
8 Appendix A: Experimental evaluation

Figure 1: Accumulated discounted reward as a function of the number of episodes for a random walk,
the algorithm of Pazis and Parr [12], and Median-PAC on a simple gridworld. Each plot represents an
average over 1000 independent repetitions. Median-PAC significantly outperforms the algorithm of
Pazis and Parr even for small values of km.

The discount factor for the gridworld described in section 6 was set to 0.98, and every episode was
1000 steps long. We used modified versions of both learning algorithms that accumulate samples
rather than using them in batches and discarding the old, smaller batch once a new batch has been
collected. The algorithm of Pazis and Parr [12] (Average-PAC), was allowed allowed 1000 iterations
of value iteration after each sample was added. Median-PAC was allowed 1000 iterations of value
iteration every time the i ⇤ km-th sample was added to a state action, where i > 0 is an integer. ✏b
was set to 0.01Q

max

for both algorithms (since both algorithms truncate state-action values to Q
max

,
setting ✏b close to Q

max

for small values of k saturates the value function). Notice that Median-PAC
for k = 105 and km = 21 takes longer to achieve good performance than for k = 9 and km = 3.
This is because for km = 21 the value of every state-action state is Q

max

until at least 21 samples
have been collected.

9 Appendix B: Analysis

Before we prove lemma 5.3 and theorem 5.4 we have to introduce a few supporting definitions and
lemmas.
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Definition 9.1. Let |u(s, a)| = 2

ikm for some i 2 {1, 2, . . . }. The function F⇡
(Q, u(s, a))F⇡
(Q, u(s, a))F⇡
(Q, u(s, a)) is

defined as

F⇡
(Q, u(s, a))F⇡
(Q, u(s, a))F⇡
(Q, u(s, a)) =

✏b
p

|u(s, a)|
+median

�

G⇡
(Q, u(s, a), 1),

. . . ,

G⇡
(Q, u(s, a), km)

 

,

where

G⇡
(Q, u(s, a), j)G⇡
(Q, u(s, a), j)G⇡
(Q, u(s, a), j) =

km
|u(s, a)|

j
|u(s,a)|

km
X

i=1+(j�1)

|u(s,a)|
km

 

ri + �Q(s0i,⇡(s
0
i))

!

,

and (s, a, ri, s0i) is the i-th sample in u(s, a). We will use F (Q, u(s, a))F (Q, u(s, a))F (Q, u(s, a)) to denote F⇡Q

(Q, u(s, a)).

F⇡ splits the samples in u(s, a) into km groups, computes the average of the sample values in each
group, and returns the median of the averages.

Definition 9.2. For state-action (s, a), the approximate optimistic Bellman operator ˜B⇡
˜B⇡
˜B⇡ for policy ⇡

is defined as

˜B⇡Q(s, a)˜B⇡Q(s, a)˜B⇡Q(s, a) = min

�

Q
max

, F⇡
(Q, u(s, a))

 

.

We will use ˜BQ(s, a)˜BQ(s, a)˜BQ(s, a) to denote ˜B⇡Q

Q(s, a). When |u(s, a)| = 0, ˜B⇡Q(s, a) = Q
max

.

The approximate optimistic Bellman operator is applied to the approximate value function on line 14
of the algorithm.

Lemma 9.3. ˜B is a �-contraction in maximum norm.

Proof. Suppose ||Q
1

�Q
2

||1 = ✏. For any (s, a) we have

˜BQ
1

(s, a) = min

�

Q
max

, F (Q
1

, u(s, a))
 

 min

�

Q
max

, F (Q
2

, u(s, a)) + �✏
 

 �✏+min

�

Q
max

, F (Q
2

, u(s, a))
 

= �✏+ ˜BQ
2

(s, a)

) ˜BQ
1

(s, a)  �✏+ ˜BQ
2

(s, a).

Similarly we have that ˜BQ
2

(s, a)  �✏+ ˜BQ
1

(s, a) which completes our proof.

Lemma 9.4. Let � be defined as in Definition 5.1. For a fixed ˜Q and fixed (s, a) such that
|u(s, a)| > 0

P

 

G⇡
(

˜Q, u(s, a), j)�B⇡
˜Q(s, a)  � �

p
4km

p

|u(s, a)|

!

 1

5

,

and

P

 

G⇡
(

˜Q, u(s, a), j)�B⇡
˜Q(s, a) � �

p
4km

p

|u(s, a)|

!

 1

5

.

Proof. From Definition 9.1 we have that

B⇡
˜Q(s, a) = E

h

G⇡
(

˜Q, u(s, a), j)
i

,

where the expectation is over the next-states that samples in u(s, a) used by G⇡ land on.

Let Y be the set of |u(s,a)|
km

samples used by G⇡
(

˜Q, u(s, a), j) at (s, a). Define Z
1

, . . . Z |u(s,a)|
km

to be
random variables, one for each sample in Y . The distribution of Zi is the distribution of possible
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values that ri + �maxa0 ˜Q(s0i, a
0
) can take. From the Markov property we have that Z

1

, . . . Z |u(s,a)|
km

are independent random variables.6 From Definition 5.1 we have that var[Zi]  �2 8 i, and
var[G⇡

(

˜Q, u(s, a), j)]  �2km

|u(s,a)| .

From Cantelli’s inequality we have

P

 

G⇡
(

˜Q, u(s, a), j)�B⇡
˜Q(s, a)  � �

p
4km

p

|u(s, a)|

!

 P

 

G⇡
(

˜Q, u(s, a), j)� E

h

G⇡
(

˜Q, u(s, a), j)
i

 � �
p
4km

p

|u(s, a)|

!


�2km

|u(s,a)|

�2km

|u(s,a)| +

✓

�
p
4kmp

|u(s,a)|

◆

2

=

�2km

|u(s,a)|
�2km

|u(s,a)| +
4�2km

|u(s,a)|

=

1

5

,

and

P

 

G⇡
(

˜Q, u(s, a), j)�B⇡
˜Q(s, a) � �

p
4km

p

|u(s, a)|

!

 P

 

G⇡
(

˜Q, u(s, a), j)� E

h

G⇡
(

˜Q, u(s, a), j)
i

� �
p
4km

p

|u(s, a)|

!


�2km

|u(s,a)|

�2km

|u(s,a)| +

✓

�
p
4kmp

|u(s,a)|

◆

2

=

�2km

|u(s,a)|
�2km

|u(s,a)| +
4�2km

|u(s,a)|

=

1

5

.

Based on Lemma 9.4 we can now bound the probability that an individual state-action will have
Bellman error of unacceptably high magnitude for a particular ˜Q:

Lemma 9.5. Let � be defined as in Definition 5.1, and ✏u = max{0,�
p
4km � ✏b}. For a fixed ˜Q

P
⇣

F⇡⇤
(

˜Q, u(s, a))�B⇡⇤
˜Q(s, a)  �✏u

⌘

 e�
9km
50 ,

and

P

 

F⇡
˜Q

(

˜Q, u(s, a))�B⇡
˜Q
˜Q(s, a) � ✏u + 2

✏b
p

|u(s, a)|

!

 e�
9km
50 .

Proof. Let Y be the set of |u(s, a)| samples used by F⇡
(

˜Q, u(s, a)) at (s, a). Define Z
1

, . . . Z|u(s,a)|
to be random variables, one for each sample in Y . The distribution of Zi is the distribution of next

6The state-actions the samples originate from as well as ˜Q and the transition model of the MDP are fixed
with respect to Zi, and no assumptions are made about their distribution. The only source of randomness is the
the transition model of the MDP.
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states s0i, given (s, a). From the Markov property, we have that Z
1

, . . . Z|u(s,a)| are independent
random variables (similarly to Lemma 9.4). Let xj be a realization of Xj , where Xj’s distribution is
the joint distribution of all Zi corresponding to samples that participate in G⇡

(

˜Q, u(s, a), j).

We define f⇡⇤
(x

1

, . . . xkm
) to be the function that counts the number of j’s such that

G⇡⇤
(

˜Q, u(s, a), j)�B⇡⇤
˜Q(s, a)  � �

p
4km

p

|u(s, a)|
,

and f⇡
˜Q

(x
1

, . . . xkm) to be the function that counts the number of j’s such that

G⇡
˜Q

(

˜Q, u(s, a), j)�B⇡
˜Q
˜Q(s, a) � �

p
4km

p

|u(s, a)|
.

From Lemma 9.4 we have that

E[f⇡⇤
(x

1

, . . . xkm)]  km
5

,

and

E[f⇡
˜Q

(x
1

, . . . xkm)]  km
5

.

8 i 2 [1, km]:

sup

x
1

,...xk,x̂i

|f⇡⇤
(x

1

, . . . xka)� f⇡⇤
(x

1

, . . . , xi�1

x̂i, xi+1

. . . x|u(s,a)|)|  1,

and

sup

x
1

,...xk,x̂i

|f⇡
˜Q

(x
1

, . . . xka
)� f⇡

˜Q

(x
1

, . . . , xi�1

x̂i, xi+1

. . . x|u(s,a)|)|  1.

From McDiarmid’s inequality we have

P

 

f⇡⇤
(x

1

, . . . xkm
) � km

2

!

 P

 

f⇡⇤
(x

1

, . . . xkm)� E[f⇡⇤
(x

1

, . . . xkm)] � 3km
10

!

 e�
2

(

3km
10

)

2

km

= e�
9km
50 ,

and

P

 

f⇡
˜Q

(x
1

, . . . xkm
) � km

2

!

 P

 

f⇡
˜Q

(x
1

, . . . xkm
)� E[f⇡

˜Q

(x
1

, . . . xkm
)] � 3km

10

!

 e�
2

(

3km
10

)

2

km

= e�
9km
50 .

Since the probability that

G⇡⇤
(

˜Q, u(s, a), j)�B⇡⇤
˜Q(s, a)  � �

p
4km

p

|u(s, a)|

for at least km

2

j’s is bounded above by e�
9km
50 , and the probability that

G⇡
˜Q

(

˜Q, u(s, a), j)�B⇡
˜Q
˜Q(s, a) � �

p
4km

p

|u(s, a)|

for at least km

2

j’s is bounded above by e�
9km
50 , the result follows from Definition 9.1.

13



Given a bound on the probability that an individual state-action has Bellman error of unacceptably
high magnitude, lemma 9.6 uses the union bound to bound the probability that there exists at least
one state-action for some ˜Q produced by Median-PAC during execution, with Bellman error of
unacceptably high magnitude.

Lemma 9.6. Let ✏u = max{0,�
p
4km � ✏b}. The probability that for any ˜Q during an execution of

Median-PAC there exists at least one (s, a) with |u(s, a)| > 0 such that

F⇡⇤
(

˜Q, u(s, a))�B⇡⇤
˜Q(s, a)  �✏u (5)

or

F⇡
˜Q

(

˜Q, u(s, a))�B⇡
˜Q
˜Q(s, a) � ✏u + 2

✏b
p

|u(s, a)|
(6)

is bounded above by 2 log

2

4k
km

|SA|2e�
9km
50 .

Proof. At most log
2

4k
km

|SA| distinct ˜Q exist for which |u(s, a)| > 0 for at least one (s, a). Thus,
there are at most 2 log

2

4k
km

|SA|2 ways for at least one of the at most |SA| state-actions to fail at least
once during non-delay steps (log

2

4k
km

|SA|2 ways each for equation 5 or equation 6 to be true at least
once), each with a probability at most e�

9km
50 . From the union bound, we have that the probability

that for any ˜Q there exists at least one (s, a) such that equation 5 or 6 is true, is bounded above by
2 log

2

4k
km

|SA|2e�
9km
50 .

Based on Lemma 9.6 we can now bound the probability that any (s, a) will have Bellman error of
unacceptably high magnitude:

Lemma 9.7. Let ✏u = max{0,�
p
4km � ✏b}. The probability that for any ˜Q during an execution of

Median-PAC there exists at least one (s, a) such that

˜Q(s, a)�B⇡⇤
˜Q(s, a)  �✏u � ✏a (7)

or at least one (s, a) with |u(s, a)| > 0 such that

˜Q(s, a)�B⇡
˜Q
˜Q(s, a) � ✏u + ✏a + 2

✏b
p

|u(s, a)|
(8)

is bounded above by 2 log

2

4k
km

|SA|2e�
9km
50 .

Proof. When |u(s, a)| < km, ˜Q(s, a) = Q
max

. Since B⇡⇤
˜Q(s, a)  Q

max

, ˜Q(s, a) �
B⇡⇤

˜Q(s, a)  �✏u � ✏a. Otherwise, 8(s, a, ˜Q) with probability 1� 2 log

2

4k
km

|SA|2e�
9km
50

B⇡⇤
˜Q(s, a) = min

�

Q
max

, B⇡⇤
˜Q(s, a)

 

< min

�

Q
max

, F⇡⇤
(

˜Q, u(s, a)) + ✏u
 

 ˜B⇡⇤
˜Q(s, a) + ✏u

 ˜B ˜Q(s, a) + ✏u

 ˜Q(s, a) + ✏u + ✏a.
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8(s, a, ˜Q) with u(s, a) � km, with probability 1� 2 log

2

4k
km

|SA|2e�
9km
50

B⇡
˜Q
˜Q(s, a) = min

n

Q
max

, B⇡
˜Q
˜Q(s, a)

o

> min

�

Q
max

, F⇡
˜Q

(

˜Q, u(s, a))� ✏u � 2

✏b
p

|u(s, a)|
 

� min

�

Q
max

, F⇡
˜Q

(

˜Q, u(s, a))
 

� ✏u � 2

✏b
p

|u(s, a)|

� ˜B⇡
˜Q
˜Q(s, a)� ✏u � 2

✏b
p

|u(s, a)|

=

˜B ˜Q(s, a)� ✏u � 2

✏b
p

|u(s, a)|

� ˜Q(s, a)� ✏u � ✏a � 2

✏b
p

|u(s, a)|
.

Note that both the first half of Lemma 9.6 (used in the fist half of the proof) and the second half
(used in the second half of the proof) hold simultaneously with probability 2 log

2

4k
km

|SA|2e�
9km
50 ,

therefore we do not need to take a union bound over the individual probabilities.

We will use the following three lemmas from Pazis and Parr (2016):
Lemma 9.8. Let ti for i = 0 ! l be the outcomes of independent (but not necessarily identically
distributed) random variables in {0, 1}, with P (ti = 1) � pi. If 2

m ln

1

� < 1 and

l
X

i=0

pi �
m

1�
q

2

m ln

1

�

,

then
Pl

i=0

ti � m with probability at least 1� �.

Lemma 9.9. Let Q(s, a)�B⇡⇤
Q(s, a) � �✏⇤ 8(s, a), X1

, . . . , Xi, . . . , Xn be sets of state-actions
where Q(s, a) � B⇡Q

Q(s, a)  ✏i 8(s, a) 2 Xi, Q(s, a) � B⇡Q

Q(s, a)  ✏⇡Q 8(s, a) /2 [n
i=1

Xi,

and ✏⇡Q  ✏i8i. Let TH =

l

1

1�� ln

(1��)Q
max

✏a

m

and define H = {1, 2, 4, . . . , 2i} where i is the

largest integer such that 2i  TH . Define ph,i(s) for h 2 [0, TH�1] to be Bernoulli random variables
expressing the probability of encountering exactly h state-actions for which (s, a) 2 Xi when starting
from state s and following ⇡Q for a total of min{T, TH} steps. Finally let peh,i(s) =

P

2h�1

m=h pm,i(s).
Then

V ⇤
(s)� V ⇡Q

(s) ✏⇤ + ✏⇡Q + ✏a
1� �

+ ✏e,

where ✏e = 2

Pn
i=1

⇣

P

h2H

⇣

hpeh,i(s)
⌘

(✏i � ✏⇡Q)

⌘

+ �TQ
max

.

Lemma 9.10. Let ˆB be a �-contraction with fixed point ˆQ, and Q the output of

1

1� �
ln

Q
max

✏

iterations of value iteration using ˆB. Then if 0  ˆQ(s, a)  Q
max

and 0  Q
0

(s, a) 
Q

max

8 (s, a), where Q
0

(s, a) is the initial value for (s, a)

�✏  Q(s, a)� ˆBQ(s, a)  ✏ 8(s, a).

Lemma 9.11 bounds the number of times the policy produced by Median-PAC can encounter state-
actions with fewer than k samples.
Lemma 9.11. Let (s

1

, s
2

, s
3

, . . . ) be the random path generated on some execution of Algorithm 1.
Let ⌧(t) be the number of steps from step t to the next step for which the policy changes. Let

TH =

l

1

1�� ln

(1��)Q
max

✏a

m

and define H = {1, 2, 4, . . . , 2i} where i is the largest integer such
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that 2i  TH . Let Ka = {20km, 21km, 22km, . . . k}. Let k�a be the largest value in Ka that is
strictly smaller than ka, or 0 if such a value does not exist. Let Xka(t) be the set of state-actions
at step t for which k�a = |u(s, a)|. Define ph,ka(st) for ka 2 Ka to be Bernoulli random variables
that express the following conditional probability: Given ˜Q at step t, exactly h state-actions in
Xka

(t) are encountered during the next min{TH , ⌧(t)} steps. Let peh,ka
(st) =

P

2h�1

i=h pi,ka
(st). If

2d 1

1�� ln

(1��)Q
max

✏a
e2 ln

log

2

2k
km

�

km|SA|+1

< 1, with probability at least 1� �
2

1
X

t=0

X

h2H

(hpeh,ka
(st,j)) <

(ka|SA|+ 1)

⇣

1 + log

2

l

1

1�� ln

(1��)Q
max

✏a

m⌘ l

1

1�� ln

(1��)Q
max

✏a

m

1�

r

2d 1

1�� ln

(1��)Q
max

✏a
e2 ln

log

2

2k
km

�

km|SA|+1

8 ka 2 Ka and 8 h 2 H simultaneously.

Proof. From the Markov property we have that peh,ka
(st) variables at least TH steps apart are

independent.7 Define TH
i for i 2 {0, 1, . . . , TH � 1} to be the (infinite) set of timesteps for which

t 2 {i, i+ TH , i+ 2TH , . . . }.

Since ka samples will be added to a state-action such that |u(s, a)| = k�a before |u(s, a)| = ka, at
most ka|SA| state-actions such that k�a = |u(s, a)| can be encountered.

Let us assume that there exists an i 2 {0, 1, . . . , TH � 1} and h 2 H such that
X

t2TH
i

peh,ka
(st,j) �

ka|SA|+ 1

h

 

1�
r

2h
ka|SA|+1

ln

2 log

2

2k
km

�

! .

From Lemma 9.8 it follows that with probability at least 1� �
2 log

2

2k
km

, at least ka|SA|+1 state-actions

such that k�a = |u(s, a)| will be encountered, which is a contradiction. It must therefore be the case
that

X

t2TH
i

peh,ka
(st,j) <

ka|SA|+ 1

h

 

1�
r

2h
ka|SA|+1

ln

2 log

2

2k
km

�

!

with probability at least 1� �
2 log

2

2k
km

for all i 2 {0, 1, . . . , TH�1} and h 2 H�{TH} simultaneously,
which implies that

1
X

t=0

X

h2H

(hpeh,ka
(st,j)) <

(ka|SA|+ 1)|H|TH

1�
r

2TH

ka|SA|+1

ln

2 log

2

2k
km

�


(ka|SA|+ 1)

⇣

1 + log

2

l

1

1�� ln

(1��)Q
max

✏a

m⌘ l

1

1�� ln

(1��)Q
max

✏a

m

1�

r

2d 1

1�� ln

(1��)Q
max

✏a
e2 ln

log

2

2k
km

�

km|SA|+1

with probability at least 1� �
2 log

2

2k
km

for all h 2 H simultaneously.

From the union bound we have that since ka can take at most log
2

2k
km

values, with probability 1� �
2

1
X

t=0

X

h2H

(hpeh,ka
(st,j)) <

(ka|SA|+ 1)

⇣

1 + log

2

l

1

1�� ln

(1��)Q
max

✏a

m⌘ l

1

1�� ln

(1��)Q
max

✏a

m

1�

r

2d 1

1�� ln

(1��)Q
max

✏a
e2 ln

log

2

2k
km

�

km|SA|+1

8 ka 2 Ka and 8 h 2 H simultaneously.
7While what happens at step t affects which variables are selected at future timesteps, this is not a problem.

We only care that the outcomes of the variables are independent given their selection.

16



Lemma 5.3. The per step computational complexity of algorithm 1 is bounded above by:

O

✓

k|S||A|2

1� �
ln

Q
max

✏a

◆

.

Proof. From lemma 9.10 we have that on every iteration of algorithm 1, lines 13 through 15 will we
executed at most O

⇣

1

1�� ln

Q
max

✏a

⌘

times. For each one of these iterations, function ˜B ˜Q(s, a) will

be called |S||A| times. Line 22 in function ˜B ˜Q(s, a) will be executed at most km times, with a per
execution cost of O

⇣

k
km

|A|
⌘

.

Theorem 5.4. Let (s
1

, s
2

, s
3

, . . . ) be the random path generated on some execution of
Median-PAC, and ⇡̃⇡̃̃⇡ be the (non-stationary) policy followed by Median-PAC. Let ✏u =

max{0,�
p
4km � ✏a

p
k}, and ✏a be defined as in algorithm 1. If km =

&

50

9

ln

4 log

2

4Q2

max

✏2a
|SA|2

�

'

,

✏a  ✏bp
k

,
2d 1

1�� ln

(1��)Q
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✏a
e2 ln

log

2

2k
km

�

km|SA|+1

< 1, and k = 2

ikm for some integer i, then with probability
at least 1� �, for all t

V ⇤
(st)� V ⇡̃

(st) 
2✏u + 5✏a
1� �

+ ✏e(t),

where
1
X

t=0

✏e(t) < c
0

✓✓

2km + log

2

2k

km

◆

Q
max

+ ✏ak

✓

8 +

8p
2

◆◆

,

and

c
0

=

(|SA|+ 1)

⇣

1 + log

2

l

1

1�� ln

(1��)Q
max

✏a

m⌘ l

1

1�� ln

(1��)Q
max

✏a

m

1�

r

2d 1

1�� ln

(1��)Q
max

✏a
e2 ln

log

2

2k
km

�

km|SA|+1

.

If k = 2

ikm where i is the smallest integer such that 2i � 4�2

✏2a
, and ✏

0

= (1 � �)✏a, then with
probability at least 1� �, for all t

V ⇤
(st)� V ⇡̃

(st)  ✏
0

+ ✏e(t),

where8

1
X

t=0

✏e(t) ⇡ ˜O

✓✓

�2

✏
0

(1� �)2
+

Q
max

1� �

◆

|SA|
◆

.

Note that the probability of success holds for all timesteps simultaneously, and
P1

t=0

✏e(t) is an
undiscounted infinite sum.

Proof. From Lemma 9.7 we have that with probability at least 1� 2 log

2

4k
km

|SA|2e�
9km
50

˜Q(s, a)�B⇡⇤
˜Q(s, a) > �✏u � ✏a (9)

for all (s, a, ˜Q), and

˜Q(s, a)�B⇡
˜Q
˜Q(s, a) < ✏u + ✏a + 2

✏b
p

|u(s, a)|
(10)

for all (s, a) with |u(s, a)| � km. We also have that

˜Q(s, a)�B⇡
˜Q
˜Q(s, a)  Q

max

8 (s, a, ˜Q).

8f(n) = ˜O(g(n)) is a shorthand for f(n) = O(g(n) logc g(n)) for some c.
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Let Ka, k�a , TH , H , ⌧(t), and peh,ka
(st) be defined as in lemma 9.11. With probability at least

1� 2 log

2

4k
km

|SA|2e�
9km
50 , for any (s, a) with |u(s, a)| > 0 samples

˜Q(s, a)�B⇡
˜Q
˜Q(s, a) < ✏u + ✏a + 2

✏b
p

|u(s, a)|
.

Even though ⇡̃ is non-stationary, it is comprised of stationary segments. Starting from step t, ⇡̃ is
stationary for at least ⌧(t) steps. Substituting the above into Lemma 9.9 we have that with probability
at least 1� 2 log

2
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|SA|2e�
9km
50
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From the above it follows that
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with probability 1� � � 2 log

2

4k
km

|SA|2e�
9km
50 , where in step 3 we used the fact that there can be

at most log
2

2k
km

|SA| policy changes. Since Lemma 9.7 (used to bound the Bellman error of each
(s, a, ˜Q)) holds with probability at least 1� 2 log

2

4k
km

|SA|2e�
9km
50 and Lemma 9.11 (used to bound

how many times each (s, a, ˜Q) is encountered) holds with probability of at least 1� �
2

, the bound
above holds with probability of at least 1� �

2

� 2 log

2

4k
km
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50 .

Setting ✏b = ✏a
p
k we have that with probability at least 1� �

V ⇤
(st)� V ⇡̃

(st) 
2✏u + 5✏a
1� �

+ ✏e(t),

where
1
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.

Equations 3 and 4 follow by substitution and by using the fact that �  Q
max

2

.
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