dual gap − λ/λ0=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
sido − test error − λ/λ0=0.10 − min = 0.110

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

Figure 2: sido dataset. Top: λ = λ0 = ∥K∥2F/n2, Bottom: λ = λ0/10 = 1
10∥K∥

2
F/n

2. Squared
loss, with ℓ1-regularizer. Distances to optimum, primal-dual gaps and test losses, as a function of
the number of passes on the data. Note that the primal SAGA (with non-uniform sampling) can only
be used because the loss is separable. Best seen in color.

22

0 100 200 300 400 500
10−15

10−10

10−5

100
rcv1 − distance to optimizers − λ/λ0=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500
10−15

10−10

10−5

100
rcv1 − primal−dual gap − λ/λ0=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
rcv1 − test error − λ/λ0=1.00 − min = 0.247

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500
10−15

10−10

10−5

100
rcv1 − distance to optimizers − λ/λ0=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500
10−15

10−10

10−5

100
rcv1 − primal−dual gap − λ/λ0=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
rcv1 − test error − λ/λ0=0.10 − min = 0.243

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

Figure 3: rcv1 dataset. Top: λ = λ0 = ∥K∥2F/n2, Bottom: λ = λ0/10 = 1
10∥K∥

2
F/n

2. Squared
loss, with ℓ1-regularizer. Distances to optimum, primal-dual gaps and test losses, as a function of
the number of passes on the data. Note that the primal SAGA (with non-uniform sampling) can only
be used because the loss is separable. Best seen in color.

23

	Introduction
	Composite Decomposable Saddle-Point Problems
	Examples in machine learning
	Existing batch algorithms
	Existing stochastic algorithms
	Sampling probabilities, convergence rates and running-time complexities

	SVRG: Stochastic Variance Reduction for Saddle Points
	SAGA: Online Stochastic Variance Reduction for Saddle Points
	Acceleration
	Extension to Monotone Operators
	Experiments
	Conclusion
	Formalization through Monotone Operators
	Proof for Deterministic Algorithms
	Forward-backward algorithm
	Accelerated forward-backward algorithm

	Proof for Existing Stochastic Algorithms
	Proof for New Stochastic Algorithms
	SVRG: Stochastic-Variance reduced saddle-point problems (Theorem 1)
	SAGA: Online stochastic-variance reduced saddle-point problems (Theorem 2)
	Acceleration
	Factored splits and bi-linear models

	Surrogate to Area Under the ROC Curve
	Additional Experimental Results

