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Abstract

The well known maximum-entropy principle due to Jaynes, which states that
given mean parameters, the maximum entropy distribution matching them is in an
exponential family has been very popular in machine learning due to its “Occam’s
razor” interpretation. Unfortunately, calculating the potentials in the maximum-
entropy distribution is intractable [BGS14]. We provide computationally efficient
versions of this principle when the mean parameters are pairwise moments: we
design distributions that approximately match given pairwise moments, while
having entropy which is comparable to the maximum entropy distribution matching
those moments.
We additionally provide surprising applications of the approximate maximum
entropy principle to designing provable variational methods for partition function
calculations for Ising models without any assumptions on the potentials of the
model. More precisely, we show that we can get approximation guarantees for the
log-partition function comparable to those in the low-temperature limit, which is
the setting of optimization of quadratic forms over the hypercube. ([AN06])

1 Introduction

Maximum entropy principle The maximum entropy principle [Jay57] states that given mean pa-
rameters, i.e. Eµ[φt(x)] for a family of functionals φt(x), t ∈ [1, T ], where µ is distribution over the
hypercube {−1, 1}n, the entropy-maximizing distribution µ is an exponential family distribution,
i.e. µ(x) ∝ exp(

∑T
t=1 Jtφt(x)) for some potentials Jt, t ∈ [1, T ]. 1 This principle has been one

of the reasons for the popularity of graphical models in machine learning: the “maximum entropy”
assumption is interpreted as “minimal assumptions” on the distribution other than what is known
about it.

However, this principle is problematic from a computational point of view. Due to results of
[BGS14, SV14], the potentials Jt of the Ising model, in many cases, are impossible to estimate well
in polynomial time, unless NP = RP – so merely getting the description of the maximum entropy
distribution is already hard. Moreover, in order to extract useful information about this distribution,
usually we would also like to at least be able to sample efficiently from this distribution – which is
typically NP-hard or even #P-hard.

1There is a more general way to state this principle over an arbitrary domain, not just the hypercube, but for
clarity in this paper we will focus on the hypercube only.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



In this paper we address this problem in certain cases. We provide a “bi-criteria” approximation
for the special case where the functionals φt(x) are φi,j(x) = xixj , i.e. pairwise moments: we
produce a efficiently sampleable distribution over the hypercube which matches these moments up
to multiplicative constant factors, and has entropy at most a constant factor smaller from from the
entropy of the maximum entropy distribution. 2

Furthermore, the distribution which achieves this is very natural: the sign of a multivariate normal
variable. This provides theoretical explanation for the phenomenon observed by the computational
neuroscience community [BB] that this distribution (there named dichotomized Gaussian there) has
near-maximum entropy.

Variational methods The above results also allow us to get results for a seemingly unrelated problem
– approximating the partition function Z =

∑
x∈{−1,1}n exp(

∑T
t=1 Jtφt(x)) of a member of an

exponential family. The reason this task is important is that it is tied to calculating marginals.

One of the ways this task is solved is variational methods: namely, expressing logZ as an optimization
problem. While there is a plethora of work on variational methods, of many flavors (mean field,
Bethe/Kikuchi relaxations, TRBP, etc. for a survey, see [WJ08]), they typically come either with no
guarantees, or with guarantees in very constrained cases (e.g. loopless graphs; graphs with large girth,
etc. [WJW, WJW05, Wei00]). While this is a rich area of research, the following extremely basic
research question has not been answered:

What is the best approximation guarantee on the partition function in the worst case (with no
additional assumptions on the potentials)?

In the low-temperature limit, i.e. when |Jt| → ∞, logZ → maxx∈{−1,1}n
∑T
t=1 Jtφt(x) - i.e. the

question reduces to purely optimization. In this regime, this question has very satisfying answers
for many families φt(x). One classical example is when the functionals are φi,j(x) = xixj . In the
graphical model community, these are known as Ising models, and in the optimization community this
is the problem of optimizing quadratic forms and has been studied by [CW04, AN06, AMMN06].

In the optimization version, the previous papers showed that in the worst case, one can get O(log n)
factor multiplicative factor approximation of it, and that unless P = NP, one cannot get better than
constant factor approximations of it.

In the finite-temperature version, it is known that it is NP-hard to achieve a 1 + ε factor approximation
to the partition function (i.e. construct a FPRAS) [SS12], but nothing is known about coarser
approximations. We prove in this paper, informally, that one can get comparable multiplicative
guarantees on the log-partition function in the finite temperature case as well – using the tools and
insights we develop on the maximum entropy principles.

Our methods are extremely generic, and likely to apply to many other exponential families, where
algorithms based on linear/semidefinite programming relaxations are known to give good guarantees
in the optimization regime.

2 Statements of results and prior work

Approximate maximum entropy The main theorem in this section is the following one.
Theorem 2.1. For any covariance matrix Σ of a centered distribution µ : {−1, 1}n → R, i.e.
Eµ[xixj ] = Σi,j , Eµ[xi] = 0, there is an efficiently sampleable distribution µ̃, which can be sampled

as sign(g), where g ∼ N (0,Σ + βI) and satisfies
G

1 + β
Σi,j ≤ Eµ̃[XiXj ] ≤

1

1 + β
Σi,j and has

entropy H(µ̃) ≥ n
25

(31/4√β−1)2√
3β

, for any β ≥ 1
31/2 .

There are two prior works on computational issues relating to maximum entropy principles, both
proving hardness results.

[BGS14] considers the “hard-core” model where the functionals φt are such that the distribution µ(x)
puts zero mass on configurations x which are not independent sets with respect to some graph G.

2In fact, we produce a distribution with entropy Ω(n), which implies the latter claim since the maximum
entropy of any distribution of over {−1, 1}n is at most n
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They show that unless NP = RP, there is no FPRAS for calculating the potentials Jt, given the mean
parameters Eµ[φt(x)].

[SV14] prove an equivalence between calculating the mean parameters and calculating partition
functions. More precisely, they show that given an oracle that can calculate the mean parameters up
to a (1 + ε) multiplicative factor in time O(poly(1/ε)), one can calculate the partition function of the
same exponential family up to (1 +O(poly(ε))) multiplicative factor, in time O(poly(1/ε)). Note,
the ε in this work potentially needs to be polynomially small in n (i.e. an oracle that can calculate the
mean parameters to a fixed multiplicative constant cannot be used.)

Both results prove hardness for fine-grained approximations to the maximum entropy principle, and
ask for outputting approximations to the mean parameters. Our result circumvents these hardness
results by providing a distribution which is not in the maximum-entropy exponential family, and is
allowed to only approximately match the moments as well. To the best of our knowledge, such an
approximation, while very natural, has not been considered in the literature.

Provable variational methods The main theorems in this section will concern the approximation
factor that can be achieved by degree-2 pseudo-moment relaxations of the standard variational
principle due to Gibbs. ([Ell12]) As outlined before, we will be concerned with a particularly popular
exponential family: Ising models. We will prove the following three results:

Theorem 2.2 (Ferromagnetic Ising, informal). There is a convex programming relaxation based on
degree-2 pseudo-moments that calculates up to multiplicative approximation factor 50 the value of
logZ where Z is the partition function of the exponential distribution µ(x) ∝ exp(

∑
i,j

Ji,jxixj) for

Ji,j > 0.

Theorem 2.3 (Ising model, informal). There is a convex programming relaxation based on degree-2
pseudo-moments that calculates up to multiplicative approximation factor O(log n) the value of
logZ where Z is the partition function of the exponential distribution µ(x) ∝ exp(

∑
i,j

Ji,jxixj).

Theorem 2.4 (Ising model, informal). There is a convex programming relaxation based on degree-2
pseudo-moments that calculates up to multiplicative approximation factor O(logχ(G)) the value of
logZ whereZ is the partition function of the exponential distribution µ(x) ∝ exp(

∑
i,j∈E(G)

Ji,jxixj)

where G = (V (G), E(G)) is a graph with chromatic number χ(G).

3

While a lot of work is done on variational methods in general (see the survey by [WJ08] for a detailed
overview), to the best of our knowledge nothing is known about the worst-case guarantee that we
are interested in here. Moreover, other than a recent paper by [Ris16], no other work has provided
provable bounds for variational methods that proceed via a convex relaxation and a rounding thereof.
4

[Ris16] provides guarantees in the case of Ising models that are also based on pseudo-moment
relaxations of the variational principle, albeit only in the special case when the graph is “dense” in a
suitably defined sense. 5 The results there are very specific to the density assumption and can not be
adapted to our worst-case setting.

Finally, we mention that in the special case of the ferromagnetic Ising models, an algorithm based on
MCMC was provided by [JS93], which can give an approximation factor of (1 + ε) to the partition
function and runs in time O(n11poly(1/ε)). In spite of this, the focus of this part of our paper is
to provide understanding of variational methods in certain cases, as they continue to be popular in

3Theorem 2.4 is strictly more general than Theorem 2.3, however the proof of Theorem 2.3 uses less heavy
machinery and is illuminating enough that we feel merits being presented as a separate theorem.

4In some sense, it is possible to give provable bounds for Bethe-entropy based relaxations, via analyzing
belief propagation directly, which has been done in cases where there is correlation decay and the graph is locally
tree-like. [WJ08] has a detailed overview of such results.

5More precisely, they prove that in the case when ∀i, j,∆|Ji,j | ≤ ∆
n2

∑
i,j |Ji,j |, one can get an additive

ε(
∑
i,j Ji,j) approximation to logZ in time nO( ∆

ε2
).
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practice for their faster running time compared to MCMC-based methods but are theoretically much
more poorly studied.

3 Approximate maximum entropy principles

Let us recall what the problem we want to solve:

Approximate maximum entropy principles We are given a positive-semidefinite matrix Σ ∈ Rn×n
with Σi,i = 1,∀i ∈ [n], which is the covariance matrix of a centered distribution over {−1, 1}n,
i.e. Eµ[xixj ] = Σi,j , Eµ[xi] = 0, for a distribution µ : {−1, 1}n → R. We wish to produce a
distribution µ̃ : {−1, 1}n → R with pairwise covariances that match the given ones up to constant
factors, and entropy within a constant factor of the maximum entropy distribution with covariance Σ.
6

Before stating the result formally, it will be useful to define the following constant:

Definition 3.1. Define the constant G = mint∈[−1,1]
{

2
π arcsin(t)/t

}
≈ 0.64.

We will prove the following main theorem:

Theorem 3.1 (Main, approximate entropy principle). For any positive-semidefinite matrix Σ with
Σi,i = 1,∀i, there is an efficiently sampleable distribution µ̃ : {−1, 1}n → R, which can be sampled
as sign(g), where g ∼ N (0,Σ+βI), and satisfies G

1+βΣi,j ≤ Eµ̃[xixj ] ≤ 1
1+βΣi,j and has entropy

H(µ̃) ≥ n
25

(31/4√β−1)2√
3β

, where β ≥ 1
31/2 .

Note µ̃ is in fact very close to the the one which is classically used to round semidefinite relaxations
for solving the MAX-CUT problem. [GW95] We will prove Theorem 3.1 in two parts – by first lower
bounding the entropy of µ̃, and then by bounding the moments of µ̃.

Theorem 3.2. The entropy of the distribution µ̃ satisfies H(µ̃) ≥ n
25

(31/4√β−1)2√
3β

when β ≥ 1
31/2 .

Proof. A sample g from N (0, Σ̃) can be produced by sampling g1 ∼ N (0,Σ), g2 ∼ N (0, βI) and
setting g = g1+g2. The sum of two multivariate normals is again a multivariate normal. Furthermore,
the mean of g is 0, and since g1, g2 are independent, the covariance of g is Σ + βI = Σ̃.

Let’s denote the random variable Y = sign(g1 + g2) which is distributed according to µ̃. We wish
to lower bound the entropy of Y. Toward that goal, denote the random variable S := {i ∈ [n] :
|(g1)i| ≤ cD} for c,D to be chosen. Then, we have: for γ = c−1

c ,

H(Y) ≥ H(Y|S) =
∑
S⊆[n]

Pr[S = S]H(Y|S = S) ≥
∑

S⊆[n],|S|≥γn

Pr[S = S]H(Y|S = S)

where the first inequality follows since conditioning doesn’t decrease entropy, and the latter by the
non-negativity of entropy. Continue the calculation we can get:∑

S⊆[n],|S|≥γn

Pr[S = S]H(Y|S = S) ≥
∑

S⊆[n],|S|≥γn

Pr[S = S] min
S⊆[n],|S|≥γn

H(Y|S = S)

= Pr [|S| ≥ γn] min
S⊆[n],|S|≥γn

H(Y|S = S)

We will lower bound Pr[|S| ≥ γn] first. Notice that E[
∑n
i=1(g1)2i ] = n, therefore by Markov’s

inequality, Pr

[
n∑
i=1

(g1)2i ≥ Dn

]
≤ 1

D
. On the other hand, if

∑n
i=1(g1)2i ≤ Dn, then |{i : (g1)2i ≥

cD}| ≤ n
c , which means that |{i : (g1)2i ≤ cD}| ≥ n− n

c = (c−1)n
c = γn. Putting things together,

this means Pr [|S| ≥ γn] ≥ 1− 1

D
.

6Note for a distribution over {−1, 1}n, the maximal entropy a distribution can have is n, which is achieved
by the uniform distribution.

4



It remains to lower bound minS⊆[n],|S|≥γnH(Y|S = S). For every S ⊆ [n], |S| ≥ γn, denote by
YS the coordinates of Y restricted to S, we get

H(Y|S = S) ≥ H(YS |S = S) ≥ H∞(YS |S = S) = − log(max
yS

Pr[YS = yS |S = S])

(where H∞ is the min-entropy) so we only need to bound maxyS Pr[YS = yS |S = S]

We will now, for any yS , upper bound Pr[YS = yS |S = S]. Recall that the event S = S implies that
∀i ∈ S, |(g1)i| ≤ cD. Since g2 is independent of g1, we know that for every fixed g ∈ Rn:

Pr[YS = yS |S = S, g1 = g] = Πi∈S Pr[sign([g]i + [g2]i) = yi]

For a fixed i ∈ [S], consider the term Pr[sign([g]i + [g2]i) = yi]. Without loss of generality, let’s
assume [g]i > 0 (the proof is completely symmetric in the other case). Then, since [g]i is positive

and g2 has mean 0, we have Pr[[g]i + (g2)i < 0] ≤ 1

2
.

Moreover,

Pr [[g]i + [g2]i > 0] = Pr[[g2]i > 0] Pr [[g]i + [g2]i > 0 | [g2]i > 0]

+ Pr[[g2]i < 0] Pr [[g]i + [g2]i > 0 | [g2]i < 0]

The first term is upper bounded by 1
2 since Pr[[g2]i > 0] ≤ 1

2 . The second term we will bound using
standard Gaussian tail bounds:

Pr [[g]i + [g2]i > 0 | [g2]i < 0] ≤ Pr [|[g2]i| ≤ |[g]i| | [g2]i < 0]

= Pr[|[g2]i| ≤ |[g]i|] ≤ Pr[([g2]i)
2 ≤ cD] = 1− Pr[([g2]i)

2 > cD]

≤ 1− 2√
2π

exp (−cD/2β)

√ β

cD
−

(√
β

cD

)3


which implies

Pr[[g2]i < 0] Pr[[g]i+[g2]i > 0 | [g2]i < 0] ≤ 1

2

1− 2√
2π

exp (−cD/2β)

√ β

cD
−

(√
β

cD

)3


Putting together, we have

Pr[sign((g1)i + (g2)i) = yi] ≤ 1− 1√
2π

exp (−cD/2β)

√ β

cD
−

(√
β

cD

)3


Together with the fact that |S| ≥ γn we get

Pr[YS = yS |S = s, g1 = g] ≤

1− 1√
2π

exp (−cD/2β)

√ β

cD
−

(√
β

cD

)3
γn

which implies that

H(Y) ≥ −
(

1− 1

D

)
(c− 1)n

c
log

1− 1√
2π

exp (−cD/2β)

√ β

cD
−

(√
β

cD

)3


By setting c = D = 31/4
√
β and a straightforward (albeit unpleasant) calculation, we can check that

H(Y) ≥ n
25

(31/4√β−1)2√
3β

, as we need.

We next show that the moments of the distribution are preserved up to a constant G
1+β .
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Lemma 3.1. The distribution µ̃ has G
1+βΣi,j ≤ Eµ̃[XiXj ] ≤ 1

1+βΣi,j

Proof. Consider the Gram decomposition of Σ̃i,j = 〈vi, vj〉. Then, N (0, Σ̃) is in distribution equal
to (sign(〈v1, s〉), . . . , sign(〈vn, s〉)) where s ∼ N (0, I). Similarly as in the analysis of Goemans-

Williamson [GW95], if v̄i = 1
‖vi‖vi, we have G〈v̄i, v̄j〉 ≤ Eµ̃[XiXj ] =

2

π
arcsin(〈v̄i, v̄j〉) ≤

〈v̄i, v̄j〉. However, since 〈v̄i, v̄j〉 =
1

‖vi‖‖vj‖
〈vi, vj〉 =

1

‖vi‖‖vj‖
Σ̃i,j =

1

‖vi‖‖vj‖
Σi,j and ‖vi‖ =√

Σ̃i,i =
√

1 + β,∀i ∈ [1, n], we get that
G

1 + β
Σi,j ≤ Eµ̃[XiXj ] ≤

1

1 + β
Σi,j as we want.

Lemma 3.2 and 3.1 together imply Theorem 3.1.

4 Provable bounds for variational methods

We will in this section consider applications of the approximate maximum entropy principles we
developed for calculating partition functions of Ising models. Before we dive into the results, we give
brief preliminaries on variational methods and pseudo-moment convex relaxations.

Preliminaries on variational methods and pseudo-moment convex relaxations Recall, varia-
tional methods are based on the following simple lemma, which characterizes logZ as the solution
of an optimization problem. It essentially dates back to Gibbs [Ell12], who used it in the context of
statistical mechanics, though it has been rediscovered by machine learning researchers [WJ08]:

Lemma 4.1 (Variational characterization of logZ). Let us denote byM the polytope of distributions
over {−1, 1}n. Then,

logZ = max
µ∈M

{∑
t

JtEµ[φt(x)] +H(µ)

}
(1)

While the above lemma reduces calculating logZ to an optimization problem, optimizing over
the polytopeM is impossible in polynomial time. We will proceed in a way which is natural for
optimization problems – by instead optimizing over a relaxationM′ of that polytope.

The relaxation will be associated with the degree-2 Lasserre hierarchy. Intuitively, M′ has as
variables tentative pairwise moments of a distribution of {−1, 1}n, and it imposes all constraints on
the moments that hold for distributions over {−1, 1}n. To defineM′ more precisely we will need
the following notion: (for a more in-depth review of moment-based convex hierarchies, the reader
can consult [BKS14])

Definition 4.1. A degree-2 pseudo-moment 7 Ẽν [·] is a linear operator mapping polynomials of
degree 2 to R, such that Ẽν [x2

i ] = 1, and Ẽν [p(x)2] ≥ 0 for any polynomial p(x) of degree 1.

We will be optimizing over the polytopeM′ of all degree-2 pseudo-moments, i.e. we will consider
solving

max
Ẽν [·]∈M′

{∑
t

JtẼν [φt(x)] + H̃(Ẽν [·])

}
where H̃ will be a proxy for the entropy we will have to define (since entropy is a global property
that depends on all moments, and Ẽν only contains information about second order moments).

To see this optimization problem is convex, we show that it can easily be written as a semidefinite
program. Namely, note that the pseudo-moment operators are linear, so it suffices to define them over
monomials only. Hence, the variables will simply be Ẽν(xS) for all monomials xS of degree at most
2. The constraints Ẽν [x2

i ] = 1 then are clearly linear, as is the “energy part” of the objective function.
So we only need to worry about the constraint Ẽν [p(x)2] ≥ 0 and the entropy functional.

7The reason Ẽν [·] is called a pseudo-moment, is that it behaves like the moments of a distribution ν :
{−1, 1}n → [0, 1], albeit only over polynomials of degree at most 2.
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We claim the constraint Ẽν [p(x)2] ≥ 0 can be written as a PSD constraint: namely if we define the
matrix Q, which is indexed by all the monomials of degree at most 1, and it satisfies Q(xS ,xT ) =

Ẽν [xSxT ]. It is easy to see that Ẽν [p(x)2] ≥ 0 ≡ Q � 0.

Hence, the final concern is how to write an expression for the entropy in terms of the low-order
moments, since entropy is a global property that depends on all moments. There are many candidates
for this in machine learning are like Bethe/Kikuchi entropy, tree-reweighted Bethe entropy, log-
determinant etc. However, in the worst case – none of them come with any guarantees. We will in
fact show that the entropy functional is not an issue – we will relax the entropy trivially to n.

Given all of this, the final relaxation we will consider is:

max
Ẽν [·]∈M′

{∑
t

JtẼν [φt(x)] + n

}
(2)

From the prior setup it is clear that the solution to 2 is an upper bound to logZ . To prove a claim like
Theorem 2.3 or Theorem 2.4, we will then provide a rounding of the solution. In this instance, this
will mean producing a distribution µ̃ which has the value of

∑
t JtEµ̃[φt(x)] +H(µ̃) comparable to

the value of the solution. Note this is slightly different than the usual requirement in optimization,
where one cares only about producing a single x ∈ {−1, 1}n with comparable value to the solution.
Our distribution µ̃ will have entropy Ω(n), and preserves the “energy” portion of the objective∑
t JtEµ[φt(x)] up to a comparable factor to what is achievable in the optimization setting.

Warmup: exponential family analogue of MAX-CUT As a warmup, to illustrate the basic ideas
behind the above rounding strategy, before we consider Ising models we consider the exponential
family analogue of MAX-CUT. It is defined by the functionals φi,j(x) = (xi − xj)

2. Concretely,

we wish to approximate the partition function of the distribution µ(x) ∝ exp

∑
i,j

Ji,j(xi − xj)
2

.

We will prove the following simple observation:

Observation 4.1. The relaxation 2 provides a factor 2 approximation of logZ .

Proof. We proceed as outlined in the previous section, by providing a rounding of 2. We point out
again, unlike the standard case in optimization, where typically one needs to produce an assignment of
the variables, because of the entropy term here it is crucial that the rounding produces a distribution.

The distribution µ̃ we produce here will be especially simple: we will round each xi independently
with probability 1

2 . Then, clearly H(µ̃) = n. On the other hand, we similarly have Prµ̃[(xi− xj)2 =

1] = 1
2 , since xi and xj are rounded independently. Hence, Eµ̃[(xi − xj)2] ≥ 1

2 . Altogether, this

implies
∑
i,j Ji,jEµ̃[(xi − xj)2] +H(µ̃) ≥ 1

2

(∑
i,j Ji,jEν [(xi − xj)2] + n

)
as we needed.

4.1 Ising models

We proceed with the main results of this section on Ising models, which is the case where φi,j(x) =
xixj . We will split into the ferromagnetic and general case separately, as outlined in Section 2.

To be concrete, we will be given potentials Ji,j , and we wish to calculate the partition function of the
Ising model µ(x) ∝ exp(

∑
i,j Ji,jxixj).

Ferromagnetic case

Recall, in the ferromagnetic case of Ising model, we have the conditions that the potentials Ji,j > 0.
We will provide a convex relaxation which has a constant factor approximation in this case. First, recall
the famous first Griffiths inequality due to Griffiths [Gri67] which states that in the ferromagnetic
case, Eµ[xixj ] ≥ 0,∀i, j.

7



Using this inequality, we will look at the following natural strenghtening of the relaxation 2:

max
Ẽν [·]∈M′;Ẽν [xixj ]≥0,∀i,j

{∑
t

JtẼν [φt(x)] + n

}
(3)

We will prove the following theorem, as a straightforward implication of our claims from Section 3:

Theorem 4.1. The relaxation 3 provides a factor 50 approximation of logZ .

Proof. Notice, due to Griffiths’ inequality, 3 is in fact a relaxation of the Gibbs variational principle
and hence an upper bound)of logZ . Same as before, we will provide a rounding of 3. We will use the
distribution µ̃ we designed in Section 3 the sign of a Gaussian with covariance matrix Σ + βI , for a
β which we will specify. By Lemma 3.2, we then have H(µ̃) ≥ n

25
(31/4√β−1)2√

3β
whenever β ≥ 1

31/2 .

By Lemma 3.1, on the other hand, we can prove that Eµ̃[xixj ] ≥
G

1 + β
Ẽν [xixj ]

By setting β = 21.8202, we get n
25

(31/4√β−1)2√
3β

≥ 0.02 and G
1+β ≥ 0.02, which implies that

∑
i,j

Ji,jEµ̃[xixj ] +H(µ̃) ≥ 0.02

∑
i,j

Ji,jẼν [xixj ] + n


which implies the claim we want.

Note that the above proof does not work in the general Ising model case: when Ẽν [xixj ] can be
either positive or negative, even if we preserved each Ẽν [xixj ] up to a constant factor, this may not
preserve the sum

∑
i,j Ji,jẼν [xixj ] due to cancellations in that expression.

General Ising models case

Finally, we will tackle the general Ising model case. As noted in the previous section, the straightfor-
ward application of the results proven in Section 3 doesn’t work, so we have to consider a different
rounding – again inspired by roundings used in optimization.

The intuition is the same as in the ferromagnetic case: we wish to design a rounding which preserves
the “energy” portion of the objective, while having a high entropy. In the previous section, this
was achieved by modifying the Goemans-Williamson rounding so that it produces a high-entropy
distribution. We will do a similar thing here, by modifying rounding due to [CW04] and [AMMN06].

The convex relaxation we will consider will just be the basic one: 2 and we will prove the following
two theorems:

Theorem 4.2. The relaxation 2 provides a factor O(log n) approximation to logZ when φi,j(x) =
xixj .

Theorem 4.3. The relaxation 2 provides a factor O(log(χ(G))) approximation to logZ when
φi,j(x) = xixj for i, j ∈ E(G) of some graph G = (V (G), E(G)), and χ(G) is the chromatic
number of G.

Since the chromatic number of a graph is bounded by n, the second theorem is in fact strictly stronger
than the first, however the proof of the first theorem uses less heavy machinery, and is illuminating
enough to be presented on its own.

Before delving into the proof of Theorem 4.2, we review the rounding used by [CW04] in the case of
maximizing quadratic forms:
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Algorithm 1 Quadratic form rounding by [CW04]
1: Input: A pseudo-moment matrix Σi,j = Eν [xixj ]
2: Output: A sample x from a distribution ρ
3: Sample g from the standard Gaussian N(0, I).
4: Consider the vector h, such that hi = gi/T, T =

√
4 log n

5: Consider the vector r, such that ri = hi
|hi| , if |hi| > 1, and ri = hi otherwise.

6: Produce the rounded vector x ∈ {−1, 1}n, s.t.

xi =

{
+1, with probability 1+ri

2
−1, with probability 1−ri

2

}

Algorithm 2 Scaled down quadratic form rounding
1: Input: A pseudo-moment matrix Σi,j = Eν [xixj ]
2: Output: A sample x from a distribution µ̃
3: Sample g from the standard Gaussian N(0, I).
4: Consider the vector h, such that hi = gi/T, T =

√
4 log n

5: Consider the vector r, such that r′i = 1
2
hi
|hi| , if |hi| > 1, and r′i = 1

2hi otherwise.
6: Produce the rounded vector x ∈ {−1, 1}n, s.t.

xi =

{
+1, with probability 1+ri

2
−1, with probability 1−ri

2

}

With that in hand, we can prove Theorem 4.2

Proof of Theorem 4.2. The proof again consists of exhibiting a rounding. Our rounding will essen-
tially be the same as [CW04], except in step 3, we will produce a vector r′i by scaling down the vector
ri by 2 coordinate-wise. For full clarity, the rounding is presented in Algorithm 2.

We again, need to analyze the entropy and the moments of the distribution µ̃ that this rounding
produces. Let us focus on the entropy first.

Since conditioning does not decrease entropy, it’s true that H(µ̃) = H(x) ≥ H(x|r), so it suffices
to lower bound that quantity. However, note that it holds that ri ≤ 1

2 , and each xi is rounded
independently conditional on ri, so we have:

H(x|r) =
∑
i

H(xi|ri) =
∑
i

(
1 + ri

2
log

(
1 + ri

2

)
+

1− ri
2

(
1− ri

2

))
≥
(

2− 3

4
log 3

)
n

Consider now the moments of the distribution.

Let us denote the distribution that the rounding 1 produces by ρ. By Theorem 1 in [CW04], we have∑
i,j

Ji,jEρ[xixj ] ≥ O
(

1

log n

)∑
i,j

Ji,jEν [xixj ]

Additional, both our and the [CW04] roundings are such that Eρ[xixj ] = EriEx|ri [xixj ]
and Eµ̃[xixj ] = Er′iEx|r′i [xixj ]. Furthermore, as noted in [CW04], it is easy to check that
E[xixj |r′i, r′j ] = r′ir

′
j and obviously r′i = 2ri in distribution, so we have:

Eµ̃[xixj ] = Er′iEx|r′i [xixj ] =
1

4
EriEx|ri [xixj ] =

1

4
Eρ[xixj ]

But, this directly implies∑
i,j

Ji,jEµ̃[xixj ] =
1

4

∑
i,j

Ji,jEρ[xixj ] ≥ O
(

1

log n

)∑
i,j

Ji,jEν [xixj ]

as we needed.
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Next, we prove the more general Theorem 4.3.

Before proceeding, let’s recall for completeness the following definition of a chromatic number.
Definition 4.2 (Chromatic number). The chromatic number χ(G) of a graph G = (V (G), E(G))
is defined as the minimum number of colors in a coloring of the vertices V (G), such that vertices
i, j : (i, j) ∈ E(G) are colored with the same color.

Also, let us denote by Sn−1 the set of unit vectors in Rn and L∞[0, 1] the set of (essentially) bounded
functions: the functions which are bounded except on a set of measure zero.

Then, we can recall Theorem 3.3 from [AMMN06]:
Theorem 4.4 ([AMMN06]). There exists an absolute constant c such that the following holds:
Let G = (V (G), E(G)) be an undirected graph on n vertices without self-loops8, let χ(G) be
the chromatic number of G. Then for every function f : V (G) → Sn−1, there exists a function
F : V → L∞[0, 1] so that for every i ∈ V (G), ‖F (i)‖∞ ≤

√
cχ(G) and for every (i, j) ∈ E(G),

〈f(i), f(j)〉 =

∫ 1

0

F (i)(t)F (j)(t)dt

Now, we can prove Theorem 4.3

Proof of Theorem 4.3. The proof is similar, though a little more complicated than the proof of
Theorem 4.2.

Let Ẽν [·] be the solution of the relaxation. By matrix formulation of the pseudo-moment relaxation
in Section 4 , we know that Ẽν [xixj ] = 〈f(i), f(j)〉 for some unit vectors f(i), f(j).

Hence, by theorem 4.4, there exists a function F : V → L∞[0, 1] so that for every i ∈ V (G),
‖F (i)‖∞ ≤

√
cχ(G) and for every (i, j) ∈ E(G),

Ẽν [xixj ] =

∫ 1

0

F (i)(t)F (j)(t)dt

Consider the following rounding:

• Pick a t uniformly at random from [0, 1].

• Consider the function ht : V → R, such that ht(i) = F (i)(t)

2
√
cχ(G)

• Produce the rounded vector x ∈ {−1, 1}V (G), s.t.

xi =

{
+1, with probability 1+ht(i)

2

−1, with probability 1−ht(i)
2

}

Note importantly that the algorithm does not need to perform this rounding – it is for the analysis of
the approximation factor of the relaxation. Therefore, we need not construct it algorithmically.

Let us denote this distribution as µ̃. We first show that µ̃ has entropy at least
(
2− 3

4 log 3
)
n. Note

that each xi are round independently conditional on t. Moreover, since ‖F (v)‖∞ ≤
√
cχ(G), we

know that ht(v) ≤ 1
2 . Therefore, for every fixed t0 ∈ [0, 1]

H(µ̃ | t = t0) =
∑

i∈V (G)

H(xi | t = t0)

=
∑

i∈V (G)

(
1 + ht0(v)

2
log

1 + ht0(v)

2
+

1− ht0(v)

2
log

1− ht0(v)

2

)

≥
(

2− 3

4
log 3

)
n

8Meaning no edge connects a vertex with itself
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Integrating over t0 we get that H(µ̃) ≥
(
2− 3

4 log 3
)
n.

Next, we will show that µ̃ preserves the “energy” part of the objective up to a multiplicative factor
O(logχ(G)): Consider each edge (i, j) ∈ E(G). We have:

Eµ̃[xixj ] =∫ 1

0

(
[1 + ht(i)][1 + ht(j)]

4
+

[1− ht(i)][1− ht(j)]
4

− [1 + ht(i)][1− ht(j)]
4

− [1− ht(i)][1 + ht(j)]

4

)
dt

=

∫ 1

0

ht(i)ht(j)dt =
1

4cχ(G)

∫ 1

0

F (i)(t)F (j)(t)dt =
1

4cχ(G)
Ẽν [xixj ]

This implies that ∑
i,j∈E(G)

Ji,jEµ̃[xixj ] ≥
1

4cχ(G)

∑
i,j∈E(G)

Ji,jẼν [xixj ]

Therefore, the relaxation provides a factor O(χ(G)) approximation of logZ , as we wanted.

5 Conclusion

In summary, we presented computationally efficient approximate versions of the classical max-
entropy principle by [Jay57]: efficiently sampleable distributions which preserve given pairwise
moments up to a multiplicative constant factor, while having entropy within a constant factor of the
maximum entropy distribution matching those moments. Additionally, we applied our insights to
designing provable variational methods for Ising models which provide comparable guarantees for
approximating the log-partition function to those in the optimization setting. Our methods are based
on convex relaxations of the standard variational principle due to Gibbs, and are extremely generic
and we hope they will find applications for other exponential families.
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