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This file contains additional derivations for our NIPS 2015 paper, “Gaussian Process Random Fields”.
Notation used here follows the notation of the paper. Code to construct the datasets and reproduce
the experimental results is available online at https://github.com/davmre/gprf/.

1 Block tree structure

It is straightforward to see that the GPRF objective is exact when the MRF induced by the true
precision matrix J, with respect to our chosen partition of y, is a tree. For any choice of root
node yrq0t, the tree structure implies that we can write the true GP distribution as a product of
parent-conditional distributions,
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where 7 (%) is the (unique) parent of node ¢ with respect to our chosen root. Then expanding the
conditional distribution
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yields exactly the GPRF objective for the edge set E = (i, 7(4)), i.e., the edges that define the tree.

Note that the structure of the MRF induced by the true GP will depend on the partition we choose: a
given precision matrix may induce a tree structure for some choices of partition but not for others
(e.g., even a fully dense matrix can be viewed as a tree for trivial partitions that split the dataset into
only one or two blocks).

In many cases it is easier to reason about the structure of the covariance matrix than that of the
precision matrix. Assuming a stationary kernel, nonzero (or non-negligible) entries of the covariance
matrix correspond to data points that are nearby to each other, meaning that the sparsity pattern of
the covariance matrix reflects the geometry of the data itself. If the data can be viewed as lying on a
treelike manifold — for example, seismic fault lines, or even trivial special cases such as time series
data which lies on the real line — then for reasonable choices of partition, a graph connecting nearby
blocks of data points will have a tree structure. Of course, there is no formal guarantee that this
structure will fully carry over to the precision matrix, though intuitively we’d expect that points very
distant from each other are also unlikely to interact strongly in the precision matrix.

2 Approximation to the true Gaussian

In this section we prove Theorem 1 from the main text, showing that ggprr 1S an unnormalized
Gaussian density with a particular precision matrix.



For any pair of blocks (4, ), define the local precision matrix Q") to be the inverse of the marginal

covariance,
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The notation Q%) is used to distinguish these local precision matrices from the blocks Ji; of the
global precision matrix. Writing qg prr in terms of unnormalized Gaussian densities,
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we obtain the standard form of a Gaussian MRF (expression (3) from the main text) showing that
geprr does in fact induce a Gaussian density on y. Note that in passing from the second to the third

line we used the fact that QH = 35, by definition. This Gaussian representation allows us to read
off the implicit precision matrix J in block wise form
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We see that the off-diagonal blocks of the precision matrix are simply the corresponding blocks of
the pairwise local precisions. Each diagonal block, by contrast, combines the inverse of the local
covariance matrix with corrections from the pairwise precisions. Note that the approximate precision
J may not be positive definite. In this case g prF is not a normalizable density, although it is still
“approximately normalized” in the sense of the next section.

3 Approximate normalization

In this section we prove Theorem 2 from the main text:

Theorem 2. The objective qgprr is approximately normalized in the sense that the optimal value

of the Bethe free energy [1],
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the approximation to the normalizing constant found by loopy belief propagation, is precisely zero.
Furthermore, this optimum is obtained when the pseudomarginals b;, b;; are taken to be the true GP
marginals p;, p;j.

Proof. These claims are established rather directly by substituting the GPRF potentials
PGPRE d)gp RE for the log pseudomarginals log ;,log ¥;; in (2), yielding
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where KL[b||p] = [ b(x )In b(x) ydx is the Kullback-Liebler divergence between distributions b and

p. This is minimized when the dlstrlbutlons are equal, at which point the divergence is zero. Thus,
taking b; = p;and b;; = p;; yields the optimal value Fg = 0. O



We might have hoped that, as local GPs match the marginal distributions of the full GP on individual
blocks, perhaps a higher-order approximation could match the exact marginals on pairs of blocks.
This is not possible, since any Gaussian distribution whose pairwise marginals match the full GP
must in fact be the full GP (Gaussians are entirely characterized by their covariances). Instead we can
view qg prr as approximately matching the pairwise marginals of the full GP, in the sense that the
pseudomarginals found by running loopy belief propagation on g prF are in fact the true marginals

of the full GP. This is a consequence of the fact that loopy BP converges to stationary points of the
Bethe energy [1].
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