
Supplementary Material for Density Estimation via
Discrepancy Based Adaptive Sequential Partition

Dangna Li
ICME,

Stanford University
Stanford, CA 94305

dangna@stanford.edu

Kun Yang
Google

Mountain View, CA 94043
kunyang@stanford.edu

Wing Hung Wong
Department of Statistics

Stanford University
Stanford, CA 94305

whwong@stanford.edu

1 Proofs for Theorem 4 and Corollary 5

Before proving our main theorem, we need additionally the following three lemmas. The proofs for
Lemma 1 and Lemma 2 are trivial and can be found in [1]. Lemma 3 is proved below.
Lemma 1. Let f be a function defined on a hyper-rectangle [a, b] ∈ Rd. Let {[a(i), b(i)] : 1 ≤ i ≤ L}
be a binary partition of [a, b]. Then

L∑
i=1

V [a(i),b(i)](f) = V [a,b](f)

where V [a,b] denotes the total variation of f with its domain restricting to [a, b] ⊂ Ω.

Lemma 2. Let f be a function defined on hyper-rectangle [a, b] ∈ Rd. let f̃ be a function defined

on hyper-rectangle [ã, b̃] with f̃(x)
∆
= f ◦ φ(x), where each φi is a strictly monotone (increasing or

decreasing) function from [ã(i), b̃(i)] onto [a(i), b(i)], then

V [ã,b̃](f̃) = V [a,b](f)

Lemma 3. Let f be a function defined on a d−dimensional hyper-rectangle [a, b]. Let Xn =
{x1, ..., xn ∈ [a, b]}. Then we have∣∣∣ ∫

[a,b]

f(x)dx−
∏d

j=1(bj − aj)

n

n∑
i=1

f(xi)
∣∣∣ ≤ d∏

j=1

(bj − aj)D
∗
n(X̃n)V [a,b](f) (1)

where X̃n = {x̃i = (xi1−a1

b1
, ..., xid−ad

bd
), xi ∈ Xn}ni=1

Proof. Define f̃(x̃) = f(x), where x̃ = (x1−a1

b1
, ..., xd−ad

bd
). Then by Theorem 2, we have∣∣∣ ∫

[0,1]d
f̃(x̃)dx̃− 1

n

n∑
i=1

f̃(x̃i)
∣∣∣ ≤ D∗n(X̃n)V [0,1]d(f̃)

By Lemma 2, we have:
V [0,1]d(f̃) = V [a,b](f)

By a change of variable, we have∫
[0,1]d

f̃(x̃)dx̃ =
1∏d

j=1(bj − aj)

∫
[a,b]

f(x)dx

Notice f̃(x̃i) = f(xi) by definition. Hence, (1) follows immediately.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

We now prove Theorem 4 and Corollary 5:

1.1 Proof for Theorem 4
Proof. Appling Theorem 3 to each [a(i), b(i)], i = 1, ..., L, we have∣∣∣ ∫

[a(i),b(i)]

f(x)dx−
∏d

j=1(b
(i)
j − a

(i)
j)

ni

ni∑
i=1

f(x
(i)
j)
∣∣∣ ≤ d∏

j=1

(b
(i)
j −a

(i)
j)D∗ni

(X̃(i))V [a(i),b(i)](f) (2)

By triangular inequality, we have∣∣∣ ∫
[0,1]d

f(x)p̂(x)dx− 1

N

N∑
i=1

f(xi)
∣∣∣ ≤ l∑

i=1

di

∣∣∣ ∫
[a(i),b(i)]

f(x)dx− 1

diN

ni∑
i=1

f(xij)
∣∣∣ (3)

where di = (
∏d

j=1(b
(i)
j − a

(i)
j))−1 ni

N .

Combining Theorem 3, (2) and Lemma 3, we have
L∑

i=1

di

∣∣∣ ∫
[a(i),b(i)]

f(x)dx− 1

diN

ni∑
j=1

f(xij)
∣∣∣ ≤ L∑

i=1

di

d∏
j=1

(b
(i)
j − a

(i)
j)D∗ni

(X̃(i))V [a(i),b(i)](f)

≤
l∑

i=1

ni
N

√
N

nid

θ

c
D∗ni,dV

[a(i),b(i)](f)

≤
l∑

i=1

ni
N

√
N

nid

θ

c
cd1/2n

−1/2
i V [a(i),b(i)](f)

=
θ√
N

L∑
i=1

V [a(i),b(i)](f)

=
θ√
N
V [0,1]d(f)

where the last equality follows from Lemma 1.

1.2 Proof for Corollary 5

Proof. In Monte Carlo methods, the convergence rate of 1
n

∑n
i=1 f(xi) is of order O(std(f)√

n
). Let

f(x) = I{x ∈ [a, b]} = I[a,b] be defined on [0, 1]d, we have var(f) = P (A)(1 − P (A)) ≤ 1/4;
thus, this error is bounded uniformly.

If another indicator function f̃ is defined on [ã, b̃] ⊂ (0, 1)d, then let

φj(x̃j) =
aj
ãj
x̃jI[0,ãj) + (aj +

bj − aj
b̃j − ãj

(x̃j − ãj))I[ãj ,b̃j) + (bj +
1− bj
1− b̃j

(x̃j − b̃j))I[b̃j ,1]

and φ(x̃) =
∏d

j=1 φj(x̃j) and apply Lemma 2, we have V [0,1]d(f̃) = V [0,1]d(f); thus, the left term
of (3) is bounded uniformly.

The error |
∫

[0,1]d
fi(x)p(x)dx−

∫
[0,1]d

fi(x)p̂(x)dx| is bounded by

|
∫

[0,1]d
fi(x)p(x)dx− 1

n

n∑
j=1

fi(xj)|+ |
∫

[0,1]d
fi(x)p̂(x)dx− 1

n

n∑
j=1

fi(xj)|

Now the result follows from triangular inequality.

2 Experimental settings for comparison with KDE, OPT and BSP
2.1 Simulation environment
For each simulated dataset, we randomly generate the means of each component uniformly from the
unit hypercube, and choosing σ so that no two mixture components are closer than 3σ apart. We also

2

apply a transformation to each component to make it non-spherical, by multiplying the data by a
random scaling and rotation matrix.

All methods under comparison are implemented in C++. The source codes for OPT and BSP were
obtained from the authors. The code for KDE was obtained from: https://github.com/timnugent/kernel-
density. We used the default parameters specified by the author of the software. The experiments
were done on a MaxOS system with 16GB ram and a 2.2 GHz Intel Core i7 processor.

2.2 Error measure
The error measure used for comparison is the Hellinger distance, which can be used to quantify the
similarity between two probability distributions. Let P,Q be two probability measures with density
functions f , g respectively. Then the Hellinger Distance between P,Q is defined as:

H2(P,Q) =
1

2

∫ (√
f(x)−

√
g(x)

)2

dx = 1−
∫ √

f(x)g(x)dx = 1−
∫ √

f(x)

g(x)
g(x)dx

We estimate the distance between p(x) and p̂(x) via importance sampling as follows:

Ĥ2 = 1− 1

n

n∑
i=1

√
p̂(xi)

p(xi)

where xi ∼ p(x). We take n = 108 through out our experiments.

2.3 Copula tranform
We found copula a helpful tool especially when the dimension is high. Specifically, we first estimate
the marginal densities for each dimension x.j (j = 1, ..., d), then make a copula transformation z.j=
F̂j(x.j), where F̂j is the estimated cdf of x.j based on xij , i = 1, ..., n. We then estimate the joint
density for the transformed variables. The reason for this is that for DSP (similar argument applies
for OPT and BSP), the further the true distribution is from uniform, the more partitions are typically
needed to capture the geometry of the density function. Copula can save the number of partitions by
making the marginal distributions uniform within [0, 1]. We use copula transformation whenever the
dimension is higher than 3. The maximum number of partitions for BSP, OPT and DSP are set to be
1000 for both the marginal distributions and joint distributions.

3 Two-phase DSP-kmeans
Algorithm 1 Two-phase DSP-kmeans
Input: A dataset XN of size N
Output: K initial centers for k-means

1: procedure TWO-PHASE DSP-KMEANS(XN ,m, θ,K)
Call DSP(XN , m, θ) to get a partition with L rectangles

2: while L > K do
3: Look for the two sub-rectangles ri, rj with lowest d(ri, rj):

d(ri, rj) = min{(µi − µj)
TS−1

i (µi − µj), (µi − µj)
TS−1

j (µi − µj)}
where µk, Sk are the sample mean and sample covariance matrix of points fall within rk

4: Merge ri and rj
5: L = L− 1

Return the sample mean of the K sub-rectangles

Remark 3.1. When the number of points in a sub-rectangle is too large, one can restrict the
covariance matrix to be diagonal to save computation.

References

[1] Art B Owen. Multidimensional variation for quasi-monte carlo. In International Conference on
Statistics in honour of Professor Kai-Tai Fang’s 65th birthday, pages 49–74, 2005.

3

	Proofs for Theorem 4 and Corollary 5
	Proof for Theorem 4
	Proof for Corollary 5

	Experimental settings for comparison with KDE, OPT and BSP
	Simulation environment
	Error measure
	Copula tranform

	Two-phase DSP-kmeans
	References

